Desarrollo de una emulsión W/O para un agente biocontrolador Bacillus velezensis UA2208

dc.contributor.advisorAraque Marín, Pedronelspa
dc.contributor.advisorGil Gonzalez, Jesus Humbertospa
dc.contributor.advisorRamirez Cuartas, Camilo Andrésspa
dc.contributor.authorArbelaez Tabares, Manuelaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.date.accessioned2020-07-17T20:32:55Zspa
dc.date.available2020-07-17T20:32:55Zspa
dc.date.issued2020spa
dc.description.abstractThe success of the strategies used for biological control depends mainly on the antagonistic activity of the microorganism and the type of formulation in which it is incorporated for soil foliar application. However, in developing countries such as Colombia, microbial inoculants are developed without technologies that make possible higher quality. Among the main challenges of bioformulates are physicochemical stability, the viability of microorganisms during storage and application, and their contact with the target surface. Based on the above, taking into account that aerobic endospore-forming bacteria (BAFE) have a high potential for commercial formulation, the present work aimed to develop an emulsion W/O ( Water in Oil) encapsulating Bacillus velezensis UA2208 spores suspended in sporulation medium. For this, five vegetable oils and one mineral, two emulsification systems and variations in temperature were tested for their ability to produce emulsions with colloidal and biological stability. From there, for the selected formulation the antagonistic activity in vitro was evaluated and a microscopic study of the phenomena of wettability and retention of the formulation on leaf surfaces was performed. First, the encapsulation of spores suspended in sporulation medium in a W / O emulsion was achieved using a medium energy system and as an oil phase sunflower oil containing 14% Tween 80 and Span 80 (HLB = 6). This formulation presented together the best colloidal and biological characteristics. The emulsion is characterized as a polydispersed system with an average particle size of 18.6 µm and a viscosity of 99.40 mPa*s and 35% separed phase at 13 days. The viability of the microorganism in the modified emulsion for 70 days was maintained for more than 50% and stabilized. With the selected formulation, in vitro tests of doses of 1, 5 and 10 ml / L of the emulsion demonstrated that the antagonistic activity against C. gloeosporioide and B. cinerea is maintained. Likewise, these doses evaluated on different surfaces showed that the addition of the concentrated formulation and in a concentration of 10 ml / L have a high capacity to reduce the contact angle and increase the probability of adhesion of the bioformulation to the leaf surface. In general, the formulation of Bacillus velezensis spores in W / O emulsions not only improves the viability and behavior of the microorganism in storage, but also gives it advantages in the application on different leaf surfacesspa
dc.description.abstractEl éxito de las estrategias utilizadas para el control biológico depende principalmente de la actividad antagónica del microorganismo y del tipo de formulación en el cual se incorpora para su aplicación. Sin embargo, en países en vía de desarrollo como Colombia, los inoculantes microbianos tienden a ser desarrollados sin tecnologías que permitan alcanzar altos estándares de calidad. Entre los principales retos de los bioformulados son garantizar la estabilidad fisicoquímica, la viabilidad del microrganismo durante el almacenamiento y la aplicación y su contacto con la superficie objetivo. Con base en lo anterior, y teniendo en cuenta que las bacterias aeróbicas formadoras de endospora (BAFE) poseen un alto potencial para formulación comercial, el presente trabajo tuvo como objetivo desarrollar una emulsión W/O ( Agua en aceite) que encapsule esporas de Bacillus velezensis UA2208 suspendidas en medio de esporulación. Para esto, cinco aceites vegetales y uno mineral, dos sistemas de emulsificación y variaciones en la temperatura fueron evaluados por su capacidad para producir emulsiones con estabilidad coloidal y biológica. A partir de allí, para la formulación seleccionada se evaluó la actividad antifúngica in vitro y se realizó un estudio microscópico de los fenómenos de humectabilidad y retención de la formulación sobre superficies foliares. En principio, la encapsulación de esporas en medio de cultivo en una emulsión W/O fue lograda empleando un sistema de mediana energía y como fase oleosa aceite de girasol que contenía 14% de Tween 80 y Span 80 (HLB=6). Esta formulación, presentó en conjunto las mejores características coloidales y biológicas. La emulsión se caracterizó como un sistema polidisperso con tamaño promedio de partícula de 18,6 µm y una viscosidad de 99,40 mPa.s y 35 % de cremado a los 13 días de seguimiento. La viabilidad del microorganismo en la emulsión evaluada durante 70 días se mantuvo por encima del 50% y permitió estabilizarlo. Con la formulación seleccionada, pruebas in vitro a dosis de 1, 5 y 10 mL/L de la emulsión demostraron que se mantiene la efectividad contra C. gloeosporioide y B. cinerea. Así mismo, estas dosis al ser evaluadas sobre diferentes superficies demostraron que la adición de la formulación concentrada y en una concentración de 10 mL/L presentaron alta capacidad para disminuir el ángulo de contacto y aumentar la probabilidad de adhesión del biocontrolador a la superficie foliar. En general, la formulación de esporas de Bacillus velezensis en emulsiones W/O no solo mejoran la viabilidad y el comportamiento del microorganismo en almacenamiento, sino que le confiere ventajas en la aplicación en diferentes superficies foliares.spa
dc.description.degreelevelMaestríaspa
dc.format.extent103spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77791
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAlbareda, M., D.N. Rodríguez-Navarro, M. Camacho y F.J. Temprano. 2008. Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biology and Biochemistry 40, 2771-2779spa
dc.relation.referencesAmer, G. y R. Utkhede. 2000. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Canadian journal of microbiology 46, 809-816.spa
dc.relation.referencesAraque-Marín, P. 2008. Formulaciones Insecticidas de Nicotina: Caracterización Estructural y su Efecto en la Actividad Biológica, Universidad de Antioquia. 125 p.spa
dc.relation.referencesArora, N.K., S. Mehnaz y R. Balestrini. 2016. Bioformulations: for sustainable agriculture Springer. pspa
dc.relation.referencesAsaka, O. y M. Shoda. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and environmental microbiology 62, 4081-4085.spa
dc.relation.referencesAsh, C., J.A.E. Farrow, M. Dorsch, E. Stackebrandt y M.D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. International Journal of Systematic and Evolutionary Microbiology 41, 343-346spa
dc.relation.referencesBais, H.P., R. Fall y J.M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant physiology 134, 307-319.spa
dc.relation.referencesBarrera-Cortés, J., L. Valdez-Castro, D.S. Salgado-Urias, L.P. Lina-García y O. Solorza-Feria. 2017. Reducing the microcapsule diameter by micro-emulsion to improve the insecticidal activity of Bacillus thuringiensis encapsulated formulations. Biocontrol science and technology 27, 42-57spa
dc.relation.referencesBashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology advances 16, 729-770spa
dc.relation.referencesBashan, Y., Y. Ream, H. Levanony y A. Sade. 1989. Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd. Canadian Journal of Botany 67, 1317-1324.spa
dc.relation.referencesBashan, Y., L.E. de-Bashan, S. Prabhu y J.-P. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil 378, 1-33spa
dc.relation.referencesBatta, Y.A. 2003. Production and testing of novel formulations of the entomopathogenic fungus Metarhizium anisopliae (Metschinkoff) Sorokin (Deuteromycotina: Hyphomycetes). Crop Protection 22, 415-422spa
dc.relation.referencesBatta, Y.A. 2004. Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop protection 23, 19-26spa
dc.relation.referencesBerendsen, R.L., C.M.J. Pieterse y P.A.H.M. Bakker. 2012. The rhizosphere microbiome and plant health. Trends in plant science 17, 478-486spa
dc.relation.referencesBerninger, T., Ó. González López, A. Bejarano, C. Preininger y A. Sessitsch. 2018. Maintenance and assessment of cell viability in formulation of non‐sporulating bacterial inoculants. Microbial biotechnology 11, 277-301spa
dc.relation.referencesBharathi, R., R. Vivekananthan, S. Harish, A. Ramanathan y R. Samiyappan. 2004. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Protection 23, 835-843spa
dc.relation.referencesBinks, B.P. 1999. Modern Aspects of Emulsion Science Royal Society of Chemistry. Londonspa
dc.relation.referencesBorriss, R. 2011. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. p. 41-76 Bacteria in agrobiology: Plant growth responses. Springerspa
dc.relation.referencesBrannen, P.M. y D.S. Kenney. 1997. Kodiak®—a successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology and Biotechnology 19, 169-171spa
dc.relation.referencesBrar, S.K., M. Verma, R.D. Tyagi y J.R. Valéro. 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry 41, 323-342spa
dc.relation.referencesBrugnara, M. 2006. Contact Angle plugin (for ImageJ software); marco. brugnara@ ing. unitn. it [Online] https://imagej.nih.gov/ij/plugins/contact-angle.html (verified Oct, 2019)spa
dc.relation.referencesBurges, H.D. 1998. Formulation of mycoinsecticides. p. 131-185 Formulation of microbial biopesticides. Springerspa
dc.relation.referencesBurges, H.D. 2012. Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments Springer Science & Business Media. p.spa
dc.relation.referencesBurges, H.D. y K.A. Jones. 1998. Formulation of bacteria, viruses and protozoa to control insects. p. 33-127 Formulation of microbial biopesticides. Springerspa
dc.relation.referencesCao, Y., Z. Zhang, N. Ling, Y. Yuan, X. Zheng, B. Shen y Q. Shen. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils 47, 495-506spa
dc.relation.referencesCarvajal, H. y L. MaríaEd. 2012. Enfermedades de plantas: control biológico. pspa
dc.relation.referencesCasanova, H., P. Araque y C. Ortiz. 2005. Nicotine carboxylate insecticide emulsions: effect of the fatty acid chain length. Journal of agricultural and food chemistry 53, 9949-9953spa
dc.relation.referencesChanway, C.P. 2002. Plant Growth Promotion by Bacillus and Relatives. p. 219-235 Applications and Systematics of Bacillus and Relativesspa
dc.relation.referencesChen, F., M. Wang, Y. Zheng, J. Luo, X. Yang y X. Wang. 2010. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World Journal of Microbiology and Biotechnology 26, 675-684spa
dc.relation.referencesChiou, A. y W. Wu. 2003. Formulation of Bacillus amyloliquefaciens B190 for control of lily grey mould (Botrytis elliptica). Journal of Phytopathology 151, 13-18spa
dc.relation.referencesChoudhary, D.K. y B.N. Johri. 2009. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiological research 164, 493-513spa
dc.relation.referencesChowdhury, S.P., A. Hartmann, X. Gao y R. Borriss. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in microbiology 6, 780spa
dc.relation.referencesChumthong, A., M. Kanjanamaneesathian, A. Pengnoo y R. Wiwattanapatapee. 2008. Water-soluble granules containing Bacillus megaterium for biological control of rice sheath blight: formulation, bacterial viability and efficacy testing. World Journal of Microbiology and Biotechnology 24, 2499spa
dc.relation.referencesClausse, D., J.L. Lanoisellé, I. Pezron y K. Saleh. 2018. Formulation of a water-in-oil emulsion encapsulating polysaccharides to improve the efficiency of spraying of plant protection products. Colloids and Surfaces A: Physicochemical and Engineering Aspects 536, 96-103spa
dc.relation.referencesConnick Jr, W.J., D.J. Daigle, C.D. Boyette, K.S. Williams, B.T. Vinyard y P.C. Quimby Jr. 1996. Water activity and other factors that affect the viability of Colletotrichum truncatum conidia in wheat flour-kaolin granules ('Pesta'). Biocontrol Science and Technology 6, 277-284spa
dc.relation.referencesDa Silva, S.M., J.J. Filliben y J.B. Morrow. 2011. Parameters Affecting Spore Recovery from Wipes Used in Biological Surface Sampling. Applied and Environmental Microbiology 77, 2374spa
dc.relation.referencesDe Cock, N., M. Massinon, D. Nuyttens, D. Dekeyser y F. Lebeau. 2016. Measurements of reference ISO nozzles by high-speed imaging. Crop Protection 89, 105-115spa
dc.relation.referencesDe Ruiter, H., A.J.M. Uffing, E. Meinen y A. Prins. 1990. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Science 38, 567-572.spa
dc.relation.referencesDey, R., K.K. Pal y K. Tilak. 2014. Plant growth promoting rhizobacteria in crop protection and challenges. p. 31-58 Future Challenges in Crop Protection Against Fungal Pathogens. Springerspa
dc.relation.referencesDorr, G.J., S. Wang, L.C. Mayo, S.W. McCue, W.A. Forster, J. Hanan y X. He. 2015. Impaction of spray droplets on leaves: influence of formulation and leaf character on shatter, bounce and adhesion. Experiments in Fluids 56, 143spa
dc.relation.referencesEarl, A.M., R. Losick y R. Kolter. 2008. Ecology and genomics of Bacillus subtilis. Trends in microbiology 16, 269-275spa
dc.relation.referencesFernandes, É.K., D.E. Rangel, G.U. Braga y D.W. Roberts. 2015. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current genetics 61, 427-440spa
dc.relation.referencesGaskin, R.E., K.D. Steele y W.A. Forster. 2005. Characterising plant surfaces for spray adhesion and retention. New Zealand Plant Protection 58, 179-183spa
dc.relation.referencesGriffin, W.C. 1949. Classification of surface-active agents by" HLB". J. Soc. Cosmet. Chem. 1, 311-326spa
dc.relation.referencesGuijarro, B., P. Melgarejo, R. Torres, N. Lamarca, J. Usall y A. De Cal. 2007. Effects of different biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control 42, 86-96spa
dc.relation.referencesGutierrez-Monsalve, J.A., S. Mosquera, L.M. González-Jaramillo, J.J. Mira y V. Villegas-Escobar. 2015. Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biological control 87, 39-46.spa
dc.relation.referencesHadapad, A.B., R.S. Hire, N. Vijayalakshmi y T.K. Dongre. 2009. UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation. Journal of invertebrate pathology 100, 147-152spa
dc.relation.referencesHadapad, A.B., R.S. Hire, N. Vijayalakshmi y T.K. Dongre. 2011. Sustained-release biopolymer based formulations for Bacillus sphaericus Neide ISPC-8. Journal of Pest Science 84, 249-255spa
dc.relation.referencesHartsell, S.E. 1953. The preservation of bacterial cultures under paraffin oil. Applied microbiology 1, 36-41spa
dc.relation.referencesHaus, F., O. Boissel y G.-A. Junter. 2003. Multiple regression modelling of mineral base oil biodegradability based on their physical properties and overall chemical composition. Chemosphere 50, 939-948spa
dc.relation.referencesHavenga, W., E.S. De Jager y L. Korsten. 1999. Factors affecting biocontrol efficacy of Bacillus subtilis against Colletotrichum gloeosporioides. S. Afr. Avocado Growers’ Assoc. Yearb 22, 12-20spa
dc.relation.referencesHazra, D.K., R. Karmakar, R. Poi, S. Bhattacharya y S. Mondal. 2017. Recent advances in pesticide formulations for eco-friendly and sustainable vegetable pest management: A review. Science 2, 232-237spa
dc.relation.referencesHerrmann, L. y D. Lesueur. 2013. Challenges of formulation and quality of biofertilizers for successful inoculation. Applied microbiology and biotechnology 97, 8859-8873spa
dc.relation.referencesHiemenz, P.C., R. Rajagopalan, P.C. Hiemenz y R. Rajagopalan. 1997. Colloid and surface chemistry: scope and variables. p. 1-56 Principles of Colloid and Surface Chemistry. Marcel Dekker New Yorkspa
dc.relation.referencesHolloway, P.J. 1970. Surface factors affecting the wetting of leaves. Pesticide science 1, 156-163spa
dc.relation.referencesHynes, R.K. y S.M. Boyetchko. 2006. Research initiatives in the art and science of biopesticide formulations. Soil Biology and Biochemistry 38, 845-849spa
dc.relation.referencesIgnoffo, C.M., C. Garcia y S.G. Saathoff. 1997. Sunlight stability and rain-fastness of formulations of Baculovirus heliothis. Environmental entomology 26, 1470-1474spa
dc.relation.referencesJackson, T.A. 2017. Entomopathogenic Bacteria: Mass Production, Formulation, and Quality Control. p. 125-139 Microbial Control of Insect and Mite Pests. Elsevierspa
dc.relation.referencesJillavenkatesa, A., S.J. Dapkunas y L.-S.H. Lum. 2001. Particle size characterization. p. 93-124 Size characterization by laser light diffraction techniques, Vol. 960. National Institute of Standards and Technologyspa
dc.relation.referencesJohnson, K.B. 1994. Dose-response relationships and inundative biological control. Phytopathology 84, 780-784spa
dc.relation.referencesJones, K.A. y H.D. Burges. 1998. Technology of formulation and application. p. 7-30 Formulation of Microbial Biopesticides. Springer.spa
dc.relation.referencesKakvan, N., A. Heydari, H.R. Zamanizadeh, S. Rezaee y L. Naraghi. 2013. Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop protection 53, 80-84spa
dc.relation.referencesKhabbaz, S.E. y P.A. Abbasi. 2013. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Canadian journal of microbiology 60, 25-33spa
dc.relation.referencesKilian, M., U. Steiner, B. Krebs, H. Junge, G. Schmiedeknecht y R. Hain. 2000. FZB24® Bacillus subtilis–mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 1, 1spa
dc.relation.referencesKim, H.J., Y.H. Cho, E.K. Bae, T.S. Shin, S.W. Choi, K.H. Choi y J. Park. 2005. Development of W/O/W multiple emulsion formulation containing Burkholderia gladioli. Journal of microbiology and biotechnology 15, 29-34spa
dc.relation.referencesKim, P.I., J. Ryu, Y.H. Kim y Y.-T. Chi. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20, 138-145spa
dc.relation.referencesKloepper, J.W. y M.N. Schroth. 1978. Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th international conference on plant pathogenic bacteria. pp. 879-882spa
dc.relation.referencesKloepper, J.W., R. Lifshitz y R.M. Zablotowicz. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in biotechnology 7, 39-44spa
dc.relation.referencesKloepper, J.W., C.-M. Ryu y S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94, 1259-1266spa
dc.relation.referencesKnowles, A. 2008. Recent developments of safer formulations of agrochemicals. The Environmentalist 28, 35-44spa
dc.relation.referencesKnowles, D.A. 1998. Formulation of agrochemicals. p. 41-79 Chemistry and technology of agrochemical formulations. Springerspa
dc.relation.referencesKoneva, A.S., E.A. Safonova, P.S. Kondrakhina, M.A. Vovk, A.A. Lezov, Y.S. Chernyshev y N.A. Smirnova. 2017. Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80. Colloids and Surfaces A: Physicochemical and Engineering Aspects 518, 273-282spa
dc.relation.referencesKopanichuk, I.V., E.A. Vedenchuk, A.S. Koneva y A.A. Vanin. 2018. Structural Properties of Span 80/Tween 80 Reverse Micelles by Molecular Dynamics Simulations. The Journal of Physical Chemistry B 122, 8047-8055spa
dc.relation.referencesKudsk, P.E.R., S.K. Mathiassen y E. Kirknel. 1991. Influence of formulations and adjuvants on the rainfastness of maneb and mancozeb on pea and potato. Pesticide Science 33, 57-71spa
dc.relation.referencesLaw, K.-Y. y H. Zhao. 2016. Contact Angle Measurements and Surface Characterization Techniques. p. 7-34 Surface Wetting: characterization, contact angle, and fundamentals. Springerspa
dc.relation.referencesLeelasuphakul, W., P. Hemmanee y S. Chuenchitt. 2008. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology 48, 113-121spa
dc.relation.referencesLeggett, M., J. Leland, K. Kellar y B. Epp. 2011. Formulation of microbial biocontrol agents–an industrial perspective. Canadian Journal of Plant Pathology 33, 101-107spa
dc.relation.referencesLeifert, C., H. Li, S. Chidburee, S. Hampson, S. Workman, D. Sigee, H. Epton y A. Harbour. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Microbiology 78, 97-108spa
dc.relation.referencesLewis, J.A., D.R. FravEl, R.D. Lumsden y B.S. Shasha. 1995. Application of biocontrol fungi in granular formulations of pregelatinized starch-flour to control damping-off diseases caused by Rhizoctonia solani. Biological control 5, 397-404spa
dc.relation.referencesLin, H., H. Zhou, L. Xu, H. Zhu y H. Huang. 2016. Effect of surfactant concentration on the spreading properties of pesticide droplets on Eucalyptus leaves. Biosystems Engineering 143, 42-49spa
dc.relation.referencesLiu, Y., Q. Lai, M. Göker, J.P. Meier-Kolthoff, M. Wang, Y. Sun, L. Wang y Z. Shao. 2015. Genomic insights into the taxonomic status of the Bacillus cereus group. Scientific reports 5, 14082spa
dc.relation.referencesLozano, C.N. 2017. Explorando el desempeño de Bacillus spp. en el control de antracnosis en frutos de mango, Universidad de Antioquia. 95 pspa
dc.relation.referencesLu, D. y D.G. Rhodes. 2000. Mixed composition films of spans and tween 80 at the Air− water interface. Langmuir 16, 8107-8112spa
dc.relation.referencesLugtenberg, B. y F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annual review of microbiology 63, 541-556spa
dc.relation.referencesLugtenberg, B.J.J., L.V. Kravchenko y M. Simons. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environmental Microbiology 1, 439-446.spa
dc.relation.referencesMalsam, O., M. Kilian, E.-C. Oerke y H.-W. Dehne. 2002. Oils for increased efficacy of Metarhizium anisopliae to control whiteflies. Biocontrol Science and Technology 12, 337-348spa
dc.relation.referencesManikandan, R., D. Saravanakumar, L. Rajendran, T. Raguchander y R. Samiyappan. 2010. Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control 54, 83-89spa
dc.relation.referencesMartínez-Álvarez, J.C., C. Castro-Martínez, P. Sánchez-Peña, R. Gutiérrez-Dorado y I.E. Maldonado-Mendoza. 2016. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology and Biotechnology 32, 75spa
dc.relation.referencesMassinon, M. y F. Lebeau. 2012. Comparison of spray retention on synthetic superhydrophobic surface with retention on outdoor grown wheat leaves. International Advances in Pesticide Application: Aspects of Applied Biology 114, 2012, 261-268spa
dc.relation.referencesMassinon, M. y F. Lebeau. 2013. Review of physicochemical processes involved in agrochemical spray retention. Biotechnologie, Agronomie, Société et Environnementspa
dc.relation.referencesMassinon, M., N. De Cock, W.A. Forster, J.J. Nairn, S.W. McCue, J.A. Zabkiewicz y F. Lebeau. 2017. Spray droplet impaction outcomes for different plant species and spray formulations. Crop protection 99, 65-75spa
dc.relation.referencesMaughan, H. y G. Van der Auwera. 2011. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution 11, 789-797spa
dc.relation.referencesMercer, G.N., W.L. Sweatman y W.A. Forster. 2010. A model for spray droplet adhesion, bounce or shatter at a crop leaf surface. p. 945-951 Progress in Industrial Mathematics at ECMI 2008. Springerspa
dc.relation.referencesMishra, J. y N.K. Arora. 2016. Bioformulations for plant growth promotion and combating phytopathogens: A sustainable approach. p. 3-33 Bioformulations: for Sustainable Agriculture. Springerspa
dc.relation.referencesMoore, D., P.D. Bridge, P.M. Higgins, R.P. Bateman y C. Prior. 1993. Ultra‐violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annals of Applied Biology 122, 605-616spa
dc.relation.referencesMulqueen, P.J. 1998. Recent developments on safer formulations of agrochemicals. p. 121-157 Chemistry and Technology of Agrochemical Formulations. Springerspa
dc.relation.referencesMyers, D. 2002a. Colloids and Colloidal Stability. p. 214-252 Surfaces, Interfaces, and Colloidsspa
dc.relation.referencesMyers, D. 2002b. Wetting and Spreading. p. 415-447 Surfaces, Interfaces, and Colloidsspa
dc.relation.referencesMyers, D. 2002c. Emulsions. p. 253-294 Surfaces, Interfaces, and Colloidsspa
dc.relation.referencesNairn, J.J. y W.A. Forster. 2014. Influence of spray formulation surface tension on spray droplet adhesion and shatter on hairy leaves. New Zealand Plant Protection 67, 278-283.spa
dc.relation.referencesNian, X.g., Y.r. He, L.h. Lu y R. Zhao. 2015. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations–oil‐based formulation and wettable powder–combined with Bacillus thuringiensis. Pest management science 71, 1675-1684.spa
dc.relation.referencesO'Callaghan, M., J. Swaminathan, J. Lottmann, D.A. Wright y T.A. Jackson. 2006. Seed coating with biocontrol strain Pseudomonas fluorescens F113. New Zealand Plant Protection 59, 80-85spa
dc.relation.referencesOngena, M. y P. Jacques. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology 16, 115-125spa
dc.relation.referencesOpawale, F.O. y D.J. Burgess. 1998. Influence of interfacial properties of lipophilic surfactants on water-in-oil emulsion stability. Journal of colloid and interface science 197, 142-150spa
dc.relation.referencesPandey, P. y D.K. Maheshwari. 2007. Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Canadian journal of microbiology 53, 213-222spa
dc.relation.referencesPandey, R., A. Ter Beek, N.O.E. Vischer, J.P.P.M. Smelt, S. Brul y E.M.M. Manders. 2013. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker. PloS one 8, e58972spa
dc.relation.referencesPaul, S., B. Paul, M.A. Khan, C. Aggarwal, M.S. Rathi y S.P. Tyagi. 2017. Characterization and evaluation of Bacillus thuringiensis var. kurstaki based formulation for field persistence and insect biocontrol. Indian Journal of Agricultural Sciences 87, 473-478spa
dc.relation.referencesPeeran, M.F., N. Krishnan, P.R. Thangamani, K. Gandhi, R. Thiruvengadam y P. Kuppusamy. 2014. Development and evaluation of water-in-oil formulation of Pseudomonas fluorescens (FP7) against Colletotrichum musae incitant of anthracnose disease in banana. European journal of plant pathology 138, 167-180spa
dc.relation.referencesPeirce, C.A.E., C. Priest, T.M. McBeath y M.J. McLaughlin. 2016. Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time. Soft matter 12, 209-218spa
dc.relation.referencesPieterse, C.M.J., C. Zamioudis, R.L. Berendsen, D.M. Weller, S.C.M. Van Wees y P.A.H.M. Bakker. 2014. Induced systemic resistance by beneficial microbes. Annual review of phytopathology 52, 347-375spa
dc.relation.referencesPosada-Uribe, L.F., M. Romero-Tabarez y V. Villegas-Escobar. 2015. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess and biosystems engineering 38, 1879-1888spa
dc.relation.referencesRaaijmakers, J.M., I. De Bruijn, O. Nybroe y M. Ongena. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS microbiology reviews 34, 1037-1062spa
dc.relation.referencesRomero, D., A. de Vicente, R.H. Rakotoaly, S.E. Dufour, J.-W. Veening, E. Arrebola, F.M. Cazorla, O.P. Kuipers, M. Paquot y A. Pérez-García. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions 20, 430-440spa
dc.relation.referencesRosen, M.J. 2004. Emulsification by Surfactants. p. 303-331 Surfactants and Interfacial Phenomenaspa
dc.relation.referencesRosen, M.J. y J.T. Kunjappu. 2012. Characteristic features of surfactants. p. 1-37 Surfactants and interfacial phenomena. 4 ed. John Wiley & Sons Incspa
dc.relation.referencesRyu, C.-M., M.A. Farag, C.-H. Hu, M.S. Reddy, J.W. Kloepper y P.W. Paré. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant physiology 134, 1017-1026spa
dc.relation.referencesSaito, H. y K. Shinoda. 1970. The stability of W/O type emulsions as a function of temperature and of the hydrophilic chain length of the emulsifier. Journal of Colloid and Interface Science 32, 647-651spa
dc.relation.referencesSamavat, S., A. Heydari, H.R. Zamanizadeh, S. Rezaee y A.A. Aliabadi. 2014. Application of new bioformulations of Pseudomonas aureofaciens for biocontrol of cotton seedling damping-off. Journal of plant protection research 54, 334-339spa
dc.relation.referencesSayed, A.M.M. y R.W. Behle. 2017. Comparing formulations for a mixed-microbial biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Archives of Phytopathology and Plant Protection 50, 745-760.spa
dc.relation.referencesSchisler, D.A., P.J. Slininger, R.W. Behle y M.A. Jackson. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94, 1267-1271spa
dc.relation.referencesSchneider, C.A., W.S. Rasband y K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671spa
dc.relation.referencesSeaman, D. 1990. Trends in the formulation of pesticides—an overview. Pesticide Science 29, 437-449spa
dc.relation.referencesSetlow, P. 2001. Resistance of spores of Bacillus species to ultraviolet light. Environmental and molecular mutagenesis 38, 97-104spa
dc.relation.referencesSharma, A., S. Jaronski y G.V.P. Reddy. 2019. Impact of granular carriers to improve the efficacy of entomopathogenic fungi against wireworms in spring wheat. Journal of Pest Science, 1-16.spa
dc.relation.referencesShaw, D.J. 1992a. 10 - Emulsions and foams. p. 262-276. En: Shaw D. J. (ed.). Introduction to Colloid and Surface Chemistry (Fourth Edition). Butterworth-Heinemann. Oxfordspa
dc.relation.referencesShaw, D.J. 1992b. 7 - Charged interfaces. p. 174-209. En: Shaw D. J. (ed.). Introduction to Colloid and Surface Chemistry (Fourth Edition). Butterworth-Heinemann. Oxfordspa
dc.relation.referencesShe, R.C. y C.A. Petti. 2015. Procedures for the Storage of Microorganisms. p. 161-168 Manual of Clinical Microbiology, Eleventh Edition. American Society of Microbiologyspa
dc.relation.referencesShinoda, K. y H. Saito. 1969. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. Journal of colloid and interface science 30, 258-263spa
dc.relation.referencesSingh, R. y N.K. Arora. 2016. Bacterial formulations and delivery systems against pests in sustainable agro-food production. Food Sci 1, 1-11spa
dc.relation.referencesSingleton, P., H. Keyser y E. Sande. 2002. Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceedings 109e, Canberra, 52-66spa
dc.relation.referencesSivan, A., Y. Elad y I. Chet. 1984. Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum. Phytopathology 74, 498-501spa
dc.relation.referencesSmith, K.P., J. Handelsman y R.M. Goodman. 1997. Modeling dose-response relationships in biological control: partitioning host responses to the pathogen and biocontrol agent. Phytopathology 87, 720-729spa
dc.relation.referencesStackebrandt, E. y J. Swiderski. 2008. From Phylogeny to Systematics: The Dissection of the Genus Bacillus. p. 8-22spa
dc.relation.referencesTadros, T.F. 2011a. Colloids in agrochemicals John Wiley & Sons. pspa
dc.relation.referencesTadros, T.F. 2011b. General Classification of Surface-Active Agents Used in Agrochemical Formulations. p. 7-18 Colloids in Agrochemicalsspa
dc.relation.referencesTadros, T.F. 2011c. Emulsion Concentrates (EWs). Colloids in Agrochemicals, 93-124spa
dc.relation.referencesTemprano, F., M. Albareda, M. Camacho, A. Daza, C. Santamaria y N.D. Rodríguez-Navarro. 2002. Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. International Microbiology 5, 81-86spa
dc.relation.referencesThangavelu, R., A. Palaniswami y R. Velazhahan. 2004. Mass production of Trichoderma harzianum for managing fusarium wilt of banana. Agriculture, ecosystems & environment 103, 259-263spa
dc.relation.referencesThomas, P., A.C. Sekhar, R. Upreti, M.M. Mujawar y S.S. Pasha. 2015. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnology Reports 8, 45-55spa
dc.relation.referencesTripathi, S., A. Das, A. Chandra y A. Varma. 2015. Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L. World Journal of Microbiology and Biotechnology 31, 337-344spa
dc.relation.referencesTyler, T.L. y J.A. Swanson. 2016. Stabilized biocontrol water dispersible granules. Google Patentsspa
dc.relation.referencesUtkhede, R. y E. Smith. 1992. Promotion of apple tree growth and fruit production by the EBW-4 strain of Bacillus subtilis in apple replant disease soil. Canadian journal of microbiology 38, 1270-1273spa
dc.relation.referencesUzunova-Doneva, T. y T. Donev. 2005. Anabiosis and conservation of microorganisms. Journal of culture collections 4, 17-28spa
dc.relation.referencesVos, P., G. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A. Rainey, K.-H. Schleifer y W.B. Whitman. 2011. Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes Springer Science & Business Media. pspa
dc.relation.referencesWang, F., Z. Hu, C. Abarca, M. Fefer, J. Liu, M.A. Brook y R. Pelton. 2018. Factors influencing agricultural spray deposit structures on hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 553, 288-294spa
dc.relation.referencesWang, Y., I.R. Gecker, J. Lucas y A. Shah. 2009. Stable pesticide concentrates and end-use emulsions 2009spa
dc.relation.referencesWebb, D.A., P.J. Holloway y N.M. Western. 1999. Effects of some surfactants on foliar impaction and retention of monosize water droplets. Pesticide science 55, 382-385spa
dc.relation.referencesWei, G., J.W. Kloepper y S. Tuzun. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology, 221-224spa
dc.relation.referencesWong, C.K.F., N.B. Saidi, G. Vadamalai, C.Y. Teh y D. Zulperi. 2019. Effect of Bioformulations on the Biocontrol Efficacy, Microbial Viability and Storage Stability of a Consortium of Biocontrol Agents against Fusarium Wilt of Banana. Journal of applied microbiology, 544-555spa
dc.relation.referencesWoo, S.L., M. Ruocco, F. Vinale, M. Nigro, R. Marra, N. Lombardi, A. Pascale, S. Lanzuise, G. Manganiello y M. Lorito. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8, 71-126spa
dc.relation.referencesWraight, S.P. y M.E. Ramos. 2017. Effects of inoculation method on efficacy of wettable powder and oil dispersion formulations of Beauveria bassiana against Colorado potato beetle larvae under low-humidity conditions. Biocontrol science and technology 27, 348-363spa
dc.relation.referencesWraight, S.P., M.J. Filotas y J.P. Sanderson. 2016. Comparative efficacy of emulsifiable-oil, wettable-powder, and unformulated-powder preparations of Beauveria bassiana against the melon aphid Aphis gossypii. Biocontrol Science and Technology 26, 894-914spa
dc.relation.referencesYan, Z., M.S. Reddy, C.-M. Ryu, J.A. McInroy, M. Wilson y J.W. Kloepper. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92, 1329-1333spa
dc.relation.referencesYu, G., J. Sinclair, G. Hartman y B. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry 34, 955-963spa
dc.relation.referencesZamoum, M., Y. Goudjal, N. Sabaou, F. Mathieu y A. Zitouni. 2017. Development of formulations based on Streptomyces rochei strain PTL2 spores for biocontrol of Rhizoctonia solani damping-off of tomato seedlings. Biocontrol Science and Technology 27, 723-738spa
dc.relation.referencesZeriouh, H., A. de Vicente, A. Pérez‐García y D. Romero. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental microbiology 16, 2196-2211spa
dc.relation.referencesZhang, L., X. Zhang, Y. Zhang, S. Wu, I. Gelbič, L. Xu y X. Guan. 2016. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Scientific reports 6, 39425spa
dc.relation.referencesZhao, T. y L. Jiang. 2018. Contact angle measurement of natural materials. Colloids and Surfaces B: Biointerfaces 161, 324-330spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalBiocontrolspa
dc.subject.proposalBiocontroleng
dc.subject.proposalBacillus velezensisspa
dc.subject.proposalBacillus velezensiseng
dc.subject.proposalspray retentioneng
dc.subject.proposalBioformulaciónspa
dc.subject.proposalBioformulationeng
dc.subject.proposalEmulsión W/Ospa
dc.subject.proposalEmulsion W/Oeng
dc.subject.proposalBacillus sppspa
dc.subject.proposalControl de plagasspa
dc.titleDesarrollo de una emulsión W/O para un agente biocontrolador Bacillus velezensis UA2208spa
dc.title.alternativeDeveloping a W/O emulsion for a biocontrol agent Bacillus velezensis UA2208spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039456824.2020.pdf
Tamaño:
2.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: