Entendiendo el rol del lncRNA durante la gastrulación en las especies de acropora: A. tenuis y A. digitifera

dc.contributor.advisorClara Isabel, Bermúdez Santana
dc.contributor.authorRodríguez Riascos, Yamile Andrea
dc.contributor.editorReyes Bermúdez, Alejandro
dc.contributor.researchgroupGrupo de Investigación: RN´omica teórica y computacionalspa
dc.date.accessioned2023-08-31T16:44:23Z
dc.date.available2023-08-31T16:44:23Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos ARN largos no codificantes (lncRNA) desempeñan funciones reguladoras en una amplia gama de procesos biológicos bien definidos como la regulación génica, la epigenética y el anda- miaje molecular. Sin embargo, para muchas especies de corales, la ausencia de un ensamblaje del genomas y transcriptomas completos, impide la identificación integral de los lncRNA. Gracias a los avances recientes en la tecnologı́a de secuenciación Existe nueva información en datos que respectan a genomas borrares y transcriptomas con niveles de ensamblajes que van hasta cromosomas, sentando las bases para la identificación y caracterización de lncRNA de su expresión en diversos tejidos. El objetivo de este estudio fue entender el papel de los lncRNA en la gastrulación de tres especies del género Acropora incluyendo datos de expre- sión de las fases del desarrollo de Acropora digitifera, Acropora tenuis y anotar los lncRNA resultantes en función de su potencial para la ortologı́a con lncRNA conocidos entre estas especies, además de validar por estructura conservada estas moléculas. Para dar respuesta a esta necesidad y usando el ensamblaje del transcriptoma de novo, se logro identificar 4.326 lncRNA potenciales con expresión diferencial para A. digitifera y 3.375 lncRNA en A. tenuis de los cuales detectaron lncRNAs sobreregulados y especie-especı́ficos para gástrula con un total de 56 en A. digitifera y 21 en A. tenuis, de de lncRNA de alta confianza, 25 se encuentran en homologı́a de secuencia en las dos especies mencinadas anteriormente y 74 tienen ortólogos entre las tres especies de Acropora. Además a estos lncRNA en términos de las relaciones de estabilidad termodinámica y conservación estructural, se detectaron 2258 estructuras, se las cuales se identificaron 56 estructuras en A. digitifera y 21 en A. tenuis que poseen expresión diferencial en la etapa de gástrula, pero que no están en ortologı́a y que son considerados especie-especı́ficos en esta etapa del desarrollo. En conjunto, este trabajo proporciona un recurso valioso para el estudio comparativo, funcional y estructural de los lncRNA lo que facilitarı́a la comprensión del papel de estas moléculas en procesos del desarrollo de corales. (Texto tomado de la fuente)spa
dc.description.abstractLong non-coding RNAs (lncRNAs) play regulatory roles in a wide range of well-defined bio- logical processes such as gene regulation, epigenetics, and molecular scaffolding. However, for many coral species, the absence of a complete genome and transcriptome assembly prevents the comprehensive identification of lncRNAs. Recent advances in sequencing technology re- veal new information data regarding deletion genomes and transcriptomes with assembly levels ranging up to chromosomes, laying the foundation for lncRNA identification and cha- racterization of their expression in various tissues. This study aimed to understand the role of lncRNAs in the gastrulation of three species of the Acropora genus including expression data from the developmental stages of Acropora digitifera, and Acropora tenuis and to anno- tate the resulting lncRNAs according to their potential for orthology with known lncRNAs among these species, in addition to validating by conserved structure these molecules. In response to this need and using de novo transcriptome assembly, we identified 4,326 diffe- rentially expressed potential lncRNAs for A. digitifera and 3,375 lncRNAs in A. tenuis of which we detected over-regulated and species-specific lncRNAs for gastrula with a total of 56 in A. digitifera and 21 in A. tenuis, of the high-confidence lncRNAs, 25 are in sequen- ce homology in the two species mentioned above and 74 have orthologs among the three Acropora species. In addition to these lncRNAs in terms of thermodynamic stability and structural conservation relationships, 2258 structures were detected, of which 56 structures were identified in A. digitifera and 21 inA. tenuis that possesses differential expression at the gastrula stage, but is not in ortholog and is considered species-specific at this stage of development. Taken together, this work provides a valuable resource for the comparative, functional, and structural study of lncRNAs that will facilitate understanding these mole- cules’ role in coral developmental processes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaGenómica Comparativaspa
dc.format.extentxv, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84620
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesJ. A. Schwarz, P. B. Brokstein, C. Voolstra, A. Y. Terry, D. J. Miller, A. M. Szmant, M. A. Coffroth, and M. Medina, “Coral life history and symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata.,” BMC genomics, vol. 9, p. 97, 2008.spa
dc.relation.referencesD. G. Fautin, “Structural diversity, systematics, and evolution of cnidae,” Toxicon, vol. 54, no. 8, pp. 1054–1064, 2009.spa
dc.relation.referencesA. Reyes-Bermudez, A. Villar-Briones, C. Ramirez-Portilla, M. Hidaka, and A. S. Mikheyev, “Developmental progression in the coral acropora digitifera is controlled by differential expression of distinct regulatory gene networks,” Genome Biology and Evolution, vol. 8, no. 3, pp. 851–870, 2016.spa
dc.relation.referencesZ.-Q. Zhang et al., “Animal biodiversity: an introduction to higher-level classification and taxonomic richness,” Zootaxa, vol. 3148, no. 1, pp. 7–12, 2011.spa
dc.relation.referencesS. Takahashi-Kariyazono, K. Sakai, and Y. Terai, “Presence–absence polymorphisms of single-copy genes in the stony coral acropora digitifera,” BMC genomics, vol. 21, no. 1, pp. 1–13, 2020.spa
dc.relation.referencesV. Chazottes, P. Hutchings, and A. Osorno, “Impact of an experimental eutrophication on the processes of bioerosion on the reef: One tree island, great barrier reef, australia,” Marine Pollution Bulletin, vol. 118, no. 1-2, pp. 125–130, 2017.spa
dc.relation.referencesA. Reyes-Bermudez, D. J. Miller, and S. Sprungala, “The neuronal calcium sensor protein acrocalcin: a potential target of calmodulin regulation during development in the coral acropora millepora,” PloS one, vol. 7, no. 12, p. e51689, 2012.spa
dc.relation.referencesA. Riesgo, S. Andrade, P. P. Sharma, M. Novo, A. R. P´erez-Porro, V. Vahtera, V. L. Gonz´alez, G. Y. Kawauchi, and G. Giribet, “Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa,” Frontiers in zoology, vol. 9, no. 1, pp. 1–24, 2012.spa
dc.relation.referencesG. Plickert, V. Jacoby, U. Frank, W. A. M¨uller, and O. Mokady, “Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning,” Developmental biology, vol. 298, no. 2, pp. 368–378, 2006.spa
dc.relation.referencesF. Gaiti, W. L. Hatleberg, M. Tanurdˇzi´c, and B. M. Degnan, “Sponge long non-coding rnas are expressed in specific cell types and conserved networks,” Non-coding RNA, vol. 4, no. 1, p. 6, 2018.spa
dc.relation.referencesF. Gaiti, B. Sc, and M. Sc, “Origin and evolution of the metazoan non-coding regulatory genome Insights from the sponge Amphimedon queenslandica,” 2017.spa
dc.relation.referencesJ. Veron and M. Stafford-Smith, “Corals of the world (townsville mc, australian institute of marine science),” Mitochondrial DNA part B, vol. 913, 2000.spa
dc.relation.referencesL. Hern´andez-Fern´andez, R. G. de Zayas, Y. M. Olivera, F. P. Amarg´os, C. B. L´opez, L. B. D. Sotolongo, F. Bretos, T. F. Mart´ın, D. L. Cabrera, and F. S. Moret, “Distribution and status of living colonies of acropora spp. in the reef crests of a protected marine area of the caribbean (jardines de la reina national park, cuba),” PeerJ, vol. 7, p. e6470, 2019.spa
dc.relation.referencesC. Shinzato, K. Khalturin, J. Inoue, Y. Zayasu, M. Kanda, M. Kawamitsu, Y. Yoshioka, H. Yamashita, G. Suzuki, and N. Satoh, “Eighteen coral genomes reveal the evolutionary origin of acropora strategies to accommodate environmental changes,” Molecular biology and evolution, vol. 38, no. 1, pp. 16–30, 2021.spa
dc.relation.referencesK. Sakai, T. Singh, and A. Iguchi, “Bleaching and post-bleaching mortality of acropora corals on a heat-susceptible reef in 2016,” PeerJ, vol. 7, p. e8138, 2019.spa
dc.relation.referencesD. D. Licatalosi and R. B. Darnell, “RNA processing and its regulation: Global insights into biological networks,” Nature Reviews Genetics, vol. 11, no. 1, pp. 75–87, 2010.spa
dc.relation.referencesC. Huang, D. Leng, S. Sun, and X. D. Zhang, “Re-analysis of the coral Acropora digitifera transcriptome reveals a complex lncRNAs-mRNAs interaction network implicated in Symbiodinium infection,” BMC Genomics, vol. 20, no. 1, pp. 1–15, 2019.spa
dc.relation.referencesV. Costa, C. Angelini, I. De Feis, and A. Ciccodicola, “Uncovering the complexity of transcriptomes with RNA-Seq,” Journal of Biomedicine and Biotechnology, pp. 1–19, 2010.spa
dc.relation.referencesE. E. Schadt, J. Lamb, X. Yang, J. Zhu, S. Edwards, S. K. Sieberts, S. Monks, M. Reitman, P. Y. Lum, A. Leonardson, R. Thieringer, J. M. Metzger, J. Castle, H. Zhu, S. F. Kash, T. A. Drake, A. Sachs, and R. Inpharmatics, “An integrative genomics approach to infer causal associations between gene expression and disease,” Nat Genet., vol. 37, no. 7, pp. 710–717, 2005.spa
dc.relation.referencesS. Riquier, M. Mathieu, C. Bessiere, A. Boureux, F. Ruffle, J.-m. Lemaitre, F. Djouad, N. Gilbert, and T. Commes, “Long non-coding RNA exploration for mesenchymal stem cell characterisation,” BMC Genomics, vol. 22, pp. 1–23, 2021.spa
dc.relation.referencesZ. C. Dong and Y. Chen, “Transcriptomics: Advances and approaches,” Science China Life Sciences, vol. 56, no. 10, pp. 960–967, 2013.spa
dc.relation.referencesF. Ozsolak and P. M. Milos, “Rna sequencing: advances, challenges and opportunities,” Nature reviews genetics, vol. 12, no. 2, pp. 87–98, 2011.spa
dc.relation.referencesY. Han, S. Gao, K. Muegge, W. Zhang, and B. Zhou, “Advanced applications of rna sequencing and challenges,” Bioinformatics and biology insights, vol. 9, pp. BBI– S28991, 2015.spa
dc.relation.referencesM. R. Bakhtiarizadeh and A. A. Alamouti, “Rna-seq based genetic variant discovery provides new insights into controlling fat deposition in the tail of sheep,” Scientific Reports, vol. 10, no. 1, pp. 1–13, 2020.spa
dc.relation.referencesA. Oshlack and M. Robinson, “Youngmd (2010) from rna-seq reads to differential expression results,” Genome Biol, vol. 11, no. 12, p. 220.spa
dc.relation.referencesM. Pertea, D. Kim, G. M. Pertea, J. T. Leek, and S. L. Salzberg, “Transcript-level expression analysis of rna-seq experiments with hisat, stringtie and ballgown,” Nature protocols, vol. 11, no. 9, pp. 1650–1667, 2016.spa
dc.relation.referencesF. Seyednasrollah, A. Laiho, and L. L. Elo, “Comparison of software packages for detecting differential expression in rna-seq studies,” Briefings in bioinformatics, vol. 16, no. 1, pp. 59–70, 2015.spa
dc.relation.referencesF. Rapaport, R. Khanin, Y. Liang, M. Pirun, A. Krek, P. Zumbo, C. E. Mason, N. D. Socci, and D. Betel, “Comprehensive evaluation of differential gene expression analysis methods for rna-seq data,” Genome biology, vol. 14, no. 9, pp. 1–13, 2013.spa
dc.relation.referencesC. Soneson and M. Delorenzi, “A comparison of methods for differential expression analysis of rna-seq data,” BMC bioinformatics, vol. 14, no. 1, pp. 1–18, 2013.spa
dc.relation.referencesD. Bhattacharya and Agrawal, “Comparative genomics explains the evolutionary success of reef-forming corals,” eLife, vol. 5, no. MAY2016, pp. 1–26, 2016.spa
dc.relation.referencesJ. Alf¨oldi and K. Lindblad-Toh, “Comparative genomics as a tool to understand evolution and disease,” Genome Research, vol. 23, no. 7, pp. 1063–1068, 2013.spa
dc.relation.referencesA. M. Altenhoff, M. Gil, G. H. Gonnet, and C. Dessimoz, “Inferring Hierarchical Orthologous Groups from Orthologous Gene Pairs,” PLoS ONE, vol. 8, no. 1, 2013.spa
dc.relation.referencesD. W. Mount, “Bioinformatics: Sequence and Genome Analysis,” in Cold Spring Harbor Laboratory Press, ch. 11, p. 692, 2004.spa
dc.relation.referencesR. R. de la Haba, C. L´opez-Hermoso, C. S´anchez-Porro, K. T. Konstantinidis, and A. Ventosa, “Comparative Genomics and Phylogenomic Analysis of the Genus Salinivibrio,” Frontiers in Microbiology, vol. 10, no. September, pp. 1–15, 2019.spa
dc.relation.referencesM. Lechner, M. Hernandez-rosales, D. Doerr, N. Wieseke, J. Stoye, R. K. Hartmann, and S. J. Prohaska, “Orthology Detection Combining Clustering and Synteny for Very Large Datasets,” vol. 9, no. 8, 2014.spa
dc.relation.referencesA. M. Altenhoff, M. Gil, G. H. Gonnet, and C. Dessimoz, “Inferring hierarchical orthologous groups from orthologous gene pairs,” PloS one, vol. 8, no. 1, p. e53786, 2013spa
dc.relation.referencesK. Trachana, T. A. Larsson, S. Powell, W.-H. Chen, T. Doerks, J. Muller, and P. Bork, “Orthology prediction methods: a quality assessment using curated protein families,” Bioessays, vol. 33, no. 10, pp. 769–780, 2011.spa
dc.relation.referencesA. Kuzniar, R. C. van Ham, S. Pongor, and J. A. Leunissen, “The quest for orthologs: finding the corresponding gene across genomes,” Trends in Genetics, vol. 24, no. 11, pp. 539–551, 2008.spa
dc.relation.referencesA. Azad, G. A. Pavlopoulos, C. A. Ouzounis, N. C. Kyrpides, and A. Bulu¸c, “Hipmcl: a high-performance parallel implementation of the markov clustering algorithm for large-scale networks,” Nucleic acids research, vol. 46, no. 6, pp. e33–e33, 2018.spa
dc.relation.referencesI. A. Vergara and N. Chen, “Large synteny blocks revealed between caenorhabditis elegans and caenorhabditis briggsae genomes using orthocluster,” BMC genomics, vol. 11, no. 1, pp. 1–13, 2010.spa
dc.relation.referencesJ. Graf and M. Kretz, “From structure to function: Route to understanding lncrna mechanism,” Bioessays, vol. 42, no. 12, p. 2000027, 2020.spa
dc.relation.referencesK. Mishra and C. Kanduri, “Understanding long noncoding rna and chromatin interactions: what we know so far,” Non-coding RNA, vol. 5, no. 4, p. 54, 2019.spa
dc.relation.referencesS. R. Atkinson, S. Marguerat, and J. B¨ahler, “Exploring long non-coding rnas through sequencing,” in Seminars in cell & developmental biology, vol. 23, pp. 200–205, Elsevier, 2012.spa
dc.relation.referencesJ. Liu, L.-Z. Yang, and L.-L. Chen, “Understanding lncrna–protein assemblies with imaging and single-molecule approaches,” Current Opinion in Genetics & Development, vol. 72, pp. 128–137, 2022.spa
dc.relation.referencesW. A. MacDonald and M. R. Mann, “Long noncoding rna functionality in imprinted domain regulation,” PLoS Genetics, vol. 16, no. 8, p. e1008930, 2020.spa
dc.relation.referencesR.-W. Yao, Y. Wang, and L.-L. Chen, “Cellular functions of long noncoding rnas,” Nature cell biology, vol. 21, no. 5, pp. 542–551, 2019.spa
dc.relation.referencesR. Li, H. Zhu, and Y. Luo, “Understanding the functions of long non-coding rnas through their higher-order structures,” International journal of molecular sciences, vol. 17, no. 5, p. 702, 2016.spa
dc.relation.referencesK. Sanbonmatsu, “Getting to the bottom of lncrna mechanism: structure–function relationships,” Mammalian Genome, vol. 33, no. 2, pp. 343–353, 2022.spa
dc.relation.referencesJ. Iwakiri, M. Hamada, and K. Asai, “Bioinformatics tools for lncrna research,” Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, vol. 1859, no. 1, pp. 23–30, 2016.spa
dc.relation.referencesQ. Zhao, Z. Zhao, X. Fan, Z. Yuan, Q. Mao, and Y. Yao, “Review of machine learning methods for rna secondary structure prediction,” PLoS computational biology, vol. 17, no. 8, p. e1009291, 2021.spa
dc.relation.referencesM. Cao, J. Zhao, and G. Hu, “Genome-wide methods for investigating long noncoding rnas,” Biomedicine & Pharmacotherapy, vol. 111, pp. 395–401, 2019.spa
dc.relation.referencesG. M. Cruz-Miranda, A. Hidalgo-Miranda, D. A. B´arcenas-L´opez, J. C. N´u˜nezEnr´ıquez, J. Ram´ırez-Bello, J. M. Mej´ıa-Arangur´e, and S. Jim´enez-Morales, “Long noncoding rna and acute leukemia,” International journal of molecular sciences, vol. 20, no. 3, p. 735, 2019.spa
dc.relation.referencesK. C. Wang and H. Y. Chang, “Molecular mechanisms of long noncoding rnas,” Molecular cell, vol. 43, no. 6, pp. 904–914, 2011.spa
dc.relation.referencesJ. Chen, H. Wang, and Y. Yao, “Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction,” Ultrasonics, vol. 69, pp. 19–24, 2016.spa
dc.relation.referencesL. Yang, J. E. Froberg, and J. T. Lee, “Long noncoding rnas: fresh perspectives into the rna world,” Trends in biochemical sciences, vol. 39, no. 1, pp. 35–43, 2014.spa
dc.relation.referencesD. H. Mathews, “How to benchmark rna secondary structure prediction accuracy,” Methods, vol. 162, pp. 60–67, 2019.spa
dc.relation.referencesN. Aghaeepour and H. H. Hoos, “Ensemble-based prediction of rna secondary structures,” BMC bioinformatics, vol. 14, no. 1, pp. 1–16, 2013.spa
dc.relation.referencesI. Tinoco Jr and C. Bustamante, “How rna folds,” Journal of molecular biology, vol. 293, no. 2, pp. 271–281, 1999.spa
dc.relation.referencesY. Wan, M. Kertesz, R. C. Spitale, E. Segal, and H. Y. Chang, “Understanding the transcriptome through rna structure,” Nature Reviews Genetics, vol. 12, no. 9, pp. 641– 655, 2011.spa
dc.relation.referencesS. Bellaousov and D. H. Mathews, “Probknot: fast prediction of rna secondary structure including pseudoknots,” Rna, vol. 16, no. 10, pp. 1870–1880, 2010.spa
dc.relation.referencesC. W. Leonard, C. E. Hajdin, F. Karabiber, D. H. Mathews, O. V. Favorov, N. V. Dokholyan, and K. M. Weeks, “Principles for understanding the accuracy of shapedirected rna structure modeling,” vol. 52, no. 4, pp. 588–595, 2013.spa
dc.relation.referencesI. L. Hofacker, “Vienna rna secondary structure server,” Nucleic acids research, vol. 31, no. 13, pp. 3429–3431, 2003.spa
dc.relation.referencesJ. I. Horabin, “Long noncoding rnas as metazoan developmental regulators,” Chromosome research, vol. 21, no. 6, pp. 673–684, 2013spa
dc.relation.referencesA. Pauli, E. Valen, M. F. Lin, M. Garber, N. L. Vastenhouw, J. Z. Levin, L. Fan, A. Sandelin, J. L. Rinn, A. Regev, and A. F. Schier, “Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis,” Genome Research, vol. 22, no. 3, pp. 577–591, 2012.spa
dc.relation.referencesS. Haque, K. Kaushik, V. E. Leonard, S. Kapoor, A. Sivadas, A. Joshi, V. Scaria, and S. Sivasubbu, “Short stories on zebrafish long noncoding RNAs,” Zebrafish, vol. 11, no. 6, pp. 499–508, 2014.spa
dc.relation.referencesE. Forouzmand, N. D. L. Owens, I. L. Blitz, K. D. Paraiso, M. K. Khokha, M. J. Gilchrist, X. Xie, and K. W. Y. Cho, “Developmentally regulated long non-coding RNAs in Xenopus tropicalis,” Developmental Biology, vol. 426, no. 2, pp. 401–408, 2017.spa
dc.relation.referencesA. Akay, D. Jordan, I. C. Navarro, T. Wrzesinski, C. P. Ponting, E. A. Miska, and W. Haerty, “Identification of functional long non-coding RNAs in C. elegans,” bioRxiv, pp. 1–14, 2018.spa
dc.relation.referencesJ. W. Nam and D. P. Bartel, “Long noncoding RNAs in C. elegans,” Genome Research, vol. 22, no. 12, pp. 2529–2540, 2012.spa
dc.relation.referencesF. Gaiti, S. L. Fernandez-Valverde, N. Nakanishi, A. D. Calcino, I. Yanai, M. Tanurdzic, and B. M. Degnan, “Dynamic and widespread lncrna expression in a sponge and the origin of animal complexity,” Molecular biology and evolution, vol. 32, no. 9, pp. 2367– 2382, 2015.spa
dc.relation.referencesA. E. Kornienko, P. M. Guenzl, D. P. Barlow, and F. M. Pauler, “Gene regulation by the act of long non-coding rna transcription,” BMC biology, vol. 11, no. 1, pp. 1–14, 2013.spa
dc.relation.referencesA. Pauli, J. L. Rinn, and A. F. Schier, “Non coding RNAs regulation in embryogenesis,” Nat Rev Genet., vol. 12, no. 2, pp. 136–149, 2011.spa
dc.relation.referencesJ. Ponjavic, C. P. Ponting, and G. Lunter, “Functionality or transcriptional noise? evidence for selection within long noncoding rnas,” Genome research, vol. 17, no. 5, pp. 556–565, 2007.spa
dc.relation.referencesX.-D. Huang, J.-g. Dai, K.-t. Lin, M. Liu, H.-t. Ruan, H. Zhang, W.-g. Liu, M.-X. He, and M. Zhao, “Regulation of il-17 by lncrna of irf-2 in the pearl oyster,” Fish & shellfish immunology, vol. 81, pp. 108–112, 2018.spa
dc.relation.referencesB. Gourbal, S. Pinaud, G. J. Beckers, J. W. Van Der Meer, U. Conrath, and M. G. Netea, “Innate immune memory: An evolutionary perspective,” Immunological reviews, vol. 283, no. 1, pp. 21–40, 2018.spa
dc.relation.referencesV. Valenzuela-Mu˜noz, P. Pereiro, M. Alvarez-Rodr´ıguez, C. Gallardo-Esc´arate, A. Fi- ´ gueras, and B. Novoa, “Comparative modulation of lncrnas in wild-type and rag1- heterozygous mutant zebrafish exposed to immune challenge with spspa
dc.relation.referencesN. Wei, W. Pang, Y. Wang, Y. Xiong, R. Xu, W. Wu, C. Zhao, and G. Yang, “Knockdown of pu. 1 mrna and as lncrna regulates expression of immune-related genes in zebrafish danio rerio,” Developmental & Comparative Immunology, vol. 44, no. 2, pp. 315– 319, 2014.spa
dc.relation.referencesP. Pereiro, R. Moreira, B. Novoa, and A. Figueras, “Differential expression of long non-coding rna (lncrna) in mediterranean mussel (mytilus galloprovincialis) hemocytes under immune stimuli,” Genes, vol. 12, no. 9, p. 1393, 2021.spa
dc.relation.referencesZ. Hongkuan, T. Karsoon, L. Shengkang, M. Hongyu, and Z. Huaiping, “The functional roles of the non-coding rnas in molluscs,” Gene, vol. 768, p. 145300, 2021.spa
dc.relation.referencesD. Feng, Q. Li, H. Yu, L. Kong, and S. Du, “Transcriptional profiling of long non-coding rnas in mantle of crassostrea gigas and their association with shell pigmentation,” Scientific Reports, vol. 8, no. 1, p. 1436, 2018.spa
dc.relation.referencesA. Fatica and I. Bozzoni, “Long non-coding rnas: new players in cell differentiation and development,” Nature Reviews Genetics, vol. 15, no. 1, pp. 7–21, 2014.spa
dc.relation.referencesW. Kim, C. Miguel-Rojas, J. Wang, J. P. Townsend, and F. Trail, “Developmental dynamics of long noncoding RNA expression during sexual fruiting body formation in Fusarium graminearum,” mBio, vol. 9, no. 4, pp. 1–17, 2018.spa
dc.relation.referencesS. Frank, A. Aguirre, J. Hescheler, and L. Kurian, “A lncRNA Perspective into (Re)building the heart,” Frontiers in Cell and Developmental Biology, vol. 4, no. NOV, pp. 1–11, 2016.spa
dc.relation.referencesF. Darbellay and A. Necsulea, “Comparative Transcriptomics Analyses across Species, Organs, and Developmental Stages Reveal Functionally Constrained lncRNAs,” Molecular Biology and Evolution, vol. 37, no. 1, pp. 240–259, 2020.spa
dc.relation.referencesL. Kurian, A. Aguirre, I. Sancho-Martinez, C. Benner, T. Hishida, T. B. Nguyen, P. Reddy, E. Nivet, M. N. Krause, D. A. Nelles, C. R. Esteban, J. M. Campistol, G. W. Yeo, and J. C. I. Belmonte, “Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development,” Circulation, vol. 131, no. 14, pp. 1278–1290, 2015.spa
dc.relation.referencesW. Jiang, Y. Liu, R. Liu, K. Zhang, and Y. Zhang, “LncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression,” cell Rep, vol. 11, no. 1, pp. 137–148, 2015.spa
dc.relation.referencesI. C. Welsh, H. Kwak, F. L. Chen, M. Werner, L. S. Shopland, C. G. Danko, J. T. Lis, M. Zhang, J. F. Martin, and N. A. Kurpios, “Chromatin Architecture of the Pitx2 Locus Requires CTCF- and Pitx2-Dependent Asymmetry that Mirrors Embryonic Gut Laterality,” Cell Reports, vol. 13, no. 2, pp. 337–349, 2015.spa
dc.relation.referencesL. A. Goff, A. F. Groff, M. Sauvageau, Z. Trayes-Gibson, D. B. Sanchez-Gomez, M. Morse, R. D. Martin, L. E. Elcavage, S. C. Liapis, M. Gonzalez-Celeiro, O. Plana, E. Li, C. Gerhardinger, G. S. Tomassy, P. Arlotta, and J. L. Rinn, “Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 22, pp. 6855–6862, 2015.spa
dc.relation.referencesM. Kretz, D. E. Webster, R. J. Flockhart, C. S. Lee, A. Zehnder, V. Lopez-Pajares, K. Qu, G. X. Zheng, J. Chow, G. E. Kim, J. L. Rinn, H. Y. Chang, Z. Siprashvili, and P. A. Khavari, “Suppression of progenitor differentiation requires the long noncoding RNA ANCR,” Genes and Development, vol. 26, no. 4, pp. 338–343, 2012.spa
dc.relation.referencesP. Grote and B. G. Herrmann, “Long noncoding RNAs in organogenesis: Making the difference,” Trends in Genetics, vol. 31, no. 6, pp. 329–335, 2015.spa
dc.relation.referencesP. Cartwright and A. Collins, “Fossils and phylogenies: Integrating multiple lines of evidence to investigate the origin of early major metazoan lineages,” Integrative and Comparative Biology, vol. 47, no. 5, pp. 744–751, 2007.spa
dc.relation.referencesM. Inoue, R. Suwa, A. Suzuki, K. Sakai, and H. Kawahata, “Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps,” Geophysical Research Letters, vol. 38, no. 12, pp. 2–5, 2011.spa
dc.relation.referencesN. J. Strausfeld and F. Hirth, “Introduction to ’Origin and evolution of the nervous system’.,” Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol. 370, dec 2015.spa
dc.relation.referencesH. V. A. N. Iten, A. C. Marques, J. D. E. Moraes, M. L. A. F. Pacheco, M. Guimaraes, and S. I. M. Oes, “Frontiers in palaeontology origin and early diversification of the phylum cnidaria verrill : major developments in the analysis of the taxon ’ s proterozoic ˆa€“ cambrian history,” Frontiers in Palaeontology, vol. 57, pp. 677–690, 2014spa
dc.relation.referencesC. W. Dunn, A. Hejnol, D. Q. Matus, K. Pang, W. E. Browne, S. A. Smith, E. Seaver, G. W. Rouse, M. Obst, G. D. Edgecombe, M. V. Sørensen, S. H. D. Haddock, A. Schmidt-Rhaesa, A. Okusu, R. M. Kristensen, W. C. Wheeler, M. Q. Martindale, and G. Giribet, “Broad phylogenomic sampling improves resolution of the animal tree of life,” Nature, vol. 452, pp. 745–749, apr 2008.spa
dc.relation.referencesA. L. Fidler, R. M. Vanacore, S. V. Chetyrkin, V. K. Pedchenko, G. Bhave, V. P. Yin, C. L. Stothers, K. L. Rose, W. H. McDonald, T. A. Clark, D.-B. Borza, R. E. Steele, M. T. Ivy, T. Aspirnauts, J. K. Hudson, and B. G. Hudson, “A unique covalent bond in basement membrane is a primordial innovation for tissue evolution.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 331–6, jan 2014.spa
dc.relation.referencesA. G. Collins, “Phylogeny of medusozoa and the evolution of cnidarian life cycles,” Journal of Evolutionary Biology, vol. 15, no. 3, pp. 418–432, 2002.spa
dc.relation.referencesI. Fiorillo, S. Rossi, V. Alva, J. M. Gili, and P. J. L´opez-Gonz´alez, “Seasonal cycle of sexual reproduction of the Mediterranean soft coral Alcyonium acaule (Anthozoa, Octocorallia),” Marine Biology, vol. 160, no. 3, pp. 719–728, 2013.spa
dc.relation.referencesS. Goffredo, J. Radetic’, V. Airi, and F. Zaccanti, “Sexual reproduction of the solitary sunset cup coral¡i¿Leptopsammia pruvoti¡/i¿(Scleractinia: Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis,” Marine Biology, vol. 147, no. 2, pp. 485–495, 2005.spa
dc.relation.referencesW. A. M¨uller and T. Leitz, “Metamorphosis in the Cnidaria,” Canadian Journal of Zoology, vol. 80, no. 10, pp. 1755–1771, 2002.spa
dc.relation.referencesL. C. Grasso, J. Maindonald, S. Rudd, D. C. Hayward, R. Saint, D. J. Miller, and E. E. Ball, “Microarray analysis identifies candidate genes for key roles in coral development.,” BMC genomics, vol. 9, p. 540, 2008.spa
dc.relation.referencesX. Yuan, T. Yuan, H. Huang, L. Jiang, W. Zhou, and S. Liu, “Elevated CO2 delays the early development of scleractinian coral Acropora gemmifera,” Scientific Reports, vol. 8, no. 1, p. 2787, 2018.spa
dc.relation.referencesE. M. Hemond, S. T. Kaluziak, and S. V. Vollmer, “The genetics of colony form and function in Caribbean Acropora corals,” BMC Genomics, vol. 15, no. 1, pp. 1–21, 2014.spa
dc.relation.referencesA. M. Kerr, A. H. Baird, and T. P. Hughes, “Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia),” Proceedings of the Royal Society B: Biological Sciences, vol. 278, no. 1702, pp. 75–81, 2011.spa
dc.relation.referencesQ. M. Heather and Q. M. Mark, “Embryonic development in two species of scleractinian coral embryos: Symbiodinium localization and mode of gastrulation,” Evolution Development, vol. 9, no. 4, pp. 355–367, 2007.spa
dc.relation.referencesC. Marchini, V. Airi, R. Fontana, G. Tortorelli, M. Rocchi, G. Falini, O. Levy, Z. Dubinsky, and S. Goffredo, “Annual reproductive cycle and unusual embryogenesis of a temperate coral in the Mediterranean Sea,” PLoS ONE, vol. 10, no. 10, pp. 1–17, 2015.spa
dc.relation.referencesD. J. Miller, D. C. Hayward, J. S. Reece-Hoyes, I. Scholten, J. Catmull, W. J. Gehring, P. Callaerts, J. E. Larsen, and E. E. Ball, “Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): implications for the evolution of the Pax gene family.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4475–80, 2000.spa
dc.relation.referencesE. E. Ball, D. C. Hayward, J. Catmull, J. S. Reece-Hoyes, N. R. Hislop, P. L. Harrison, and D. J. Miller, “Molecular control of development in the reef coral, Acropora millepora,” Proceedings of the 9th International Coral Reef Symposium, vol. 1, no. October, pp. 395–402, 2000.spa
dc.relation.referencesJ. H. Vandermeulen, “Studies on reef corals. II. Fine structure of planktonic planula larva of Pocillopora damicornis, with emphasis on the aboral epidermis,” Marine Biology, vol. 27, no. 3, pp. 239–249, 1974.spa
dc.relation.referencesD. C. Hayward, S. Hetherington, C. A. Behm, L. C. Grasso, S. Foret, D. J. Miller, and E. E. Ball, “Differential gene expression at coral settlement and metamorphosis - A subtractive hybridization study,” PLoS ONE, vol. 6, no. 10, 2011.spa
dc.relation.referencesJ. H. Vandermeulen, “Studies on reef corals. III. Fine structural changes of calicoblast cells in Pocillopora damicornis during settling and calcification,” Marine Biology, vol. 31, no. 1, pp. 69–77, 1975.spa
dc.relation.referencesX. Chen, Y. Sun, R. Cai, G. Wang, X. Shu, and W. Pang, “Long noncoding rna: multiple players in gene expression,” BMB reports, vol. 51, no. 6, p. 280, 2018.spa
dc.relation.referencesX. Yan, L. Ma, and M. Yang, “Identification and characterization of long non-coding rna (lncrna) in the developing seeds of jatropha curcas,” Scientific reports, vol. 10, no. 1, pp. 1–10, 2020.spa
dc.relation.referencesV. Eldem, G. Zararsiz, T. Ta¸s¸ci, I. P. Duru, Y. Bakir, and M. Erkan, “Transcriptome analysis for non-model organism: Current status and best-practices,” Applications of RNA-Seq and Omics Strategies-From Microorganisms to Human Health, vol. 1, no. 2, pp. 1–19, 2017.spa
dc.relation.referencesH.-L. V. Wang and J. A. Chekanova, “Long noncoding rnas in plants,” Long non coding RNA biology, pp. 133–154, 2017.spa
dc.relation.referencesJ. Kang, A. Chung, S. Suresh, L. L. Bonzi, J. M. Sourisse, S. Ramirez, D. Romeo, N. Petit-Marty, C. Pegueroles, and C. Schunter, “Environmental regulation of gene expression mediated by long non-coding rnas,” bioRxiv, pp. 2022–06, 2022.spa
dc.relation.referencesC. Huang, J.-E. R. Morlighem, J. Cai, Q. Liao, C. D. Perez, P. B. Gomes, M. Guo, ´ G. R´adis-Baptista, and S. M.-Y. Lee, “Identification of long non-coding rnas in two anthozoan species and their possible implications for coral bleaching,” Scientific reports, vol. 7, no. 1, pp. 1–18, 2017.spa
dc.relation.referencesX. Zhou, H. Lindsay, and M. D. Robinson, “Robustly detecting differential expression in rna sequencing data using observation weights,” Nucleic acids research, vol. 42, no. 11, pp. e91–e91, 2014.spa
dc.relation.referencesC. I. Ortega Peñaloza and C. I. Bermúdez, Identification of neurodevelopmental genes in the coral species Acropora digitifera ( Acroporidae ). PhD thesis, 2022.spa
dc.relation.referencesM. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edger: a bioconductor package for differential expression analysis of digital gene expression data,” bioinformatics, vol. 26, no. 1, pp. 139–140, 2010.spa
dc.relation.referencesJ. T. Kung, D. Colognori, and J. T. Lee, “Long noncoding rnas: past, present, and future,” Genetics, vol. 193, no. 3, pp. 651–669, 2013.spa
dc.relation.referencesM. K. Iyer, Y. S. Niknafs, R. Malik, U. Singhal, A. Sahu, Y. Hosono, T. R. Barrette, J. R. Prensner, J. R. Evans, S. Zhao, et al., “The landscape of long noncoding rnas in the human transcriptome,” Nature genetics, vol. 47, no. 3, pp. 199–208, 2015.spa
dc.relation.referencesL. Solnica-Krezel and D. S. Sepich, “Gastrulation: making and shaping germ layers,” Annual review of cell and developmental biology, vol. 28, no. 1, pp. 687–717, 2012.spa
dc.relation.referencesY. A. Kraus and A. V. Markov, “The gastrulation in cnidaria: A key to understanding phylogeny or the chaos of secondary modifications?,” Obshch. Biol, vol. 77, no. 1, pp. 83–105, 2016.spa
dc.relation.referencesN. Nakanishi, S. Sogabe, and B. M. Degnan, “Evolutionary origin of gastrulation: Insights from sponge development,” BMC Biology, vol. 12, pp. 1–9, 2014.spa
dc.relation.referencesL. S. Babonis and M. Q. Martindale, “Phylogenetic evidence for the modular evolution of metazoan signalling pathways,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 372, no. 1713, p. 20150477, 2017.spa
dc.relation.referencesG. Zhang, B. Li, C. Li, M. T. P. Gilbert, E. D. Jarvis, J. Wang, and A. G. Consortium, “Comparative genomic data of the avian phylogenomics project,” GigaScience, vol. 3, no. 1, pp. 2047–217X, 2014.spa
dc.relation.referencesS. Brenner, J. H. Miller, and W. Broughton, Encyclopedia of genetics. No. Sirsi) i9780122270802, 2002.spa
dc.relation.referencesJ. B. Ahrens, K. J. Wade, and D. D. Pollock, “A fast, general synteny detection engine,” bioRxiv, 2021.spa
dc.relation.referencesH. Tang, M. D. Bomhoff, E. Briones, L. Zhang, J. C. Schnable, and E. Lyons, “Synfind: compiling syntenic regions across any set of genomes on demand,” Genome biology and evolution, vol. 7, no. 12, pp. 3286–3298, 2015.spa
dc.relation.referencesK. Vandepoele, Y. Saeys, C. Simillion, J. Raes, and Y. Van de Peer, “The automatic detection of homologous regions (adhore) and its application to microcolinearity between arabidopsis and rice,” Genome Research, vol. 12, no. 11, pp. 1792–1801, 2002.spa
dc.relation.referencesC. G. Ghiurcuta and B. M. Moret, “Evaluating synteny for improved comparative studies,” Bioinformatics, vol. 30, no. 12, pp. i9–i18, 2014.spa
dc.relation.referencesF. Wu, L. A. Mueller, D. Crouzillat, V. P´etiard, and S. D. Tanksley, “Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (cosii) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade,” Genetics, vol. 174, no. 3, pp. 1407–1420, 2006.spa
dc.relation.referencesB. Lenhard, A. Sandelin, L. Mendoza, P. Engstr¨om, N. Jareborg, and W. W. Wasserman, “Identification of conserved regulatory elements by comparative genome analysis,” Journal of biology, vol. 2, no. 2, pp. 1–11, 2003.spa
dc.relation.referencesT. Hachiya, Y. Osana, K. Popendorf, and Y. Sakakibara, “Accurate identification of orthologous segments among multiple genomes,” Bioinformatics, vol. 25, no. 7, pp. 853–860, 2009.spa
dc.relation.referencesY. Yoshioka, G. Suzuki, Y. Zayasu, H. Yamashita, and C. Shinzato, “Comparative genomics highlight the importance of lineage-specific gene families in evolutionary divergence of the coral genus, montipora,” BMC Ecology and Evolution, vol. 22, no. 1, pp. 1–16, 2022spa
dc.relation.referencesS. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of molecular biology, vol. 215, no. 3, pp. 403–410, 1990.spa
dc.relation.referencesW. J. Kent, “The blast-like alignment tool,” Genome research, vol. 12, no. 4, pp. 656–664, 2002.spa
dc.relation.referencesA. Moya, L. Huisman, E. Ball, D. Hayward, L. Grasso, C. Chua, H. Woo, J.-P. Gattuso, S. Foret, and D. J. Miller, “Whole transcriptome analysis of the coral acropora millepora reveals complex responses to co2-driven acidification during the initiation of calcification,” Molecular ecology, vol. 21, no. 10, pp. 2440–2454, 2012.spa
dc.relation.referencesD. Charif, J. R. Lobry, A. Necsulea, L. Palmeira, S. Penel, G. Perriere, and M. S. Penel, “Package ‘seqinr’,” 2022.spa
dc.relation.referencesH. Pages, P. Aboyoun, R. Gentleman, S. DebRoy, M. H. Pages, D. DataImport, S. BSgenome, R. XStringSet-class, R. MaskedXString-class, and R. XStringSet-io, “Package ‘biostrings’,” R, 2013.spa
dc.relation.referencesE. Neuwirth and M. E. Neuwirth, “Package ‘rcolorbrewer’,” ColorBrewer Palettes, 2014.spa
dc.relation.referencesH. Wickham, M. H. Wickham, and I. RColorBrewer, “Package ‘scales’,” 2016.spa
dc.relation.referencesT. Mailund, “Manipulating data frames: dplyr,” in R Data Science Quick Reference, pp. 109–160, Springer, 2019.spa
dc.relation.referencesH. Wickham and M. H. Wickham, “Package ‘tidyr’,” Easily Tidy Data with spread and gather Functions, 2017.spa
dc.relation.referencesH. Wickham, W. Chang, and M. H. Wickham, “Package ‘ggplot2’,” Create elegant data visualisations using the grammar of graphics. Version, vol. 2, no. 1, pp. 1–189, 2016.spa
dc.relation.referencesZ. Gu, L. Gu, R. Eils, M. Schlesner, and B. Brors, “Circlize implements and enhances circular visualization in r,” Bioinformatics, vol. 30, no. 19, pp. 2811–2812, 2014.spa
dc.relation.referencesS. Han, Y. Liang, Q. Ma, Y. Xu, Y. Zhang, W. Du, C. Wang, and Y. Li, “Lncfinder: an integrated platform for long non-coding rna identification utilizing sequence intrinsic composition, structural information and physicochemical property,” Briefings in bioinformatics, vol. 20, no. 6, pp. 2009–2027, 2019.spa
dc.relation.referencesA. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna, “Mauve: multiple alignment of conserved genomic sequence with rearrangements,” Genome research, vol. 14, no. 7, pp. 1394–1403, 2004spa
dc.relation.referencesR. Achawanantakun, J. Chen, Y. Sun, and Y. Zhang, “Lncrna-id: Long non-coding rna identification using balanced random forests,” Bioinformatics, vol. 31, no. 24, pp. 3897– 3905, 2015.spa
dc.relation.referencesY. Liu, X. Liao, T. Han, A. Su, Z. Guo, N. Lu, C. He, and Z. Lu, “Full-length transcriptome sequencing of the scleractinian coral montipora foliosa reveals the gene expression profile of coral–zooxanthellae holobiont,” Biology, vol. 10, no. 12, p. 1274, 2021.spa
dc.relation.referencesC. Shinzato, E. Shoguchi, T. Kawashima, M. Hamada, K. Hisata, M. Tanaka, M. Fujie, M. Fujiwara, R. Koyanagi, T. Ikuta, A. Fujiyama, D. J. Miller, and N. Satoh, “Using the Acropora digitifera genome to understand coral responses to environmental change,” Nature, vol. 476, no. 7360, pp. 320–323, 2011.spa
dc.relation.referencesC. Shinzato, K. Khalturin, J. Inoue, Y. Zayasu, M. Kanda, M. Kawamitsu, Y. Yoshioka, H. Yamashita, G. Suzuki, and N. Satoh, “Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes,” Molecular Biology and Evolution, vol. 38, no. 1, pp. 16–30, 2021.spa
dc.relation.referencesC. P. Ponting, “The functional repertoires of metazoan genomes,” Nature Reviews Genetics, vol. 9, no. 9, pp. 689–698, 2008.spa
dc.relation.referencesN. H. Putnam, M. Srivastava, U. Hellsten, B. Dirks, J. Chapman, A. Salamov, A. Terry, H. Shapiro, E. Lindquist, V. V. Kapitonov, et al., “Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization,” science, vol. 317, no. 5834, pp. 86–94, 2007.spa
dc.relation.referencesJ. A. Chapman, E. F. Kirkness, O. Simakov, S. E. Hampson, T. Mitros, T. Weinmaier, T. Rattei, P. G. Balasubramanian, J. Borman, D. Busam, et al., “The dynamic genome of hydra,” Nature, vol. 464, no. 7288, pp. 592–596, 2010.spa
dc.relation.referencesC. R. Voolstra, Y. Li, Y. J. Liew, S. Baumgarten, D. Zoccola, J.-F. Flot, S. Tambutt´e, D. Allemand, and M. Aranda, “Comparative analysis of the genomes of stylophora pistillata and acropora digitifera provides evidence for extensive differences between species of corals,” Scientific reports, vol. 7, no. 1, pp. 1–14, 2017.spa
dc.relation.referencesE. Rivas, J. Clements, and S. R. Eddy, “A statistical test for conserved rna structure shows lack of evidence for structure in lncrnas,” Nature methods, vol. 14, no. 1, pp. 45– 48, 2017.spa
dc.relation.referencesK. Khalturin, C. Shinzato, M. Khalturina, M. Hamada, M. Fujie, R. Koyanagi, M. Kanda, H. Goto, F. Anton-Erxleben, M. Toyokawa, et al., “Medusozoan genomes inform the evolution of the jellyfish body plan,” Nature Ecology & Evolution, vol. 3, no. 5, pp. 811–822, 2019.spa
dc.relation.referencesO. R. Salazar, P. N. Arun, G. Cui, L. K. Bay, M. J. van Oppen, N. S. Webster, and M. Aranda, “The coral acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals,” Science advances, vol. 8, no. 38, p. eabq0304, 2022.spa
dc.relation.referencesY. Zhang, H. Huang, D. Zhang, J. Qiu, J. Yang, K. Wang, L. Zhu, J. Fan, and J. Yang, “A review on recent computational methods for predicting noncoding rnas,” BioMed research international, vol. 2017, 2017.spa
dc.relation.referencesF. Salabi, H. Jafari, S. Navidpour, and A. S. Sadr, “Systematic and computational identification of androctonus crassicauda long non-coding rnas,” Scientific reports, vol. 11, no. 1, pp. 1–14, 2021.spa
dc.relation.referencesV. Maracaja-Coutinho, A. R. Paschoal, J. C. Caris-Maldonado, P. V. Borges, A. J. Ferreira, and A. M. Durham, “Noncoding rnas databases: current status and trends,” Computational Biology of Non-Coding RNA, pp. 251–285, 2019.spa
dc.relation.referencesH. Ma, Y. Hao, X. Dong, Q. Gong, J. Chen, J. Zhang, and W. Tian, “Molecular mechanisms and function prediction of long noncoding rna,” The Scientific World Journal, vol. 2012, 2012.spa
dc.relation.referencesJ. T. Low and K. M. Weeks, “Shape-directed rna secondary structure prediction,” Methods, vol. 52, no. 2, pp. 150–158, 2010.spa
dc.relation.referencesS. Washietl, I. L. Hofacker, and P. F. Stadler, “Fast and reliable prediction of noncoding rnas,” Proceedings of the National Academy of Sciences, vol. 102, no. 7, pp. 2454–2459, 2005.spa
dc.relation.referencesA. R. Gruber, S. Findeiß, S. Washietl, I. L. Hofacker, and P. F. Stadler, “Rnaz 2.0: improved noncoding rna detection,” in Biocomputing 2010, pp. 69–79, World Scientific, 2010.spa
dc.relation.referencesI. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster, “Fast folding and comparison of rna secondary structures,” Monatshefte f¨ur Chemie/Chemical Monthly, vol. 125, no. 2, pp. 167–188, 1994.spa
dc.relation.referencesL. Fontana, L. Partridge, and V. D. Longo, “Extending healthy life span from yeast to humans,” science, vol. 328, no. 5976, pp. 321–326, 2010.spa
dc.relation.referencesJ.-H. Yoon, K. Abdelmohsen, and M. Gorospe, “Posttranscriptional gene regulation by long noncoding rna,” Journal of molecular biology, vol. 425, no. 19, pp. 3723–3730, 2013.spa
dc.relation.referencesS. Sweta, T. Dudnakova, S. Sudheer, A. H. Baker, and R. Bhushan, “Importance of long non-coding rnas in the development and disease of skeletal muscle and cardiovascular lineages,” Frontiers in Cell and Developmental Biology, vol. 7, p. 228, 2019.spa
dc.relation.referencesJ. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L. Aken, D. Barrell, A. Zadissa, S. Searle, et al., “Gencode: the reference human genome annotation for the encode project,” Genome research, vol. 22, no. 9, pp. 1760–1774, 2012.spa
dc.relation.referencesT. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali, H. Tilgner, G. Guernec, D. Martin, A. Merkel, D. G. Knowles, et al., “The gencode v7 catalog of human long noncoding rnas: analysis of their gene structure, evolution, and expression,” Genome research, vol. 22, no. 9, pp. 1775–1789, 2012.spa
dc.relation.referencesH. Naora and D. J. Montell, “Ovarian cancer metastasis: integrating insights from disparate model organisms,” Nature reviews cancer, vol. 5, no. 5, pp. 355–366, 2005.spa
dc.relation.referencesM. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins, “Clustal W and Clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007spa
dc.relation.referencesR. Lorenz, S. H. Bernhart, C. H¨oner zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler, and I. L. Hofacker, “Viennarna package 2.0,” Algorithms for molecular biology, vol. 6, pp. 1–14, 2011.spa
dc.relation.referencesF. Li, Q. Zheng, P. Ryvkin, I. Dragomir, Y. Desai, S. Aiyer, O. Valladares, J. Yang, S. Bambina, L. R. Sabin, et al., “Global analysis of rna secondary structure in two metazoans,” Cell reports, vol. 1, no. 1, pp. 69–82, 2012.spa
dc.relation.referencesD. H. Mathews, D. H. Turner, and M. Zuker, “Rna secondary structure prediction,” Current protocols in nucleic acid chemistry, vol. 28, no. 1, pp. 11–2, 2007.spa
dc.relation.referencesK. A. Leamy, S. M. Assmann, D. H. Mathews, and P. C. Bevilacqua, “Bridging the gap between in vitro and in vivo rna folding,” Quarterly reviews of biophysics, vol. 49, p. e10, 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.decsAntozoosspa
dc.subject.decsAnthozoaeng
dc.subject.lembCoralesspa
dc.subject.proposalLncRNAspa
dc.subject.proposalTranscriptomaspa
dc.subject.proposalGenómica comparativaspa
dc.subject.proposalOrtologíaspa
dc.subject.proposalEstructura secundaria conservadaspa
dc.titleEntendiendo el rol del lncRNA durante la gastrulación en las especies de acropora: A. tenuis y A. digitiferaspa
dc.title.translatedThe role of lncRNA during gastrulation in Acropora species: A. tenuis and A. digitiferaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3957420077.2023.pdf
Tamaño:
2.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: