Análisis de macromoléculas de sangre canina mediante Espectroscopías Infrarroja y Uv-Visible

dc.contributor.advisorVargas Hernández, Carlosspa
dc.contributor.authorMontenegro Moreno, Giselle Alejandraspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupPropiedades Ópticas de Materialesspa
dc.date.accessioned2020-11-09T18:20:46Zspa
dc.date.available2020-11-09T18:20:46Zspa
dc.date.issued2020spa
dc.description.abstractCon la tecnología disponible, los protocolos y las metodologías para el diagnóstico clínico en caninos, aún no se dispone de criterios definitivos en las etapas tempranas de formación de algunas enfermedades como cáncer, diabetes, daño hepático, etc que permitan a los especialistas tomar decisiones al respecto. Aún se continúa usando como método definitivo y acertado para la evaluación de enfermedades métodos clínicos de tipo invasivo como las biopsias con las respectivas dificultades en el diagnóstico, que sumado a la experticia y experiencia del patólogo; posibilita el incremento de error en el proceso. Los resultados de este trabajo mediante Espectroscopias Infrarroja y UV-Visible muestran que las técnicas de caracterización estudiadas son viables para el análisis de macromoléculas presentes en tejido sanguíneo, lo que permitió obtener un protocolo mediante el pico de control asociado a hemoglobina en espectroscopía UV-Visible y a degradación de proteínas en espectroscopía Infrarroja. Adicional a esto, con el fin de estudiar los efectos de materiales nanoestructurados en la caracterización de este tejido, se produjeron y añadieron a las muestras nanopartículas de plata formando complejos que fueron obtenidas por dos métodos de síntesis, el primer tipo preparada con síntesis asistida por microondas y la segunda utilizando el método tradicional de Creighton en donde se usa un agente reductor (borohidruro de sodio) para producir nanopartículas esféricas mono-dispersas. De forma más general, en el trabajo se discute la posibilidad de diagnosticar el daño hepático en caninos mediante el protocolo del pico de control, discusión basada en los resultados obtenidos y reportes de la literatura.spa
dc.description.abstractSpectroscopy techniques have been used to provide information. In order to evaluate changes on the chemical components in biological samples like blood tissue, this techniques can be used as an important clinical tool for in vivo diagnosis, where spectral peaks can be related such as biological markers. In the present study, we present canine blood samples analysis, methodology and protocol using non-invasive optical techniques like Infrared and UV-Visible spectroscopy for monitoring and identification of possible diseases. As a case study canine blood tissue samples from three patients were obtained on preprandial and postprandial state and analyzed under power conditions that do not cause any modification. On the other hand, in order to study how nanostructures enhance the signal tissue, we synthesized silver nanoparticles by two methods: synthesis microwave-assisted and Creighton synthesis method that was added to blood samples. The software tool Origin was used to determinate representative peaks in each spectrum. Evaluating areas under the curve and radio analysis were realized considering that absorption bands represent a group of macromolecules. The results show that methodologies used are viable for blood macromolecules tissue evaluation due to differences presented. In general, we discuss canine liver damage diagnosis possibility based on results obtained and literature reports.spa
dc.description.additionalInforme final de trabajo de grado presentado como requisito para optar al título de: Ingeniera Física. -- Director: Ph.D Carlos Vargas Hernández, Asesor: M.V.Alejandro Clavijo Maldonado. -- Línea de Investigación: Biofísica. -- Ganadora Versión XXIX Concurso Mejores Trabajos de Grado de Pregrado de la Universidad Nacional de Colombia (2020).spa
dc.description.degreelevelPregradospa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extent53spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationG. Montenegro Moreno, "Análisis de macromoléculas de sangre canina mediante Espectroscopías Infrarroja y Uv-Visible"spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78599
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Ingeniería Físicaspa
dc.relation.referencesM. Ernst and J. Roukema, “Diagnosis of non-palpable breast cancer: a review”, The Breast, vol. 11, no. 1, pp. 13–22, 2002spa
dc.relation.referencesJ. Pichardo-Molina et al., “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,”Lasers in Medical Science, vol. 22, no. 4, pp. 229–36, 2007spa
dc.relation.referencesD. Panciera, “Conditions associated with canine hypothyroidism,” VeterinaryClinics of North America: Small Animal Practice, vol. 31, no. 5, pp. 935–50,2001spa
dc.relation.referencesA. Enejder et al., “Blood analysis by Raman spectroscopy,”Optics Letters,vol. 27, no. 22, pp. 2004–06, 2002spa
dc.relation.referencesH. Gremlich and B. Yan, Infrared and Raman spectroscopy of biological materials. New York: M. Dekker: Practical spectroscopy, 2001spa
dc.relation.referencesS. Olsztynska-Janus et al., “Spectroscopic techniques in the study of human tissues and their components. part i: Ir spectroscopy,” Acta of Bioengineering and Biomechanics, vol. 14, no. 3, pp. 101–15, 2012spa
dc.relation.referencesU. Zelig et al., “Early detection of breast cancer using total biochemical analysis of peripheral blood components: A preliminary study,” BMC Cancer, vol. 15, no. 408, 2015spa
dc.relation.referencesM. Baker et al., “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem Soc Rev, vol. 45, no. 7, pp. 1803–18, 2016spa
dc.relation.referencesM. Paraskevaidi et al., “Differential diagnosis of Alzheimer's disease using spectrochemical analysis of blood,” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 38, pp. 7929–38, 2017spa
dc.relation.referencesC. Berthomieu and R. Hienerwadel, “Fourier transform infrared (FTIR) spectroscopy,” Photosynthesis Research, vol. 101, pp. 157–70, 2009spa
dc.relation.referencesF. Elmi et al., “Application of FTIR spectroscopy on breast cancer serum analysis,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 187, pp. 87–91, 2017spa
dc.relation.referencesA. Bonifacio et al., “Surface-enhanced Raman spectroscopy of blood plasma and serum using ag and au nanoparticles: A systematic study,” Analytical and bioanalytical Chemistry, vol. 406, pp. 2355–65, 2014spa
dc.relation.referencesY. Tan et al., “Surface-enhanced Raman spectroscopy of blood serum-based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma,”Lipids in Health and Disease, vol. 16, no. 73, 2017spa
dc.relation.referencesK. A. El-Nour et al., “Synthesis and applications of silver nanoparticles,” Arabian Journal of Chemistry, vol. 3, no. 3, pp. 135–40, 2010spa
dc.relation.referencesW. Zapata-Builes and H. Fajardo-Rincon, “Manual de química sanguínea veterinaria.”spa
dc.relation.referencesW. Colburn, “Biomarkers in drug discovery and development: From target identification through drug marketing,” The Journal of Clinical Pharmacology, vol. 43, no. 4, pp. 329–41, 2013spa
dc.relation.referencesJ. Iwasa and W. Marshall,Karp. Biología celular y molecular: conceptos y experimentos. McGraw-Hill Interamericana, 2019spa
dc.relation.referencesMayo-Clinic et al., Encyclopedia of foods: a guide to healthy nutrition. SanDiego, California: Academic Press, 2002spa
dc.relation.referencesA. Fuentes,Bioquímica clínica y patología molecular. II., Reverte, Ed., 1998spa
dc.relation.referencesN. Allewellet al., Molecular Biophysics for the Life Sciences, S. S. . B. Media, Ed., 2013spa
dc.relation.referencesP. Lasch and J. Kneipp, Biomedical Vibrational Spectroscopy, J. W. . Sons, Ed.,2018spa
dc.relation.referencesJ. Henao-Marín, “Implementación de una metodología por espectrofotometría uv-visible, para el análisis de química sanguínea en el centro integral de diagnóstico agropecuario de risaralda (cidar), dependencia de la secretaría de desarrollo agropecuario de la gobernación de risaralda,” Master’s thesis, Universidad Tecnológica de Pereira. Facultad de Tecnologías, Pereira, Colombia,2015spa
dc.relation.referencesG. Bellisola and C.Sorio, “Infrared spectroscopy and microscopy in cancer research and diagnosis,” American Journal of Cancer Research, vol. 2, no. 1,2012spa
dc.relation.referencesC. Petibois et al., “Plasma protein contents determined by Fourier-transform infrared spectrometry,” Clinical Chemistry, vol. 47, no. 4, pp. 730–38, 2001spa
dc.relation.referencesV. Escobar-Falconí, “Síntesis y caracterización de nanopartículas de plata porespectroscopia de infrarrojos (FTIR), UV-Vis, absorción atómica de llama (FAAS) y microscopía de barrido electrónico (SEM),” Master’s thesis, Pontificia Universidad Católica del Ecuador .Facultad de Ciencias Exactas y Naturales, Ecuador, 2015spa
dc.relation.referencesC. Flores, “Nanopartículas de plata con potenciales aplicaciones en materiales implantables: síntesis, caracterización fisicoquímica y actividad bactericida,” Ph.D. dissertation, Universidad Nacional de La Plata, Argentina, 2014spa
dc.relation.referencesM. Sánchez, “Trabajo de fin de máster. máster universitario en ciencia y tecnología química. especialidad de química inorgánica e ingeniería química,” Master’s thesis, Universidad Nacional de Educación a Distancia. Facultad de Ciencias. Departamento de Química Inorgánica y Química Técnica, España, 2017spa
dc.relation.referencesG.Kahrilas et al., “Microwave-assisted green synthesis of silver nanoparticles using orange peel extract,” vol. 2, no. 3, pp. 367–76, 2014spa
dc.relation.referencesJ. Depciuch and M. Parlinska-Wojtan, “Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods,” Journal of Pharmaceutical and Biomedical Analysis, vol.150, pp. 80–6, 2018spa
dc.relation.referencesC. Petiboiset al., “Differentiation of populations with different physiologic profiles by plasma Fourier-transform infrared spectra classification,” Journal of Laboratory and Clinical Medicine, vol. 137, no. 3, pp. 184–90, 2001spa
dc.relation.referencesJ. Backhaus et al., “Diagnosis of breast cancer with infrared spectroscopy from serum samples,” Vibrational Spectroscopy, vol. 52, no. 2, pp. 173–7, 2010spa
dc.relation.referencesP. Srividya et al., “Ftir spectral study on diabetic blood samples-monotherapy and combination therapy,” OJP, vol. 4, no. 1, pp. 17–26, 2012spa
dc.relation.referencesA. Mukunthan and S. Sudha, “FTIR spectroscopic features of blood serum of diseased and healthy subjects (animals),” International Journal of innovative research in Science, Engineering and Technology, vol. 2, 2013spa
dc.relation.referencesK. Lima et al., “Segregation of ovarian cancer stage exploiting spectral biomarkers derived from blood plasma or serum analysis: ATR-FTIR spectroscopy coupled with variable selection methods,” Biotechnology Progress, vol. 31, no. 3, pp.832–9, 2015spa
dc.relation.referencesJ. González-Domínguez et al., “Absorption peaks: α, β, γ and their covariance with age and hemoglobin in human blood samples using photoacoustic spectroscopy,” International Journal of Thermophysics, vol. 33, pp. 1827–33, 2012spa
dc.relation.referencesM. Alvarado-Noguez et al., “Obtaining and analysis of optical absorption spectrum of fisher rat blood with hepatic damage by photoacoustic spectroscopy,” Revista Mexicana de ingeniería biomédica, vol. 38, no. 1, pp. 357–62, 2016spa
dc.relation.referencesK. Gajjar et al., “Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer,” The Analyst, no. 138, pp. 3917–26, 2013spa
dc.relation.referencesA. Bunaciuet al., “Cancer diagnosis by FTIR spectrophotometry,” Revue Roumaine de Chimie, vol. 60, pp. 415–26, 2015spa
dc.relation.referencesL. Allain and T. Vo-Dinh, “Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene brca1 using a silver-coated microarray platform,” Analytica Chimica Acta, vol. 469, pp. 149–54, 2002spa
dc.relation.referencesP. Gao et al., “The clinical application of Raman spectroscopy for breast cancer detection,” Journal of Spectroscopy, 2017spa
dc.relation.referencesY. Krutyakov et al., “Synthesis and properties of silver nanoparticles: advances and prospects,” Russian Chemical Reviews, vol. 77, no. 3, 2008spa
dc.relation.referencesA. Berger et al., “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Applied Optics, vol. 38, no. 13, pp. 2916–26, 1999spa
dc.relation.referencesK. Aslan et al., “Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence,” The Journal of physical chemistry B, vol. 109, no. 13, pp. 6247–51, 2005spa
dc.relation.referencesJ. Gallo-Ramírez and C. Ossa-Orozco, “Fabricación y caracterización de nanopartículas de plata con potencial uso en el tratamiento del cáncer de piel,” Revista Científica Ingeniería y Desarrollo, vol. 37, no. 1, pp. 88–104, 2019spa
dc.relation.referencesJ. Soret, “Analyse spectrale: Sur le spectre d’absorption du sang dans la partieviolette et ultra-violette,”Comptes rendus de l’Acad ́emie des sciences, vol. 97,pp. 1269–70, 1883spa
dc.relation.referencesWiley-Liss, Infrared of Spectroscopy of Biomolecules, H. Mantsch and D. Chap-man, Eds. New York, NY, USA: Wiley-Liss, 1996spa
dc.relation.referencesA. Barth and C. Zscherp, “What vibrations tell us about proteins,” Quarterly Reviews of Biophysics, vol. 35, no. 4, pp. 369–430, 2002spa
dc.relation.referencesB. Schrader, Infrared and Raman spectroscopy: methods and applications. NewYork, NY, USA: VCH, 1995spa
dc.relation.referencesJ. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation, 2nd ed. Amsterdam, Netherlands: Elsevier, 2018spa
dc.relation.referencesL. Mostaco-Guidolin and L. Bachmann, “Application of FTIR spectroscopy for identification of blood and leukemia biomarkers: A review over the past 15years”, Applied Spectroscopy Reviews, vol. 46, no. 5, pp. 388–404, 2011spa
dc.relation.referencesM. Cohenford et al., “Infrared spectroscopy of normal and abnormal cervical smears: Evaluation by principal component analysis”, Gynecologic Oncology, vol. 66, pp. 59–65, 1997spa
dc.relation.referencesS. Cohn et al., “Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease, current opinion in lipidology”, Current Opinion in Lipidology, vol. 19, pp. 257–62, 2008spa
dc.relation.referencesM. Aceves-Martins, “Cuidado nutricional de pacientes con cirrosis hepática,”Nutrición Hospitalaria, vol. 29, no. 2, pp. 246–58, 2014spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalInfrared Spectroscopyeng
dc.subject.proposalEspectroscopía infrarrojaspa
dc.subject.proposalUV-Visible Spectroscopyeng
dc.subject.proposalEspectrofotometría UV-Visiblespa
dc.subject.proposalBlood canine tissueeng
dc.subject.proposalSangre caninaspa
dc.subject.proposalNanopartículasspa
dc.subject.proposalNanoparticleseng
dc.subject.proposalBiomarkerseng
dc.subject.proposalBiomarcadoresspa
dc.subject.proposalMacromoléculasspa
dc.subject.proposalMacromoleculeseng
dc.subject.proposalHemoglobinaspa
dc.subject.proposalHemoglobineng
dc.titleAnálisis de macromoléculas de sangre canina mediante Espectroscopías Infrarroja y Uv-Visiblespa
dc.title.alternativeInfrared and UV-Visible spectroscopy analysis of entire canine blood macromoleculesspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_93fcspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/reportspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTCASOspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053863172.2020.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado de Ingeniería Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones