Estudio químico de macroalgas rojas del departamento Archipiélago de San Andrés, Providencia y Santa Catalina con potencial uso en la industria cosmética
dc.contributor.advisor | Ramos Rodríguez, Freddy Alejandro | spa |
dc.contributor.author | Angulo Nuñez, Eibar | spa |
dc.contributor.cvlac | EIBAR ANGULO - https://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/inicio.do | spa |
dc.contributor.orcid | https://orcid.org/0009-0000-0696-6808 | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Eibar-Angulo-Nunez?ev=hdr_xprf | spa |
dc.contributor.researchgroup | Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Archipiélago de San Andrés, Providencia y Santa Catalina | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1002111 | |
dc.date.accessioned | 2025-04-04T19:45:16Z | |
dc.date.available | 2025-04-04T19:45:16Z | |
dc.date.issued | 2025-03-08 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La exposición a la radiación solar es un factor de riesgo significativo para la salud humana, contribuyendo al desarrollo de enfermedades como el cáncer de piel. La búsqueda de métodos eficaces de fotoprotección ha llevado al desarrollo de productos que protegen a la piel frente a la radiación ultravioleta (UV). Sin embargo, los efectos adversos de algunos de estos productos, como reacciones alérgicas y la acumulación de sus componentes en el medio ambiente, generan la necesidad de encontrar alternativas naturales más seguras y sostenibles. En este contexto, los productos naturales obtenidos de organismos marinos, como las algas rojas, han despertado interés debido a sus propiedades bioactivas, especialmente en la protección solar. En este contexto, las algas rojas del Archipiélago de San Andrés, Providencia y Santa Catalina representan un recurso inexplorado que podría ofrecer nuevos compuestos con capacidad fotoprotectora. En este trabajo, se evaluaron 208 extractos obtenidos de 17 muestras de macroalgas rojas colectadas en dicho archipiélago. Los extractos fueron estudiados mediante la evaluación de los parámetros de fotoprotección in vitro seleccionados (FPS, UVAr y λc), y la captación del radical DPPH•, como una aproximación a la capacidad antioxidante. El análisis se realizó a través de la implementación de PCA y mapas de calor para la comparación el potencial cosmético en fotoprotección, Esto permitió que se seleccionaran los extractos butanólico de Gracilariopsis sp. y orgánico de Acanthophora spicifera, los cuales mostraron los mejores resultados en términos de capacidad fotoprotectora y captación del radical DPPH•. Estos hallazgos resaltan el potencial cosmético de las algas rojas del archipiélago para su posible aplicación en productos de protección solar. El estudio químico de los extractos previamente seleccionados permitió identificar compuestos bioactivos responsables de la capacidad fotoprotectora in vitro. En el extracto butanólico de Gracilariopsis sp., se aislaron e identificaron por RMN la microtecina (1) y la 2-furil hidroximetilcetona (2), siendo este último el principal responsable de la absorción en la región UVB, con un FPS de 9,41. En el caso de Acanthophora spicifera, los análisis de RMN revelaron una composición mayoritaria de ácidos grasos saturados e insaturados, encontrando que la fracción OA-2.3 tuvo un FPS de 13,00, máxima protección en UVAr y protección amplio espectro en λc. En esta fracción se identificó por experimentos de RMN mono y bidimensional un nuevo ácido graso poliinsaturado, el ácido hexadeca-5,10,13-trienoico (3) , que junto con el ácido α-eleostearico (4), y otros ácidos grasos identificados por GC-MS contribuyen a la protección de amplio espectro observada en este extracto. Finalmente, se llevó a cabo la identificación y cuantificación de aminoácidos tipo micosporinas (MAAs) en 10 muestras de algas rojas del archipiélago, mediante UHPLC-DAD-MS/MS. La muestra Laurencia sp. fue la que presentó la mayor concentración de MAAs, con 1,63 mg·g⁻¹ DW, y un FPS de 23,14 a 20 mg·mL-1, mostrando la relación entre el contenido de MAAs y la capacidad fotoprotectora de los extractos acuosos de las algas rojas evaluadas. Estos resultados subrayan el potencial de los MAAs como ingredientes activos para formulaciones cosméticas innovadoras en la protección solar. Este trabajo contribuye al conocimiento sobre el potencial fotoprotector de las algas rojas del Caribe insular colombiano, identificando compuestos con actividad prometedora y abriendo nuevas posibilidades para su aplicación en la industria cosmética. (Texto tomado de la fuente). | spa |
dc.description.abstract | Exposure to solar radiation is a significant risk factor for human health, contributing to the development of diseases such as skin cancer. The search for effective photoprotection methods has led to the development of products that act as barriers against ultraviolet (UV) radiation. However, the adverse effects of some of these products, such as allergic reactions and the accumulation of their components in the environment, highlight the need to find safer and more sustainable natural alternatives. In this context, natural products obtained from marine organisms, such as red algae, have gained interest due to their bioactive properties, particularly in sun protection. The red algae from the Archipelago of San Andrés, Providencia, and Santa Catalina represent an unexplored resource that could offer new compounds with photoprotective activity. In this work, 208 extracts obtained from 17 samples of red macroalgae collected in the archipelago were evaluated. The extracts were analyzed for their photoprotective and antioxidant activity using in vitro methods, including selected photoprotection parameters (SPF, UVAr, and λc) and the DPPH• radical scavenging assay. The analysis was carried out through the implementation of PCA and heatmaps to compare the cosmetic potential for photoprotection. This allowed for the selection of the butanolic extract of Gracilariopsis sp. and the organic extract of Acanthophora spicifera, which showed the best results in terms of photoprotective and antioxidant activity. These findings highlight the cosmetic potential of the red algae from the archipelago for use in sunscreen products. The chemical study of the selected extracts allowed for the identification of bioactive compounds responsible for photoprotective activity. In the butanolic extract of Gracilariopsis sp., microtecin (1) and 2-furyl hydroxymethyl ketone (2) were isolated and identified by NMR, with the latter being primarily responsible for absorption in the UVB region, with an SPF of 9.41. In the case of Acanthophora spicifera, NMR analyses revealed a predominant composition of saturated and unsaturated fatty acids, with the OA-2.3 fraction having an SPF of 13.00, maximum protection in UVAr, and broad-spectrum protection. In this fraction, a new polyunsaturated fatty acid, hexadeca-5,10,13-trienoic acid (3), was identified through mono- and bidimensional NMR experiments, along with α-eleostearic acid (4), and other fatty acids identified by GC-MS that contribute to the broad-spectrum protection observed in this extract. Finally, the identification and quantification of mycosporine-like amino acids (MAAs) in 10 red algae samples from the archipelago were performed using UHPLC-DAD-MS/MS. The sample of Laurencia sp. showed the highest concentration of MAAs, with 1.63 mg·g⁻¹ DW, and an SPF of 23.14 at 20 mg·mL⁻¹, demonstrating the relationship between MAA content and the photoprotective capacity of the aqueous extracts of the evaluated red algae. These results underscore the potential of MAAs as active ingredients for innovative and effective sunscreen formulations. This work contributes to the understanding of the photoprotective potential of red algae from the Colombian insular Caribbean, identifying compounds with promising activity and opening new possibilities for their application in the cosmetic industry. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Química | spa |
dc.description.researcharea | Productos naturales | spa |
dc.description.sponsorship | ‘BALCAR-Q: Bioprospección y Química de Algas del Caribe’ (Minciencias - 1101-852-69964) por el apoyo financiero. EA agradece las “Becas de Minciencias SGR Convocatoria 7 Alianza UNAL–UDEA”. Al Ministerio de Ambiente y Desarrollo Sostenible de Colombia por haber garantizado esta investigación (Contrato No. 121 del 22 de enero de 2016, modificado mediante la enmienda No. 7). | spa |
dc.format.extent | xxvii, 204 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87847 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
dc.relation.references | (1) Carrasco-Ríos, L. EFECTO DE LA RADIACIÓN ULTRAVIOLETA-B EN PLANTAS. Idesia (Arica) 2009, 27 (3), 59–76. https://doi.org/10.4067/S0718-34292009000300009. | spa |
dc.relation.references | (2) González-Púmariega, M.; Tamayo, M. V.; Sánchez-Lamar, Á. LA RADIACIÓN ULTRAVIOLETA. SU EFECTO DAÑINO Y CONSECUENCIAS PARA LA SALUD HUMANA. Theoria 2009, 18 (2), 69–80. | spa |
dc.relation.references | (3) Garnacho Saucedo, G. M.; Salido Vallejo, R.; Moreno Giménez, J. C. Efectos de La Radiación Solar y Actualización En Fotoprotección. An Pediatr (Engl Ed) 2020, 92 (6), 377.e1-377.e9. https://doi.org/10.1016/J.ANPEDI.2020.04.014. | spa |
dc.relation.references | (4) Ministerio de Comercio Industria y Turismo. Desarrollando Sectores de Clase Mundial En Colombia: Informe Final Sector Cosméticos y Productos de Aseo. 2009. | spa |
dc.relation.references | (5) ANDI. ANDI - Industria de Cosméticos y Aseo. https://www.andi.com.co/Home/Camara/15-camara-de-la-industria-cosmetica-y-aseo (accessed 2024-10-09). | spa |
dc.relation.references | (6) Bautista Rodríguez, C. A. Una Mirada al Estado Actual de La Investigación En Productos Naturales Marinos de Colombia; 2017. | spa |
dc.relation.references | (7) Bojorge-García, M. G.; Uriza, E. A. C.; Bojorge-García, M. G.; Uriza, C.; La, E. A. 2016. The Ecological Importance of Algae in Rivers. 2016, 26 (1). | spa |
dc.relation.references | (8) Red Algae: The Antioxidant Skin Care Ingredient - L’Oréal Paris. https://es.lorealparisusa.com/revista-de-belleza/cuidado-piel/fundamentos-del-cuidado-de-la-piel/red-algae-the-antioxidant-skin-care-ingredient (accessed 2024-06-08). | spa |
dc.relation.references | (9) HelioguardTM 365 por Mibelle AG Biochemistry - Cuidado Personal y Cosméticos. https://www.ulprospector.com/es/la/PersonalCare/Detail/2250/63465/Helioguard-365 (accessed 2022-11-25). | spa |
dc.relation.references | (10) Beatriz, M.; Castilla, C. Caracterización Florística de Cianobacterias y Macroalgas Marinas de Los Bancos Roncador y Serrana Del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe Colombiano. 2019. | spa |
dc.relation.references | (11) Narla, S.; Kohli, I.; Hamzavi, I. H.; Lim, H. W. Visible Light in Photodermatology. Photochemical & Photobiological Sciences 2020 19:1 2020, 19 (1), 99–104. https://doi.org/10.1039/C9PP00425D. | spa |
dc.relation.references | (12) Cuadrado Vega, O. Cosmética Solar: El Envejecimiento Prematuro y La Protección Solar. Ciencia y Salud Virtual 2011. | spa |
dc.relation.references | (13) Pourang, A.; Tisack, A.; Ezekwe, N.; Torres, A. E.; Kohli, I.; Hamzavi, I. H.; Lim, H. W. Effects of Visible Light on Mechanisms of Skin Photoaging. Photodermatol Photoimmunol Photomed 2022, 38 (3), 191–196. https://doi.org/10.1111/PHPP.12736. | spa |
dc.relation.references | (14) Camilo Serrano Franco, C.; Otálora Porras, Y.; Alexander Chacón Cardona, C. Diseño y Construcción de Un Medidor de Radiación Infrarroja de Onda Larga. 2020. | spa |
dc.relation.references | (15) Magaluf, A. Fotoprotección Ocular. Farmacia profesional, ISSN 0213-9324, Vol. 18, No. 6 (JUN), 2004, págs. 56-60 2004, 18 (6), 56–60. | spa |
dc.relation.references | (16) Chaparro-Reyes, D.; Valbuena, M. C.; Moraes-L’Abbate, A. La Radiación Infrarroja y Sus Efectos En La Piel. Piel 2021, 36 (5), 306–312. https://doi.org/10.1016/J.PIEL.2020.04.020. | spa |
dc.relation.references | (17) Duro Mota, E.; Campillos Páez, M. T.; Causín Serrano, S. Sun and Sunscreens. Medifam 2003, 13 (3), 39–45. | spa |
dc.relation.references | (18) Marín, D.; Pozo Carrascosa, A. del. Pigmentación de La Piel (I). Melaninas: Conceptos Generales e Implicaciones Cosméticas. Offarm: farmacia y sociedad, ISSN 0212-047X, Vol. 24, No. 1 (ENE), 2005, págs. 116-118 2005, 24 (1), 116–118. | spa |
dc.relation.references | (19) Li, H.; Colantonio, S.; Dawson, A.; Lin, X.; Beecker, J. Sunscreen Application, Safety, and Sun Protection: The Evidence. J Cutan Med Surg 2019, 23 (4), 357–369. https://doi.org/10.1177/1203475419856611/ASSET/IMAGES/10.1177_1203475419856611-IMG2.PNG. | spa |
dc.relation.references | (20) Stenberg, C.; Larkö, O. Sunscreen Application and Its Importance for the Sun Protection Factor. Arch Dermatol 1985, 121 (11), 1400–1402. https://doi.org/10.1001/ARCHDERM.1985.01660110048013. | spa |
dc.relation.references | (21) Charlet, Egbert.; Romero Muñoz de Arenillas, J. Cosmética Para Farmacéuticos. 1996. | spa |
dc.relation.references | (22) Albini, A. Photochemistry. 2016. https://doi.org/10.1007/978-3-662-47977-3. | spa |
dc.relation.references | (23) Celleno, L.; Calzavara-Pinton, P.; Sala, R.; Arisi, M. C.; Bussoletti, C. Photobiology, Photodermatology and Sunscreens: A Comprehensive Overview. Part 2: Topical and Systemic Photoprotection. G Ital Dermatol Venereol 2013, 148 (1), 107–133. | spa |
dc.relation.references | (24) Liseth, S.; Córdova Glericos Quilder, C.; Talenas ASESORA Dra Patricia Karen Paucar Lescano, F. Efectividad de Un Programa Educativo Sobre Fotoprotección Para La Prevención Primaria de Cáncer de Piel En Adolescentes Del 1er Año de Educación Secundaria de La Institución Educativa “Juan Velasco Alvarado” Huánuco - 2019. Universidad Nacional Hermilio Valdizán 2021. | spa |
dc.relation.references | (25) Juan Honeyman. EFECTOS DE LAS RADIACIONES ULTRAVIOLETA EN LA PIEL. https://sisbib.unmsm.edu.pe/BVRevistas/dermatologia/v12_n2/efectos_radiaciones.htm (accessed 2024-06-08). | spa |
dc.relation.references | (27) Morabito, K.; Shapley, N. C.; Steeley, K. G.; Tripathi, A. Review of Sunscreen and the Emergence of Non-Conventional Absorbers and Their Applications in Ultraviolet Protection. Int J Cosmet Sci 2011, 33 (5), 385–390. https://doi.org/10.1111/J.1468-2494.2011.00654.X. | spa |
dc.relation.references | (28) Gilaberte, Y.; González, S. Update on Photoprotection. Actas Dermo-Sifiliográficas (English Edition) 2010, 101 (8), 659–672. https://doi.org/10.1016/S1578-2190(10)70696-X. | spa |
dc.relation.references | (29) Dominguez-Cherit, J.; Gómez-Flores, M.; Ocampo-Candiani, J.; Toledo-Bahena, M. Clinical Recommendations for Photoprotection in Mexico. 2014. | spa |
dc.relation.references | (30) Gaspar, L. R.; Maia Campos, P. M. B. G. Evaluation of the Photostability of Different UV Filter Combinations in a Sunscreen. Int J Pharm 2006, 307 (2), 123–128. https://doi.org/10.1016/J.IJPHARM.2005.08.029. | spa |
dc.relation.references | (31) Sies, H.; Stahl, W. Nutritional Protection against Skin Damage from Sunlight. Annu Rev Nutr 2004, 24, 173–200. https://doi.org/10.1146/ANNUREV.NUTR.24.012003.132320. | spa |
dc.relation.references | (32) Pinnell, S. R. Cutaneous Photodamage, Oxidative Stress, and Topical Antioxidant Protection. J Am Acad Dermatol 2003, 48 (1), 1–22. https://doi.org/10.1067/MJD.2003.16. | spa |
dc.relation.references | (33) Meinke, M. C.; Haag, S. F.; Schanzer, S.; Groth, N.; Gersonde, I.; Lademann, J. Radical Protection by Sunscreens in the Infrared Spectral Range. Photochem Photobiol 2011, 87 (2), 452–456. https://doi.org/10.1111/J.1751-1097.2010.00838.X. | spa |
dc.relation.references | (34) Santos, E. P.; Freitas, Z. M.; Souza, K. R.; Garcia, S.; Vergnanini, A. In Vitro and In Vivo Determinations of Sun Protection Factors of Sunscreen Lotions with Octylmethoxycinnamate. Int J Cosmet Sci 1999, 21 (1), 1–5. https://doi.org/10.1046/J.1467-2494.1999.181658.X. | spa |
dc.relation.references | (35) Suárez, H.; Acosta, ;; Cadena, ; PROTECCIÓN ANTI-UV DE CREMAS FOTOPROTECTORAS: DETERMINACION IN VITRO DEL FACTOR DE PROTECCION SOLAR (FPS). . Avances en Energías Renovables y Medio Ambiente 2009, 13. | spa |
dc.relation.references | (36) Otilia Martínez Pérez El sol la piel, S.; Otilia Martínez Pérez, S. El Sol y La Piel. MedUNAB 2002, 5 (13), 44–50. https://doi.org/10.29375/ISSN.0123-7047. | spa |
dc.relation.references | (37) Faurschou, A.; Wulf, H. C. The Relation between Sun Protection Factor and Amount of Suncreen Applied in Vivo. British Journal of Dermatology 2007, 156 (4), 716–719. https://doi.org/10.1111/j.1365-2133.2006.07684.x. | spa |
dc.relation.references | (38) Soria, S. M. S.; Tejeda, L. A. G.; Villagómez, L. F. V.; Granados, J. C. R. Protección Solar de La Piel Con Extractos de Frutas y Vegetales. JÓVENES EN LA CIENCIA 2021, 10. | spa |
dc.relation.references | (39) Colque Arce, G. Evaluación de La Capacidad Fotoprotectora, Determinación Del FPS e Irritación Primaria En Piel de Ratones de Una Crema Elaborada Con El Extracto Etanólico al 96% de Las Semillas de Bixa Orellana (Achiote). Universidad Nacional de San Antonio Abad del Cusco 2019. | spa |
dc.relation.references | (40) Ramos Torres, Y. C. Prendas de Vestir Con Protección de Rayos Ultra Violeta. 2021. | spa |
dc.relation.references | (41) Suárez, H.; Hoyos, D.; Broglia, V. G.; Cadena, C. Proteccion Anti UV Proporcionada Por Tejidos: Montaje Del Laboratorio y Primeros Ensayos. Avances en Energías Renovables y Medio Ambiente 2007, 11. | spa |
dc.relation.references | (42) Ramos, M. V.; Fernández, C. M.; Carrero, E. B.; De La, P.; Dobao, C.; Chavarría Mur, E.; Hernanz Hermosa, J. M. Fotoprotección En La Infancia. Pediatría Atención Primaria 2009, 11 (42), 313–324. | spa |
dc.relation.references | (43) Philippe Autier; Gianluca Severi. Has the Sun Protection Factor Had Its Day? Institut National de la Santé et de la Recherche 2000. | spa |
dc.relation.references | (44) Stokes, R.; Diffey, B. In Vitro Assessment of Sunscreen Photostability: The Effect of Radiation Source, Sunscreen Application Thickness and Substrate. Int J Cosmet Sci 1999, 21 (5), 341–351. https://doi.org/10.1046/J.1467-2494.1999.203163.X. | spa |
dc.relation.references | (45) Marginean Lazar, G.; Fructus, A. E.; Baillet, A.; Bocquet, J. L.; Thomas, P.; Marty, J. P. Sunscreens’ Photochemical Behaviour: In Vivo Evaluation by the Stripping Method. Int J Cosmet Sci 1997, 19 (2), 87–101. https://doi.org/10.1046/J.1467-2494.1997.171703.X. | spa |
dc.relation.references | (46) Stenberg, C.; Larkö, O. Sunscreen Application and Its Importance for the Sun Protection Factor. Arch Dermatol 1985, 121 (11), 1400–1402. https://doi.org/10.1001/ARCHDERM.1985.01660110048013. | spa |
dc.relation.references | (47) Yeager, D. G.; Lim, H. W. What’s New in Photoprotection: A Review of New Concepts and Controversies. Dermatol Clin 2019, 37 (2), 149–157. https://doi.org/10.1016/j.det.2018.11.003. | spa |
dc.relation.references | (48) Charlet, Egbert.; Romero Muñoz de Arenillas, J. Cosmética Para Farmacéuticos. 1996. | spa |
dc.relation.references | (49) Downs, C. A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F. R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C. M.; Pennington, P.; Cadenas, K.; Kushmaro, A.; Loya, Y. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the US Virgin Islands. Arch Environ Contam Toxicol 2016, 70 (2), 265–288. https://doi.org/10.1007/S00244-015-0227-7. | spa |
dc.relation.references | (50) Danovaro, R.; Bongiorni, L.; Corinaldesi, C.; Giovannelli, D.; Damiani, E.; Astolfi, P.; Greci, L.; Pusceddu, A. Sunscreens Cause Coral Bleaching by Promoting Viral Infections. Environ Health Perspect 2008, 116 (4), 441. https://doi.org/10.1289/EHP.10966. | spa |
dc.relation.references | (51) Tabrizi, H.; Mortazavi, S. A.; Kamalinejad, M. An in Vitro Evaluation of Various Rosa Damascena Flower Extracts as a Natural Antisolar Agent. Int J Cosmet Sci 2003, 25 (6), 259–265. https://doi.org/10.1111/J.1467-2494.2003.00189.X. | spa |
dc.relation.references | (52) Ramos, M. F. S.; Santos, E. P.; Bizarri, C. H. B.; Mattos, H. A.; Padilha, M. R. S.; Duarte, H. M. Preliminary Studies towards Utilization of Various Plant Extracts as Antisolar Agents. Int J Cosmet Sci 1996, 18 (3), 87–101. https://doi.org/10.1111/J.1467-2494.1996.TB00140.X. | spa |
dc.relation.references | (53) Perez de r., M. N.; Alfaro, M. de J.; Padilla, F. C. Evaluation of “nuez de Barinas” (Caryodendron Orinocense) Oil for Possible Use in Cosmetic. Int J Cosmet Sci 1999, 21 (3), 151–158. https://doi.org/10.1046/J.1467-2494.1999.196565.X. | spa |
dc.relation.references | (54) León Díaz, R. Cianobacterias Como Fuente Natural de Protectores Contra La Radiación Ultravioleta: Una Mini Revisión. 2020. | spa |
dc.relation.references | (55) Korbee, N.; Figueroa, F. L.; Aguilera, J. Accumulation of Mycosporine-like Amino Acids (MAAs): Biosynthesis, Photocontrol and Ecophysiological Functions. Revista Chilena de Historia Natural 2006. | spa |
dc.relation.references | (56) Carreto, J. I.; Carignan, M. O.; Montoya, N. G. A High-Resolution Reverse-Phase Liquid Chromatography Method for the Analysis of Mycosporine-like Amino Acids (MAAs) in Marine Organisms. Mar Biol 2005, 146 (2), 237–252. https://doi.org/10.1007/S00227-004-1447-Y. | spa |
dc.relation.references | (57) Vernet, M.; Whitehead, K. Release of Ultraviolet-Absorbing Compounds by the Red-Tide Dinoflagellate Lingulodinium Polyedra. Mar Biol 1996, 127 (1), 35–44. https://doi.org/10.1007/BF00993641/METRICS. | spa |
dc.relation.references | (58) Gonçalves, R. J.; Villafañe, V. E.; Helbling, E. W. Photorepair Activity and Protective Compounds in Two Freshwater Zooplankton Species (Daphnia Menucoensis and Metacyclops Mendocinus) from Patagonia, Argentina. Photochemical & Photobiological Sciences 2002, 1 (12), 996–1000. https://doi.org/10.1039/B208145H. | spa |
dc.relation.references | (59) Dunlap, W. C.; Chalker, B. E.; Oliver, J. K. Bathymetric Adaptations of Reef-Building Corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B Absorbing Compounds. J Exp Mar Biol Ecol 1986, 104 (1–3), 239–248. https://doi.org/10.1016/0022-0981(86)90108-5. | spa |
dc.relation.references | (60) Post, A.; Larkum, A. W. D. UV-Absorbing Pigments, Photosynthesis and UV Exposure in Antarctica: Comparison of Terrestrial and Marine Algae. Aquat Bot 1993, 45 (2–3), 231–243. https://doi.org/10.1016/0304-3770(93)90023-P. | spa |
dc.relation.references | (61) Karsten, U. Defense Strategies of Algae and Cyanobacteria against Solar Ultraviolet Radiation. Algal Chemical Ecology 2008, 9783540741817, 273–296. https://doi.org/10.1007/978-3-540-74181-7_13/COVER. | spa |
dc.relation.references | (62) Karsten, U.; Wiencke, C. Factors Controlling the Formation of UV-Absorbing Mycosporine-like Amino Acids in the Marine Red Alga Palmaria Palmata from Spitsbergen (Norway). J Plant Physiol 1999, 155 (3), 407–415. https://doi.org/10.1016/S0176-1617(99)80124-2. | spa |
dc.relation.references | (63) Yong, W. T. L.; Thien, V. Y.; Rupert, R.; Rodrigues, K. F. Seaweed: A Potential Climate Change Solution. Renewable and Sustainable Energy Reviews 2022, 159, 112222. https://doi.org/10.1016/J.RSER.2022.112222. | spa |
dc.relation.references | (64) Vidotti, C.; Do, M.; Rollemberg, C. E. ALGAS: DA ECONOMIA NOS AMBIENTES AQUÁTICOS À BIOREMEDIAÇÃO E À QUÍMICA ANALÍTICA. Quim. Nova 2004, 27 (1), 139–145. | spa |
dc.relation.references | (65) Faulkner, D. J. Marine Natural Products: Metabolites of Marine Invertebrates. Nat Prod Rep 1984, 1 (6), 551–598. https://doi.org/10.1039/NP9840100551. | spa |
dc.relation.references | (66) Pimentel, F. B.; Alves, R. C.; Rodrigues, F.; Oliveira, M. B. P. P. Macroalgae-Derived Ingredients for Cosmetic Industry—An Update. Cosmetics 2018, Vol. 5, Page 2 2017, 5 (1), 2. https://doi.org/10.3390/COSMETICS5010002. | spa |
dc.relation.references | (67) Bedoux, G.; Nathalie Bourgougnon; Amélie Sangiardi. Las Algas: Potencial Nutritivo y Aplicaciones Cosméticas. Université européenne de Bretagne 2011. | spa |
dc.relation.references | (68) S.M. Salcedo-Martínez; A. Rocha-Estrada; M.A. Alvarado-Vázquez. ALGAS DE IMPORTANCIA BIOTECNOLÓGICA. Botánica Aplicada 2019, 30–39. | spa |
dc.relation.references | (69) Guiry, M. D. How Many Species of Algae Are There? J Phycol 2012, 48 (5), 1057–1063. https://doi.org/10.1111/J.1529-8817.2012.01222.X. | spa |
dc.relation.references | (70) ROSAS RIEDEL, C. D. PIGMENTOS FOTOSINTÉTICOS EN LA COLUMNA DE AGUA DETERMINADOS MEDIANTE TÉCNICAS ESPECTROSCÓPICAS Y CROMATOGRÁFICAS (HPLC-RP): VARIABILIDAD ESPACIO-TEMPORAL Y EFECTOS DE RADIACIÓN UV. 2007. | spa |
dc.relation.references | (71) Fleita, D.; El-Sayed, M.; Rifaat, D. Evaluation of the Antioxidant Activity of Enzymatically-Hydrolyzed Sulfated Polysaccharides Extracted from Red Algae; Pterocladia Capillacea. LWT - Food Science and Technology 2015, 63 (2), 1236–1244. https://doi.org/10.1016/J.LWT.2015.04.024. | spa |
dc.relation.references | (72) Chichester; John Wiley & Sons Ltd. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology - Google Libros; Se-Kwon, K., Ed.; 2012. | spa |
dc.relation.references | (73) Marco Schwartz. Composición química y propiedades tecnológicas de alga roja, Agarophyton chilensis (ex Gracilaria chilensis) | Request PDF. https://www.researchgate.net/publication/336412113_Composicion_quimica_y_propiedades_tecnologicas_de_alga_roja_Agarophyton_chilensis_ex_Gracilaria_chilensis (accessed 2022-04-20). | spa |
dc.relation.references | (74) González Vega, R. I. Efecto de La Concentración y Fuente de Nitrógeno En La Producción de Proteínas de Cultivos Masivos de Chaetoceros Muelleri y Su Patrón Electroforético. UNIVERSIDAD DE SONORA 2014. | spa |
dc.relation.references | (75) Zolotareva, E. K.; Mokrosnop, V. M.; Stepanov, S. S. Polyphenol Compounds of Macroscopic and Microscopic Algae. Int J Algae 2019, 21 (1), 5–24. https://doi.org/10.1615/INTERJALGAE.V21.I1.10. | spa |
dc.relation.references | (76) Pimentel, F. B.; Alves, R. C.; Harnedy, P. A.; FitzGerald, R. J.; Oliveira, M. B. P. P. Macroalgal-Derived Protein Hydrolysates and Bioactive Peptides: Enzymatic Release and Potential Health Enhancing Properties. Trends Food Sci Technol 2019, 93, 106–124. https://doi.org/10.1016/J.TIFS.2019.09.006. | spa |
dc.relation.references | (76) Pimentel, F. B.; Alves, R. C.; Harnedy, P. A.; FitzGerald, R. J.; Oliveira, M. B. P. P. Macroalgal-Derived Protein Hydrolysates and Bioactive Peptides: Enzymatic Release and Potential Health Enhancing Properties. Trends Food Sci Technol 2019, 93, 106–124. https://doi.org/10.1016/J.TIFS.2019.09.006. | spa |
dc.relation.references | (78) Batista González, A. E.; Charles, M. B.; Mancini-Filho Ii, J.; Vidal, A.; Iii, N. Las Algas Marinas Como Fuentes de Fitofármacos Antioxidantes. Revista Cubana de Plantas Medicinales 2009, 14 (2), 0–0. | spa |
dc.relation.references | (79) González, B.; Fuertes, C.; Yauri, C.; Vega, K.; para correspondencia, A. Bromophenolic Compounds and Antioxidant Activity of Red Algae Extracts Polysiphonia Paniculata Montagne. Cienc Invest 2017, 20 (1), 9–14. | spa |
dc.relation.references | (80) Olsen, E. K.; Hansen, E.; Isaksson, J.; Andersen, J. H. Cellular Antioxidant Effect of Four Bromophenols from the Red Algae, Vertebrata Lanosa. Marine Drugs 2013, Vol. 11, Pages 2769-2784 2013, 11 (8), 2769–2784. https://doi.org/10.3390/MD11082769. | spa |
dc.relation.references | (81) GONZÁLEZ CASTRO, A. L. TERPENOS AISLADOS DE MACROALGAS CON ACTIVIDAD INSECTICIDA CONTRA Aedes Aegypti. INSTITUTO POLITECNICO NACIONAL CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS 2020. | spa |
dc.relation.references | (82) Ji, N. Y.; Li, X. M.; Ding, L. P.; Wang, B. G. Halogenated Eudesmane Derivatives and Other Terpenes from the Marine Red Alga Laurencia Pinnata and Their Chemotaxonomic Significance. Biochem Syst Ecol 2016, 64, 1–5. https://doi.org/10.1016/J.BSE.2015.11.010. | spa |
dc.relation.references | (83) Lee, J. M.; Cho, C. H.; Park, S. I.; Choi, J. W.; Song, H. S.; West, J. A.; Bhattacharya, D.; Yoon, H. S. Parallel Evolution of Highly Conserved Plastid Genome Architecture in Red Seaweeds and Seed Plants. BMC Biol 2016, 14 (1), 1–16. https://doi.org/10.1186/S12915-016-0299-5/FIGURES/5. | spa |
dc.relation.references | (84) Sinha, R. P.; Singh, S. P.; Häder, D. P. Database on Mycosporines and Mycosporine-like Amino Acids (MAAs) in Fungi, Cyanobacteria, Macroalgae, Phytoplankton and Animals. J Photochem Photobiol B 2007, 89 (1), 29–35. https://doi.org/10.1016/J.JPHOTOBIOL.2007.07.006. | spa |
dc.relation.references | (85) Gacesa, R.; Lawrence, K. P.; Georgakopoulos, N. D.; Yabe, K.; Dunlap, W. C.; Barlow, D. J.; Wells, G.; Young, A. R.; Long, P. F. The Mycosporine-like Amino Acids Porphyra-334 and Shinorine Are Antioxidants and Direct Antagonists of Keap1-Nrf2 Binding. Biochimie 2018, 154, 35–44. https://doi.org/10.1016/J.BIOCHI.2018.07.020. | spa |
dc.relation.references | (86) Pinto, E.; Carvalho, A. P.; Helena, K.; Cardozo, M.; Malcata, F. X.; Maria Dos Anjos, F.; Colepicolo, P. Effects of Heavy Metals and Light Levels on the Biosynthesis of Carotenoids and Fatty Acids in the Macroalgae Gracilaria Tenuistipitata (Var. Liui Zhang & Xia). Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy 21 (2), 349–354. https://doi.org/10.1590/S0102-695X2011005000060. | spa |
dc.relation.references | (87) Tosato, M. G.; Orallo, D. E.; Fangio, M. F.; Diz, V.; Dicelio, L. E.; Churio, M. S. Nanomaterials and Natural Products for UV-Photoprotection. Surface Chemistry of Nanobiomaterials: Applications of Nanobiomaterials 2016, 359–392. https://doi.org/10.1016/B978-0-323-42861-3.00012-1. | spa |
dc.relation.references | (88) Briani, B.; Sissini, M. N.; Lucena, L. A.; Batista, M. B.; Costa, I. O.; Nunes, J. M. C.; Schmitz, C.; Ramlov, F.; Maraschin, M.; Korbee, N.; Rörig, L.; Horta, P. A.; Figueroa, F. L.; Barufi, J. B. The Influence of Environmental Features in the Content of Mycosporine-like Amino Acids in Red Marine Algae along the Brazilian Coast. J Phycol 2018, 54 (3), 380–390. https://doi.org/10.1111/JPY.12640. | spa |
dc.relation.references | (89) León Díaz, R. Cianobacterias Como Fuente Natural de Protectores Contra La Radiación Ultravioleta: Una Mini Revisión. 2020. | spa |
dc.relation.references | (90) DE LA COBA LUQUE, F.; AGUILERA ARJONA, J.; LÓPEZ FIGUEROA, F. USE OF A MYCOSPORIN-TYPE AMINO ACID (PORPHYRA 334) AS AN ANTIOXIDANT. 2007. | spa |
dc.relation.references | (91) Díaz, M. N. R.; Gavio, B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. 2020. https://doi.org/10.15472/ALECQE. | spa |
dc.relation.references | (92) Reyes-Gómez, V. P.; Pomar, H. V.; Gavio, B. Notas Sobre Las Algas Marinas de La Reserva Internacional de La Biosfera Seaflower, Caribe Colombiano VIII: Nuevos Registros de Algas Rojas (Rhodophyta) de San Andrés, Providencia y Santa Catalina, Colombia. Acta Bot Mex 2021, No. 128, 1–23. https://doi.org/10.21829/ABM128.2021.1848. | spa |
dc.relation.references | (93) Jiang, R. W.; Hay, M. E.; Fairchild, C. R.; Prudhomme, J.; Roch, K. Le; Aalbersberg, W.; Kubanek, J. Antineoplastic Unsaturated Fatty Acids from Fijian Macroalgae. Phytochemistry 2008, 69 (13), 2495–2500. https://doi.org/10.1016/J.PHYTOCHEM.2008.07.005. | spa |
dc.relation.references | (94) Tanna, B.; Choudhary, B.; Mishra, A.; Yadav, S.; Chauhan, O. P.; Elansary, H. O.; Shokralla, S.; Zin El-Abedin, T. K.; Mahmoud, E. A. Biochemical and Anti-Proliferative Activities of Seven Abundant Tropical Red Seaweeds Confirm Nutraceutical Potential of Grateloupia Indica. Arabian Journal of Chemistry 2022, 15 (6), 103868. https://doi.org/10.1016/J.ARABJC.2022.103868. | spa |
dc.relation.references | (95) Perumal, P.; Aravinth, A.; Dhanasundaram, S.; Rajaram, R.; Santhanam, P.; Palanisamy, M.; James, R. A. Phytochemical, Amino Acid and Fatty Acid Profile of Selected Brown and Red Seaweed Species from Gulf of Mannar, Southeast India. Food and Humanity 2023, 1, 1659–1669. https://doi.org/10.1016/J.FOOHUM.2023.11.015. | spa |
dc.relation.references | (96) Marimuthu (a) Antonisamy, J.; Sankara Raj, E. D. UV–VIS and HPLC Studies on Amphiroa Anceps (Lamarck) Decaisne. Arabian Journal of Chemistry 2016, 9, S907–S913. https://doi.org/10.1016/J.ARABJC.2011.09.005. | spa |
dc.relation.references | (97) Mohy El-Din, S. M.; El-Ahwany, A. M. D. Bioactivity and Phytochemical Constituents of Marine Red Seaweeds (Jania Rubens, Corallina Mediterranea and Pterocladia Capillacea). Journal of Taibah University for Science 2016, 10 (4), 471–484. https://doi.org/10.1016/J.JTUSCI.2015.06.004. | spa |
dc.relation.references | (98) Cikoš, A. M.; Šubarić, D.; Roje, M.; Babić, J.; Jerković, I.; Jokić, S. Recent Advances on Macroalgal Pigments and Their Biological Activities (2016–2021). Algal Res 2022, 65, 102748. https://doi.org/10.1016/J.ALGAL.2022.102748. | spa |
dc.relation.references | (99) Windarto, S.; Hsu, J. L.; Lee, M. C. First Report of Antioxidant Potential of Peptide Fraction Derived from Colaconema Formosanum (Rhodophyta) Protein Hydrolysates. Biocatal Agric Biotechnol 2024, 58, 103232. https://doi.org/10.1016/J.BCAB.2024.103232. | spa |
dc.relation.references | (100) Jassbi, A. R.; Mirzaei, Y.; Firuzi, O.; Chandran, J. N.; Schneider, B. Bioassay Guided Purification of Cytotoxic Natural Products from a Red Alga Dichotomaria Obtusata. Revista Brasileira de Farmacognosia 2016, 26 (6), 705–709. https://doi.org/10.1016/J.BJP.2016.06.008. | spa |
dc.relation.references | (101) Cikoš, A. M.; Šubarić, D.; Roje, M.; Babić, J.; Jerković, I.; Jokić, S. Recent Advances on Macroalgal Pigments and Their Biological Activities (2016–2021). Algal Res 2022, 65, 102748. https://doi.org/10.1016/J.ALGAL.2022.102748. | spa |
dc.relation.references | (102) Al-Enazi, N. M.; Awaad, A. S.; Alqasoumi, S. I.; Alwethairi, M. F. Biological Activities of the Red Algae Galaxaura Rugosa and Liagora Hawaiiana Butters. Saudi Pharmaceutical Journal 2018, 26 (1), 25–32. https://doi.org/10.1016/J.JSPS.2017.11.003. | spa |
dc.relation.references | (103) David, S. R.; Baharulnizam, N. B.; Rajabalaya, R. A Review on Biological Assays of Red Algae Marine Compounds: An Insight into Skin Whitening Activities. J Herb Med 2022, 35, 100585. https://doi.org/10.1016/J.HERMED.2022.100585. | spa |
dc.relation.references | (104) Al-Enazi, N. M.; Awaad, A. S.; Alqasoumi, S. I.; Alwethairi, M. F. Biological Activities of the Red Algae Galaxaura Rugosa and Liagora Hawaiiana Butters. Saudi Pharmaceutical Journal 2018, 26 (1), 25–32. https://doi.org/10.1016/J.JSPS.2017.11.003. | spa |
dc.relation.references | (105) Ragonese, C.; Tedone, L.; Beccaria, M.; Torre, G.; Cichello, F.; Cacciola, F.; Dugo, P.; Mondello, L. Characterisation of Lipid Fraction of Marine Macroalgae by Means of Chromatography Techniques Coupled to Mass Spectrometry. Food Chem 2014, 145, 932–940. https://doi.org/10.1016/J.FOODCHEM.2013.08.130. | spa |
dc.relation.references | (106) Imchen, T.; Singh, K. S. Marine Algae Colorants: Antioxidant, Anti-Diabetic Properties and Applications in Food Industry. Algal Res 2023, 69, 102898. https://doi.org/10.1016/J.ALGAL.2022.102898. | spa |
dc.relation.references | (107) Félix, R.; Dias, P.; Félix, C.; Cerqueira, T.; Andrade, P. B.; Valentão, P.; Lemos, M. F. L. The Biotechnological Potential of Asparagopsis Armata: What Is Known of Its Chemical Composition, Bioactivities and Current Market? Algal Res 2021, 60, 102534. https://doi.org/10.1016/J.ALGAL.2021.102534. | spa |
dc.relation.references | (108) Bjørnland, T. Chlorophyll and Carotenoids of Five Isolates of the Red Alga Antithamnion Plumula. Biochem Syst Ecol 1983, 11 (2), 73–76. https://doi.org/10.1016/0305-1978(83)90002-9. | spa |
dc.relation.references | (109) Carefoot, T. H.; Karentz, D.; Pennings, S. C.; Young, C. L. Distribution of Mycosporine-like Amino Acids in the Sea Hare Aplysia Dactylomela: Effect of Diet on Amounts and Types Sequestered over Time in Tissues and Spawn. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 2000, 126 (1), 91–104. https://doi.org/10.1016/S0742-8413(00)00098-0. | spa |
dc.relation.references | (110) Aluta, U. P.; Aderolu, A. Z.; Ishola, I. O.; Alyassin, M.; Morris, G. A.; Olajide, O. A. Chemical Characterisation of Sulfated Polysaccharides from the Red Seaweed Centroceras Clavulatum and Their in Vitro Immunostimulatory and Antioxidant Properties. Food Hydrocolloids for Health 2023, 3, 100135. https://doi.org/10.1016/J.FHFH.2023.100135. | spa |
dc.relation.references | (111) Rudke, A. R.; da Silva, M.; Andrade, C. J. de; Vitali, L.; Ferreira, S. R. S. Green Extraction of Phenolic Compounds and Carrageenan from the Red Alga Kappaphycus Alvarezii. Algal Res 2022, 67, 102866. https://doi.org/10.1016/J.ALGAL.2022.102866. | spa |
dc.relation.references | (112) Desai, P. S.; Kumar, M. S. Marine Antioxidants and Their Role in Improving Skin Health. Marine Antioxidants: Preparations, Syntheses, and Applications 2023, 327–339. https://doi.org/10.1016/B978-0-323-95086-2.00014-X. | spa |
dc.relation.references | (113) Helbling, E. W.; Barbieri, E. S.; Sinha, R. P.; Villafañe, V. E.; Häder, D. P. Dynamics of Potentially Protective Compounds in Rhodophyta Species from Patagonia (Argentina) Exposed to Solar Radiation. J Photochem Photobiol B 2004, 75 (1–2), 63–71. https://doi.org/10.1016/J.JPHOTOBIOL.2004.05.006. | spa |
dc.relation.references | (114) Hifney, A. F.; Fawzy, M. A.; Abdel-Gawad, K. M.; Gomaa, M. Upgrading the Antioxidant Properties of Fucoidan and Alginate from Cystoseira Trinodis by Fungal Fermentation or Enzymatic Pretreatment of the Seaweed Biomass. Food Chem 2018, 269, 387–395. https://doi.org/10.1016/J.FOODCHEM.2018.07.026. | spa |
dc.relation.references | (115) Ruiz-Medina, M. A.; Sansón, M.; González-Rodríguez, Á. M. Changes in Antioxidant Activity of Fresh Marine Macroalgae from the Canary Islands during Air-Drying Process. Algal Res 2022, 66, 102798. https://doi.org/10.1016/J.ALGAL.2022.102798. | spa |
dc.relation.references | (116) de Ramos, B.; da Costa, G. B.; Ramlov, F.; Maraschin, M.; Horta, P. A.; Figueroa, F. L.; Korbee, N.; Bonomi-Barufi, J. Ecophysiological Implications of UV Radiation in the Interspecific Interaction of Pyropia Acanthophora and Grateloupia Turuturu (Rhodophyta). Mar Environ Res 2019, 144, 36–45. https://doi.org/10.1016/J.MARENVRES.2018.11.014. | spa |
dc.relation.references | (117) P. Frankmolle, W.; Fenical, W. Isolation of the Chlorophyll-Related Pigment Isochlorin-E4 from the Tropical Red Alga Dasya Pedicellata. Phytochemistry 1994, 36 (2), 361–364. https://doi.org/10.1016/S0031-9422(00)97076-6. | spa |
dc.relation.references | (118) Ifrath Jahan, N. P.; Job, J. T.; Alfarhan, A.; Rajagopal, R.; Kavungal, V.; Oprea, E.; Narayanankutty, A. Elemental Composition, Antioxidant, Anti-Inflammatory and Anti-Genotoxic Properties of Nitophyllum Punctatum. J King Saud Univ Sci 2024, 36 (8), 103311. https://doi.org/10.1016/J.JKSUS.2024.103311. | spa |
dc.relation.references | (119) Moreira, B. R.; Vega, J.; Sisa, A. D. A.; Bernal, J. S. B.; Abdala-Díaz, R. T.; Maraschin, M.; Figueroa, F. L.; Bonomi-Barufi, J. Antioxidant and Anti-Photoaging Properties of Red Marine Macroalgae: Screening of Bioactive Molecules for Cosmeceutical Applications. Algal Res 2022, 68, 102893. https://doi.org/10.1016/J.ALGAL.2022.102893. | spa |
dc.relation.references | (120) Moreira, B. R.; Vega, J.; Sisa, A. D. A.; Bernal, J. S. B.; Abdala-Díaz, R. T.; Maraschin, M.; Figueroa, F. L.; Bonomi-Barufi, J. Antioxidant and Anti-Photoaging Properties of Red Marine Macroalgae: Screening of Bioactive Molecules for Cosmeceutical Applications. Algal Res 2022, 68, 102893. https://doi.org/10.1016/J.ALGAL.2022.102893. | spa |
dc.relation.references | (121) Betancor, S.; Domínguez, B.; Tuya, F.; Figueroa, F. L.; Haroun, R. Photosynthetic Performance and Photoprotection of Cystoseira Humilis (Phaeophyceae) and Digenea Simplex (Rhodophyceae) in an Intertidal Rock Pool. Aquat Bot 2015, 121, 16–25. https://doi.org/10.1016/J.AQUABOT.2014.10.008. | spa |
dc.relation.references | (122) Urrea-Victoria, V.; Geraldes, V.; Pinto, E.; Castellanos, L. Photosynthetic Pigments and Photoprotective Metabolites of Colombian Pacific Marine Macroalgae in Response to Contrasting Ultraviolet-Index Periods. J Exp Mar Biol Ecol 2023, 564, 151908. https://doi.org/10.1016/J.JEMBE.2023.151908. | spa |
dc.relation.references | (123) Alves, M. F. de A.; Barreto, F. K. de A.; Vasconcelos, M. A. de; Nascimento Neto, L. G. do; Carneiro, R. F.; Silva, L. T. da; Nagano, C. S.; Sampaio, A. H.; Teixeira, E. H. Antihyperglycemic and Antioxidant Activities of a Lectin from the Marine Red Algae, Bryothamnion Seaforthii, in Rats with Streptozotocin-Induced Diabetes. Int J Biol Macromol 2020, 158, 773–780. https://doi.org/10.1016/J.IJBIOMAC.2020.04.238. | spa |
dc.relation.references | (124) Mori, S.; Sugahara, K.; Maeda, M.; Nomoto, K.; Iwashita, T.; Yamagaki, T. Insecticidal Activity Guided Isolation of Palytoxin from a Red Alga, Chondria Armata. Tetrahedron Lett 2016, 57 (32), 3612–3617. https://doi.org/10.1016/J.TETLET.2016.06.108. | spa |
dc.relation.references | (125) Palermo, J. A.; Flower, P. B.; Seldes, A. M. Chondriamides A and B, New Indolic Metabolites from the Red Alga Chondria Sp. Tetrahedron Lett 1992, 33 (22), 3097–3100. https://doi.org/10.1016/S0040-4039(00)79823-6. | spa |
dc.relation.references | (126) Betancor, S.; Domínguez, B.; Tuya, F.; Figueroa, F. L.; Haroun, R. Photosynthetic Performance and Photoprotection of Cystoseira Humilis (Phaeophyceae) and Digenea Simplex (Rhodophyceae) in an Intertidal Rock Pool. Aquat Bot 2015, 121, 16–25. https://doi.org/10.1016/J.AQUABOT.2014.10.008. | spa |
dc.relation.references | (127) Fricke, A.; Teichberg, M.; Nugues, M. M.; Beilfuss, S.; Bischof, K. Effects of Depth and Ultraviolet Radiation on Coral Reef Turf Algae. J Exp Mar Biol Ecol 2014, 461, 73–84. https://doi.org/10.1016/J.JEMBE.2014.07.017. | spa |
dc.relation.references | (128) Wang, Z. C.; Wang, Y.; Huang, L. Y.; Liao, X. J.; Jiang, Z. H.; Xu, S. H.; Zhao, B. X. Two New Halogenated Metabolites from the Red Alga Laurencia Sp. J Asian Nat Prod Res 2023, 25 (1), 61–67. https://doi.org/10.1080/10286020.2022.2056029. | spa |
dc.relation.references | (129) Zhang, J.; Shi, L. Y.; Ding, L. P.; Liang, H.; Tu, P. F.; Zhang, Q. Y. Antioxidant Terpenoids from the Red Alga Laurencia Tristicha. Nat Prod Res 2021, 35 (23), 5048–5054. https://doi.org/10.1080/14786419.2020.1774762. | spa |
dc.relation.references | (130) Goksen, G. Elucidation and Quantification Health-Promoting Phenolic Compounds, Antioxidant Properties and Sugar Levels of Ultrasound Assisted Extraction, Aroma Compositions and Amino Acids Profiles of Macroalgae, Laurencia Papillosa. Ultrason Sonochem 2023, 98, 106527. https://doi.org/10.1016/J.ULTSONCH.2023.106527. | spa |
dc.relation.references | (131) Box, A.; Sureda, A.; Terrados, J.; Pons, A.; Deudero, S. Antioxidant Response and Caulerpenyne Production of the Alien Caulerpa Taxifolia (Vahl) Epiphytized by the Invasive Algae Lophocladia Lallemandii (Montagne). J Exp Mar Biol Ecol 2008, 364 (1), 24–28. https://doi.org/10.1016/J.JEMBE.2008.06.029. | spa |
dc.relation.references | (132) Duan, X. J.; Zhang, W. W.; Li, X. M.; Wang, B. G. Evaluation of Antioxidant Property of Extract and Fractions Obtained from a Red Alga, Polysiphonia Urceolata. Food Chem 2006, 95 (1), 37–43. https://doi.org/10.1016/J.FOODCHEM.2004.12.015. | spa |
dc.relation.references | (133) Lalegerie, F.; Lajili, S.; Bedoux, G.; Taupin, L.; Stiger-Pouvreau, V.; Connan, S. Photo-Protective Compounds in Red Macroalgae from Brittany: Considerable Diversity in Mycosporine-like Amino Acids (MAAs). Mar Environ Res 2019, 147, 37–48. https://doi.org/10.1016/J.MARENVRES.2019.04.001. | spa |
dc.relation.references | (134) Valarmathi, N.; Ameen, F.; Almansob, A.; Kumar, P.; Arunprakash, S.; Govarthanan, M. Utilization of Marine Seaweed Spyridia Filamentosa for Silver Nanoparticles Synthesis and Its Clinical Applications. Mater Lett 2020, 263, 127244. https://doi.org/10.1016/J.MATLET.2019.127244. | spa |
dc.relation.references | (135) Yu, G.; Zhang, Q.; Wang, Y.; Yang, Q.; Yu, H.; Li, H.; Chen, J.; Fu, L. Sulfated Polysaccharides from Red Seaweed Gelidium Amansii: Structural Characteristics, Anti-Oxidant and Anti-Glycation Properties, and Development of Bioactive Films. Food Hydrocoll 2021, 119, 106820. https://doi.org/10.1016/J.FOODHYD.2021.106820. | spa |
dc.relation.references | (136) Arcos Limiñana, V.; Benoist, T.; Anton Sempere, S.; Maestre Pérez, S. E.; Prats Moya, M. S. Chemical Composition of Sustainable Mediterranean Macroalgae Obtained from Land-Based and Sea-Based Aquaculture Systems. Food Biosci 2023, 54, 102902. https://doi.org/10.1016/J.FBIO.2023.102902. | spa |
dc.relation.references | (137) Honey, O.; Nihad, S. A. I.; Rahman, M. A.; Rahman, M. M.; Islam, M.; Chowdhury, M. Z. R. Exploring the Antioxidant and Antimicrobial Potential of Three Common Seaweeds of Saint Martin’s Island of Bangladesh. Heliyon 2024, 10 (4). https://doi.org/10.1016/j.heliyon.2024.e26096. | spa |
dc.relation.references | (138) Schmidt, É. C.; Pereira, B.; dos Santos, R. W.; Gouveia, C.; Costa, G. B.; Faria, G. S. M.; Scherner, F.; Horta, P. A.; Martins, R. de P.; Latini, A.; Ramlov, F.; Maraschin, M.; Bouzon, Z. L. Responses of the Macroalgae Hypnea Musciformis after in Vitro Exposure to UV-B. Aquat Bot 2012, 100, 8–17. https://doi.org/10.1016/J.AQUABOT.2012.03.004. | spa |
dc.relation.references | (139) Afrin, F.; Ahsan, T.; Mondal, M. N.; Rasul, M. G.; Afrin, M.; Silva, A. A.; Yuan, C.; Shah, A. K. M. A. Evaluation of Antioxidant and Antibacterial Activities of Some Selected Seaweeds from Saint Martin’s Island of Bangladesh. Food Chemistry Advances 2023, 3, 100393. https://doi.org/10.1016/J.FOCHA.2023.100393. | spa |
dc.relation.references | (140) Pliego-Cortés, H.; Bedoux, G.; Boulho, R.; Taupin, L.; Freile-Pelegrín, Y.; Bourgougnon, N.; Robledo, D. Stress Tolerance and Photoadaptation to Solar Radiation in Rhodymenia Pseudopalmata (Rhodophyta) through Mycosporine-like Amino Acids, Phenolic Compounds, and Pigments in an Integrated Multi-Trophic Aquaculture System. Algal Res 2019, 41, 101542. https://doi.org/10.1016/J.ALGAL.2019.101542. | spa |
dc.relation.references | (141) Moreira, B. R.; Vega, J.; Sisa, A. D. A.; Bernal, J. S. B.; Abdala-Díaz, R. T.; Maraschin, M.; Figueroa, F. L.; Bonomi-Barufi, J. Antioxidant and Anti-Photoaging Properties of Red Marine Macroalgae: Screening of Bioactive Molecules for Cosmeceutical Applications. Algal Res 2022, 68, 102893. https://doi.org/10.1016/J.ALGAL.2022.102893. | spa |
dc.relation.references | (142) Lalegerie, F.; Lajili, S.; Bedoux, G.; Taupin, L.; Stiger-Pouvreau, V.; Connan, S. Photo-Protective Compounds in Red Macroalgae from Brittany: Considerable Diversity in Mycosporine-like Amino Acids (MAAs). Mar Environ Res 2019, 147, 37–48. https://doi.org/10.1016/J.MARENVRES.2019.04.001. | spa |
dc.relation.references | (143) CosIng - Cosmetics - GROWTH - European Commission. https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.results (accessed 2022-06-27). | spa |
dc.relation.references | (144) Pereira, L.; Gheda, S. F.; Ribeiro-Claro, P. J. A. Analysis by Vibrational Spectroscopy of Seaweed Polysaccharides with Potential Use in Food, Pharmaceutical, and Cosmetic Industries. International Journal of Carbohydrate Chemistry 2013, 2013, 1–7. https://doi.org/10.1155/2013/537202. | spa |
dc.relation.references | (145) (GMC) Grupo Mercado Común, M. REGLAMENTO TÉCNICO MERCOSUR SOBRE PROTECTORES SOLARES EN COSMÉTICOS; 2011. https://normas.mercosur.int/public/normativas/2469 (accessed 2024-06-21). | spa |
dc.relation.references | (146) Ministerio De Salud. Resolución Numero 3132; 1998. | spa |
dc.relation.references | (147) U.S. Food and Drug Administration. Final Administrative Order (OTC000006) Over-the-Counter Monograph M020: Sunscreen Drug Products for Over-the-Counter Human Use. 2021. | spa |
dc.relation.references | (148) Food and Drug Administration, H. Labeling and Effectiveness Testing; Sunscreen Drug Products for over-the-Counter Human Use; Delay of Compliance Dates. Final Rule. Fed Regist 2012, 77 (92), 27591–27593. | spa |
dc.relation.references | (148) Food and Drug Administration, H. Labeling and Effectiveness Testing; Sunscreen Drug Products for over-the-Counter Human Use; Delay of Compliance Dates. Final Rule. Fed Regist 2012, 77 (92), 27591–27593. | spa |
dc.relation.references | (149) European Union. Commission Recommendation of 22 September 2006 on the Efficacy of Sunscreen Products and the Claims Made Relating Thereto (Notified under Document Number; 2006. | spa |
dc.relation.references | (150) ISO 24443:2021(en), Cosmetics — Determination of sunscreen UVA photoprotection in vitro. https://www.iso.org/obp/ui/en/#iso:std:iso:24443:ed-2:v2:en (accessed 2024-06-21). | spa |
dc.relation.references | (151) COSMETICS EUROPE. IMPORTANT USAGE AND LABELLING INSTRUCTIONS FOR SUN PROTECTION PRODUCTS IMPORTANT USAGE AND LABELLING INSTRUCTIONS FOR SUN PROTECTION PRODUCTS. 2009. | spa |
dc.relation.references | (152) Esteban, P.; Castro, A. ANÁLISIS REGULATORIO DEL ETIQUETADO DE PROTECTORES SOLARES COMERCIALIZADOS EN PERÚ Y PROPUESTA DE UN REGLAMENTO TÉCNICO. UNIVERSIDAD PERUANA CAYETANO HEREDIA 2021. | spa |
dc.relation.references | (153) Frank Padera. Sunscreen Testing According to COLIPA 2011/FDA Final Rule 2011 Using UV/Vis LAMBDA Spectrophotometers. 2015. | spa |
dc.relation.references | (154) Mansur, J.; M.N.R., B.; M.C.A., M. Determinacao Do Fator de Protecao Solar Por Espectrofotometria. An Bras Dermatol 1986. | spa |
dc.relation.references | (155) José L. Rojas; Mauricio Díaz-Santos; Norma A. Valencia-Islas. Metabolites with Antioxidant and Photo-Protective Properties from Usnea Roccellina Motyka, a Lichen from Colombian Andes. Pharmaceutical and Biosciences Journal 2015, 18–26. https://doi.org/10.20510/UKJPB/3/I4/89454. | spa |
dc.relation.references | (156) Springsteen, A.; Yurek, R.; Frazier, M.; Carr, K. F. In Vitro Measurement of Sun Protection Factor of Sunscreens by Diffuse Transmittance. Anal Chim Acta 1999, 380 (2–3), 155–164. https://doi.org/10.1016/S0003-2670(98)00577-7. | spa |
dc.relation.references | (157) ESCOBAR M, L.; RIVERA, A.; ARISTIZÁBAL G, F. A. ESTUDIO COMPARATIVO DE LOS MÉTODOS DE RESAZURINA Y MTT EN ESTUDIOS DE CITOTOXICIDAD EN LÍNEAS CELULARES TUMORALES HUMANAS. Vitae 2010, 17 (1), 67–74. | spa |
dc.relation.references | (158) Ramon, adriana noemi. Determinación de La Capacidad Antioxidante de Flavonoides En Frutas y Verduras Frescas y Tratadas Térmicamente. Arch Latinoam Nutr 2004. | spa |
dc.relation.references | (159) Kanimozhi, G.; Prasad, N. R. Anticancer Effect of Caffeic Acid on Human Cervical Cancer Cells. Coffee in Health and Disease Prevention 2015, 655–661. https://doi.org/10.1016/B978-0-12-409517-5.00073-5. | spa |
dc.relation.references | (160) Hajam, Y. A.; Rani, R.; Ganie, S. Y.; Sheikh, T. A.; Javaid, D.; Qadri, S. S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M. F.; Harakeh, S.; Hussain, A.; Haque, S.; Reshi, M. S. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11 (3). https://doi.org/10.3390/CELLS11030552. | spa |
dc.relation.references | (161) Saucedo-de la Llata, E.; López-Reyes, J.; Moraga-Sánchez, M.; Romeu-Sarrió, A.; Carmona-Ruiz, I.; Saucedo-de la Llata, E.; López-Reyes, J.; Moraga-Sánchez, M.; Romeu-Sarrió, A.; Carmona-Ruiz, I. Fragmentación Del ADN Espermático: Situación Actual. Ginecol Obstet Mex 2017, 85 (3), 164–189. | spa |
dc.relation.references | (162) Alonso, Á. M.; Domínguez, C.; Guillén, D. A.; Barroso, C. G. Determination of Antioxidant Power of Red and White Wines by a New Electrochemical Method and Its Correlation with Polyphenolic Content. J Agric Food Chem 2002, 50 (11), 3112–3115. https://doi.org/10.1021/JF0116101. | spa |
dc.relation.references | (163) Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Science and Technology 1995, 28 (1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5. | spa |
dc.relation.references | (164) Lhami, I. ˙; Gu¨gu¨lç I ˙ N, G. Measurement of Antioxidant Ability of Melatonin and Serotonin by the DMPD and CUPRAC Methods as Trolox Equivalent. J Enzyme Inhib Med Chem 2008, 23 (6), 871–876. https://doi.org/10.1080/14756360701626223. | spa |
dc.relation.references | (165) Benzie, I. F. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal Biochem 1996, 239 (1), 70–76. https://doi.org/10.1006/ABIO.1996.0292. | spa |
dc.relation.references | (166) Akar, B.; Akar, Z.; Sahin, B. Identification of Antioxidant Activity by Different Methods of a Freshwater Alga Microspora Sp. Collected From a High Mountain Lake. Hittite Journal of Science and Engineering 2019, 6 (1), 25–29. https://doi.org/10.17350/HJSE19030000129. | spa |
dc.relation.references | (167) Cao, G.; Prior, R. L. Measurement of Oxygen Radical Absorbance Capacity in Biological Samples. Methods Enzymol 1999, 299, 50–62. https://doi.org/10.1016/S0076-6879(99)99008-0. | spa |
dc.relation.references | (168) Ou, B.; Hampsch-Woodill, M.; Prior, R. L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J Agric Food Chem 2001, 49 (10), 4619–4626. https://doi.org/10.1021/JF010586O. | spa |
dc.relation.references | (169) Wayner, D. D. M.; Burton, G. W.; Ingold, K. U.; Locke, S. Quantitative Measurement of the Total, Peroxyl Radical-Trapping Antioxidant Capability of Human Blood Plasma by Controlled Peroxidation. The Important Contribution Made by Plasma Proteins. FEBS Lett 1985, 187 (1), 33–37. https://doi.org/10.1016/0014-5793(85)81208-4. | spa |
dc.relation.references | (170) Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total Antioxidant Capacity as a Tool to Assess Redox Status: Critical View and Experimental Data. Free Radic Biol Med 2000, 29 (11), 1106–1114. https://doi.org/10.1016/S0891-5849(00)00394-4. | spa |
dc.relation.references | (171) Sakanaka, S.; Tachibana, Y.; Ishihara, N.; Juneja, L. R. Antioxidant Activity of Egg-Yolk Protein Hydrolysates in a Linoleic Acid Oxidation System. Food Chem 2004, 86 (1), 99–103. https://doi.org/10.1016/J.FOODCHEM.2003.08.014. | spa |
dc.relation.references | (172) Papanikos, A.; Eklund, J.; Jackson, W. R.; Kenche, V. B.; Campi, E. M.; Robertson, A. D.; Jarrott, B.; Beart, P. M.; Munro, F. E.; Callaway, J. K. Cyclic Voltammetry as an Indicator of Antioxidant Activity. Aust J Chem 2002, 55 (3), 205–212. https://doi.org/10.1071/CH01193. | spa |
dc.relation.references | (173) Demirel, Z.; Yilmaz-Koz, F. F.; Karabay-Yavasoglu, U. N.; Ozdemir, G.; Sukatar, A. Antimicrobial and Antioxidant Activity of Brown Algae from the Aegean Sea. Journal of the Serbian Chemical Society 2009, 74 (6), 619–628. https://doi.org/10.2298/JSC0906619D. | spa |
dc.relation.references | (174) Echavarría, B. Z.; Franco, A. S.; Martínez, A. M. ANTIOXIDANT ACTIVITY EVALUATION AND PHENOLIC COMPOUND CONTENT DETERMINATION OF SEAWEEDS EXTRACTS FROM THE COLOMBIAN CARIBBEAN. 2009. | spa |
dc.relation.references | (175) Fernández-Pachón, M.; 2006, undefined. Revisión de Los Métodos de Evaluación de La Actividad Antioxidante in Vitro Del Vino y Valoración de Sus Efectos in Vivo. ve.scielo.orgM Fernández-Pachón, D Villaño, AM Troncoso, M García-ParrillaArchivos latinoamericanos de nutrición, 2006•ve.scielo.org. | spa |
dc.relation.references | (176) Abril Poveda, S. P.; Ramos Rodríguez, F. A. Compuestos Con Posible Actividad Fotoprotectora a Partir de Extractos de Macroalgas Del Caribe Colombiano; 2023. | spa |
dc.relation.references | (177) Diane Scullion Littler; Mark Masterton Littler. Caribbean Reef Plants; 2000. | spa |
dc.relation.references | (178) Sepúlveda Sánchez, L. Y.; Castellanos Hernández, L. Búsqueda de Compuestos Con Posible Actividad Inhibitoria de Enzimas de Interés Cosmético a Partir de Algas Del Caribe Colombiano. 2022. | spa |
dc.relation.references | (179) Plazas, E. A.; Avila, M. C.; Delgado, W. A.; Patino, O. J.; Cuca, L. E. In Vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Research Journal of Medicinal Plants 2018, 12 (1), 9–18. https://doi.org/10.3923/RJMP.2018.9.18. | spa |
dc.relation.references | (180) Sayre, R. M.; Agin, P. P.; LeVee, G. J.; Marlowe, E. A COMPARISON OF IN VIVO AND IN VITRO TESTING OF SUNSCREENING FORMULAS. Photochem Photobiol 1979, 29 (3), 559–566. https://doi.org/10.1111/J.1751-1097.1979.TB07090.X. | spa |
dc.relation.references | (181) DIFFEY, B. L. A Method for Broad Spectrum Classification of Sunscreens. Int J Cosmet Sci 1994, 16 (2), 47–52. https://doi.org/10.1111/J.1467-2494.1994.TB00082.X. | spa |
dc.relation.references | (182) Velasco-Charpentier, C.; Pizarro-Mora, F.; Navarro, N. P. Variación En La Concentración de Aminoácidos Tipo Micosporinas En Macroalgas de Las Regiones de Valparaíso y Magallanes, Chile. Rev Biol Mar Oceanogr 2016, 51 (3), 703–708. https://doi.org/10.4067/S0718-19572016000300023. | spa |
dc.relation.references | (183) Urrea-Victoria, V.; Geraldes, V.; Pinto, E.; Castellanos, L. Photosynthetic Pigments and Photoprotective Metabolites of Colombian Pacific Marine Macroalgae in Response to Contrasting Ultraviolet-Index Periods. J Exp Mar Biol Ecol 2023, 564, 151908. https://doi.org/10.1016/J.JEMBE.2023.151908. | spa |
dc.relation.references | (184) Posit | The Open-Source Data Science Company. https://posit.co/ (accessed 2024-03-02). | spa |
dc.relation.references | (185) Software de hojas de cálculo gratuito online: Excel | Microsoft 365. https://www.microsoft.com (accessed 2024-03-02). | spa |
dc.relation.references | (186) MATLAB. https://www.mathworks.com/products/matlab.html (accessed 2024-03-02). | spa |
dc.relation.references | (187) de la Roche Zogby, F.; Ramos Rodriguez, F. A.; Puyana Hegedus, M. Algas Pardas de La Isla de San Andrés, Caribe Colombiano: Caracterización Metabolómica. J Am Chem Soc 2022, 95 (12), 4049–4050. https://doi.org/10.1021/JA00793A037. | spa |
dc.relation.references | (188) Hermund, D. B.; Torsteinsen, H.; Vega, J.; Figueroa, F. L.; Jacobsen, C. Screening for New Cosmeceuticals from Brown Algae Fucus Vesiculosus with Antioxidant and Photo-Protecting Properties. Mar Drugs 2022, 20 (11), 687. https://doi.org/10.3390/MD20110687/S1. | spa |
dc.relation.references | (189) Jiménez-Nevárez, Y. B.; Montes-Avila, J.; Angulo-Escalante, M. A.; Nolasco-Quintana, N. Y.; González Christen, J.; Hurtado-Díaz, I.; Quintana-Obregón, E. A.; Heredia, J. B.; Valdez-Torres, J. B.; Alvarez, L. Bioactivity of Fractions and Pure Compounds from Jatropha Cordata (Ortega) Müll. Arg. Bark Extracts. Plants 2023, Vol. 12, Page 3780 2023, 12 (21), 3780. https://doi.org/10.3390/PLANTS12213780. | spa |
dc.relation.references | (190) Ersalina, E. B.; Abdillah, A. A.; Sulmartiwi, L. Potential of Caulerpa Racemosa Extracts as Sunscreen Creams. IOP Conf Ser Earth Environ Sci 2020, 441 (1), 012007. https://doi.org/10.1088/1755-1315/441/1/012007. | spa |
dc.relation.references | (191) Tosato, M. G.; Orallo, D. E.; Ali, S. M.; Churio, M. S.; Martin, A. A.; Dicelio, L. Confocal Raman Spectroscopy: In Vivo Biochemical Changes in the Human Skin by Topical Formulations under UV Radiation. J Photochem Photobiol B 2015, 153, 51–58. https://doi.org/10.1016/J.JPHOTOBIOL.2015.08.030. | spa |
dc.relation.references | (192) Nuñez Arango, L. M. Antioxidantes y/o Fotoprotectores de Los Líquenes Del Páramo de Sumapaz Thamnolia Vermicularis y Cladonia Cf. Didyma y Estudio de Su Posible Producción Biotecnológica. 2022. | spa |
dc.relation.references | (193) Jofre, J.; Celis-Plá, P. S. M.; Figueroa, F. L.; Navarro, N. P. Seasonal Variation of Mycosporine-like Amino Acids in Three Subantarctic Red Seaweeds. Mar Drugs 2020, 18 (2). https://doi.org/10.3390/md18020075. | spa |
dc.relation.references | (194) Moh, S. H.; Suh, S.-S.; Cho, M. J.; Song, M. Y.; Hwang, J.; Park, M.; Lee, T.-K. Evaluation of Sun Protection Factor (SPF) and Protection Factor of UVA (PFA) of the Sunscreen Containing Microalgal Extracts and MAAs. Journal of the Korea Academia-Industrial cooperation Society 2014, 15 (5), 3312–3318. https://doi.org/10.5762/KAIS.2014.15.5.3312. | spa |
dc.relation.references | (195) Korbee, N.; Figueroa, F. L.; Aguilera, J. Acumulación de Aminoácidos Tipo Micosporina (MAAs): Biosíntesis, Fotocontrol y Funciones Ecofisiológicas. Revista chilena de historia natural 2006, 79 (1), 119–132. https://doi.org/10.4067/S0716-078X2006000100010. | spa |
dc.relation.references | (196) Geraldes, V.; Pinto, E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals 2021, Vol. 14, Page 63 2021, 14 (1), 63. https://doi.org/10.3390/PH14010063. | spa |
dc.relation.references | (197) Hurd, C. L.; Harrison, P. J.; Bischof, K.; Lobban, C. S. Seaweed Ecology and Physiology, Second Edition. Seaweed Ecology and Physiology, Second Edition 2014, 1–551. https://doi.org/10.1017/CBO9781139192637. | spa |
dc.relation.references | (198) Taxonomy Browser :: AlgaeBase. https://www.algaebase.org/browse/taxonomy/#1 (accessed 2024-09-30). | spa |
dc.relation.references | (199) Steneck, R. S.; Graham, M. H.; Bourque, B. J.; Corbett, D.; Erlandson, J. M.; Estes, J. A.; Tegner, M. J. Kelp Forest Ecosystems: Biodiversity, Stability, Resilience and Future. Environ Conserv 2002, 29 (4), 436–459. https://doi.org/10.1017/S0376892902000322. | spa |
dc.relation.references | (200) Diaz-Pulido, G.; Díaz-Ruíz, M. Diversity of Benthic Marine Algae of the Colombian Atlantic. Biota Colomb 2003, 4 (2), 203–246. | spa |
dc.relation.references | (201) Garzón Urbina, P. A. Caracterización Estructural de Las Praderas Monoespecíficas de Thalassia Testudinum (Banks Ex Ko?Nig, 1805) En El Departamento de La Guajira, Caribe Colombiano, 2006. https://expeditiorepositorio.utadeo.edu.co/handle/20.500.12010/1164 (accessed 2024-10-02). | spa |
dc.relation.references | (202) Vides, M.; Alonso, A.; Castro, E.; Bolaños, N. Biodiversidad Del Mar de Los Siete Colores. Serie de Publicaciones Generales del INVEMAR No. 84 2016, 228. | spa |
dc.relation.references | (203) Avila-Peltroche, J.; Padilla-Vallejos, J. The Seaweed Resources of Peru. Botanica Marina 2020, 63 (4), 381–394. https://doi.org/10.1515/BOT-2020-0026/DOWNLOADASSET/SUPPL/J_BOT-2020-0026_SUPPL.DOCX. | spa |
dc.relation.references | (204) Akhter, M.; Ullah, M. R.; Khan, A. B. S.; Hasan, M. M.; Yasmin, F.; Bosu, A.; Haque, M. A.; Islam, M. M.; Islam, M. A.; Mahmud, Y. Assessment of Different Solvents Effect on Bioactive Compounds, Antioxidant Activity and Nutritional Formation of Red Seaweed, Gracilariopsis Longissima, from Bay of Bengal, Bangladesh. Discover Food 2024, 4 (1), 1–12. https://doi.org/10.1007/S44187-023-00069-1/TABLES/6. | spa |
dc.relation.references | (205) Déborah, O. :; Alves, Y.; Santos, C. Dos; Paulo, S. Análise de Pigmentos Fotossintetizantes e Substâncias Fenólicas Em Gracilariopsis Tenuifrons (C. J. Bird & E. C. Oliveira) Fredericq & Hommersand Em Diferentes Intensidades de Luz. 2013. https://doi.org/10.11606/D.41.2012.TDE-19122012-214148. | spa |
dc.relation.references | (206) Serra, D. R.; Floh, E. I. S.; Chow, F. Metabolic Changes of the Red Marine Alga Gracilariopsis Tenuifrons Elicited by High PAR in Laboratory. Revista Brasileira de Botanica 2024, 47 (3), 585–596. https://doi.org/10.1007/S40415-024-01015-W/METRICS. | spa |
dc.relation.references | (207) Torres, P. B.; Chow, F.; Ferreira, M. J. P.; dos Santos, D. Y. A. C. Mycosporine-like Amino Acids from Gracilariopsis Tenuifrons (Gracilariales, Rhodophyta) and Its Variation under High Light. J Appl Phycol 2016, 28 (3), 2035–2040. https://doi.org/10.1007/S10811-015-0708-0/METRICS. | spa |
dc.relation.references | (208) Serra, D. R.; Floh, E. I. S.; Chow, F. Metabolic Changes of the Red Marine Alga Gracilariopsis Tenuifrons Elicited by High PAR in Laboratory. Revista Brasileira de Botanica 2024, 47 (3), 585–596. https://doi.org/10.1007/S40415-024-01015-W/FIGURES/4. | spa |
dc.relation.references | (209) Cao, M.; Zhang, J.; Li, P.; Wang, J.; Mi, P.; Sui, Z. Review on Recent Advances of Gracilariopsis Lemaneiformis (Rhodophyta). Algal Res 2024, 79, 103453. https://doi.org/10.1016/J.ALGAL.2024.103453. | spa |
dc.relation.references | (210) Usov, A. I. Structural Analysis of Red Seaweed Galactans of Agar and Carrageenan Groups. Food Hydrocoll 1998, 12 (3), 301–308. https://doi.org/10.1016/S0268-005X(98)00018-6. | spa |
dc.relation.references | (211) Zeng, L. M.; Wang, C. J.; Su, J. Y.; Li, D.; Owen, N. L.; Lu, Y.; Lu, N.; Zheng, Q. T. Flavonoids from the Red Alga Acanthophora Spicifera. Chin J Chem 2001, 19 (11), 1097–1100. https://doi.org/10.1002/CJOC.20010191116. | spa |
dc.relation.references | (212) El Shoubaky, G. A.; Abdel-Daim, M. M.; Mansour, M. H.; Salem, E. A. Isolation and Identification of a Flavone Apigenin from Marine Red Alga Acanthophora Spicifera with Antinociceptive and Anti-Inflammatory Activities. J Exp Neurosci 2016, 10 (1), 21–29. https://doi.org/10.4137/JEN.S25096/ASSET/IMAGES/LARGE/10.4137_JEN.S25096-FIG5.JPEG. | spa |
dc.relation.references | (213) D’armas, H.; Jaramillo-Jaramillo, C.; D’armas, M.; Ordaz-González, G. J. Fatty Acid Profile, Total Phenolic Content and Antioxidant Capacity of Seaweeds in Salinas Bay, Ecuador. Rev Biol Mar Oceanogr 2023, 58 (2), 128–136. https://doi.org/10.22370/RBMO.2023.58.2.4238. | spa |
dc.relation.references | (214) Caio, C. R. N.; Izabel, C. N. de P. P.; Claudio, C. C.-S.; Paulo, R. S. S.; Roberto, C. V.; Helena, de S. P.; Valéria, L. T. Anti-HIV-1 Activity in Human Primary Cells and Anti-HIV-1 RT Inhibitory Activity of Extracts from the Red Seaweed Acanthophora Spicifera. Journal of Medicinal Plants Research 2016, 10 (35), 621–625. https://doi.org/10.5897/JMPR2016.6208. | spa |
dc.relation.references | (215) Sali, V. K.; Malarvizhi, R.; Manikandamathavan, V. M.; Vasanthi, H. R. Isolation and Evaluation of Phytoconstituents from Red Alga Acanthophora Spicifera as Potential Apoptotic Agents towards A549 and HeLa Cancer Cells Lines. Algal Res 2018, 32, 172–181. https://doi.org/10.1016/J.ALGAL.2018.02.031. | spa |
dc.relation.references | (216) Samrit, T.; Osodprasit, S.; Chaiwichien, A.; Savedvanich, G.; Changklungmoa, N.; Kueakhai, P.; Athipornchai, A.; Tamtin, M.; Sobhon, P.; Jaikua, W. The Scavenging Activity and Safety Effect of Red Marine Algae Acanthophora Spicifera Ethanol Extract. Trends in Sciences 2023, 21 (1), 7287. https://doi.org/10.48048/tis.2024.7287. | spa |
dc.relation.references | (217) Pereira, D. T.; Pereira, B.; Fonseca, A.; Ramlov, F.; Maraschin, M.; Álvarez-Gómez, F.; Figueroa, F. L.; Schmidt, É. C.; Bouzon, Z. L.; Simioni, C. Effects of Ultraviolet Radiation (UV-A+UV-B) on the Antioxidant Metabolism of the Red Macroalga Species Acanthophora Spicifera (Rhodophyta, Ceramiales) From Different Salinity and Nutrient Conditions. Photochem Photobiol 2019, 95 (4), 999–1009. https://doi.org/10.1111/PHP.13094. | spa |
dc.relation.references | (218) Alga roja del Caribe (Acanthophora spicifera) · NaturaLista Colombia. https://colombia.inaturalist.org/taxa/199320-Acanthophora-spicifera (accessed 2024-10-17). | spa |
dc.relation.references | (219) Rodríguez, W.; Osorno, O.; Ramos, F. A.; Duque, C.; Zea, S. New Fatty Acids from Colombian Caribbean Sea Sponges. Biochem Syst Ecol 2010, 38 (4), 774–783. https://doi.org/10.1016/J.BSE.2010.07.011. | spa |
dc.relation.references | (220) Najdanova, M.; Siehl, H. U.; Berger, S. A Comparison of the 1H‐, 13C‐, and 15N‐NMR Data of Chlorophyll a and Chlorophyll b Guided by Quantum Chemical Calculation. J Phys Org Chem 2018, 31 (8), 3–12. https://doi.org/10.1002/POC.3802. | spa |
dc.relation.references | (221) Broberg, A.; Kenne, L.; Pedersén, M. Presence of Microthecin in the Red Alga Gracilariopsis Lemaneiformis and Its Formation from 1,5-Anhydro-d-Fructose. Phytochemistry 1996, 41 (1), 151–154. https://doi.org/10.1016/0031-9422(95)00587-0. | spa |
dc.relation.references | (222) Baute, R.; Baute, M. A.; Deffieux, G. Proposed Pathway to the Pyrones Cortalcerone and Microthecin in Fungi. Phytochemistry 1987, 26 (5), 1395–1397. https://doi.org/10.1016/S0031-9422(00)81820-8. | spa |
dc.relation.references | (223) Baute, M. A.; Deffieux, G.; Baute, R. Bioconversion of Carbohydrates to Unusual Pyrone Compounds in Fungi: Occurrence of Microthecin in Morels. Phytochemistry 1986, 25 (6), 1472–1473. https://doi.org/10.1016/S0031-9422(00)81312-6. | spa |
dc.relation.references | (224) Fujimoto, H.; Negishi, E.; Yamaguchi, K.; Nishi, N.; Yamazaki, M. Isolation of New Tremorgenic Metabolites from an Ascomycete, Corynascus Setosus. Chem Pharm Bull (Tokyo) 1996, 44 (10), 1843–1848. https://doi.org/10.1248/CPB.44.1843. | spa |
dc.relation.references | (225) Fujimoto, H.; Negishi, E.; Yamaguchi, K.; Nishi, N.; Yamazaki, M. Isolation of New Tremorgenic Metabolites from an Ascomycete, Corynascus Setosus. Chem Pharm Bull (Tokyo) 1996, 44 (10), 1843–1848. https://doi.org/10.1248/CPB.44.1843. | spa |
dc.relation.references | (226) Abou-Yousef, H.; Hassan, E. B.; Steele, P. Rapid Conversion of Cellulose to 5-Hydroxymethylfurfural Using Single and Combined Metal Chloride Catalysts in Ionic Liquid. Journal of Fuel Chemistry and Technology 2013, 41 (2), 214–222. https://doi.org/10.1016/S1872-5813(13)60013-4. | spa |
dc.relation.references | (227) Zhang, X.; Wei, H.; Wei, X.; Qi, T.; Zong, X.; Liu, Z.; Qin, J.; Gao, X.; Zheng, G.; Ma, Q. Biosynthesis of 2-Furylhydroxymethylketone, an Intermediate of Cefuroxime, from Furfural and Formaldehyde Using a ThDP-Dependent Enzyme. Green Chemistry 2023, 25 (12), 4713–4722. https://doi.org/10.1039/D3GC00848G. | spa |
dc.relation.references | (228) Bertasa, M.; Dodero, A.; Alloisio, M.; Vicini, S.; Riedo, C.; Sansonetti, A.; Scalarone, D.; Castellano, M. Agar Gel Strength: A Correlation Study between Chemical Composition and Rheological Properties. Eur Polym J 2020, 123, 109442. https://doi.org/10.1016/J.EURPOLYMJ.2019.109442. | spa |
dc.relation.references | (229) López Muñiz, J.; Guadalupe, E.; Saldaña, T.; Guadalupe, M.; Perea, J.; Susana Gutiérrez Chávez, M.; Carlos, J.; Granados, R. Mezclas de Extractos Biológicos Con Capacidad Fotoprotectora. JÓVENES EN LA CIENCIA 2022, 16, 1–11. | spa |
dc.relation.references | (230) Gutierrez, R.; Lisset, Y.; Gonzales, S.; Caroline, K. Evaluación in Vitro de La Fotoprotección Del Extracto de Las Hojas de Passiflora Edulis “Maracuyá.” Universidad Nacional de Trujillo 2018. https://hdl.handle.net/20.500.14414/11328 (accessed 2024-10-10). | spa |
dc.relation.references | (231) Castañeda Alarcon, M. L. Evaluación de La Actividad Fotoprotectora in Vitro y Efecto Fotoprotector in Vivo de Una Formulación a Base de Extracto Acuoso Liofilizado de Lepidium Meyenii (Maca). 2019. | spa |
dc.relation.references | (232) Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M. I.; Tsiafoulis, C. G.; Gerothanassis, I. P. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, Vol. 22, Page 1663 2017, 22 (10), 1663. https://doi.org/10.3390/MOLECULES22101663. | spa |
dc.relation.references | (233) Weber, H.; Vick, B. A.; Farmer, E. E. Dinor-Oxo-Phytodienoic Acid: A New Hexadecanoid Signal in the Jasmonate Family. Proc Natl Acad Sci U S A 1997, 94 (19), 10473. https://doi.org/10.1073/PNAS.94.19.10473. | spa |
dc.relation.references | (234) Ogihara, T.; Amano, N.; Mitsui, Y.; Fujino, K.; Ohta, H.; Takahashi, K.; Matsuura, H. Determination of the Absolute Configuration of a Monoglyceride Antibolting Compound and Isolation of Related Compounds from Radish Leaves (Raphanus Sativus). J Nat Prod 2017, 80 (4), 872–878. https://doi.org/10.1021/ACS.JNATPROD.6B00746. | spa |
dc.relation.references | (235) Cao, Y.; Yang, L.; Gao, H. L.; Chen, J. N.; Chen, Z. Y.; Ren, Q. S. Re-Characterization of Three Conjugated Linolenic Acid Isomers by GC–MS and NMR. Chem Phys Lipids 2007, 145 (2), 128–133. https://doi.org/10.1016/J.CHEMPHYSLIP.2006.11.005. | spa |
dc.relation.references | (236) Fu, W. C.; Gu, X. H.; Tao, G. J.; Tang, J.; Jiang, Z. L. Structure Identification of Triacylglycerols in the Seed Oil of Momordica Charantia l. Var. Abbreviata Ser. JAOCS, Journal of the American Oil Chemists’ Society 2009, 86 (1), 33–39. https://doi.org/10.1007/S11746-008-1313-Z. | spa |
dc.relation.references | (237) Aili Zakaria, N.; Fariza Sulaiman, S.; Afifah Supardy, N. Phytochemical Composition and Antibacterial Potential of Hexane Extract from Malaysian Red Algae, Acanthophora Spicifera (Vahl) Borgesen. | spa |
dc.relation.references | (238) Bhaskar, N.; Kinami, T.; Miyashita, K.; Park, S. B.; Endo, Y.; Fujimoto, K. Occurrence of Conjugated Polyenoic Fatty Acids in Seaweeds from the Indian Ocean. Zeitschrift fur Naturforschung - Section C Journal of Biosciences 2004, 59 (5–6), 310–314. https://doi.org/10.1515/ZNC-2004-5-602/MACHINEREADABLECITATION/RIS. | spa |
dc.relation.references | (239) Rincón, M. Á.; Valenzuela, R.; Valenzuela, A. El Ácido Estearidónico: Un Ácido Graso Omega-3 de Origen Vegetal Con Gran Potencialidad En Salud y Nutrición. Revista chilena de nutrición 2015, 42 (3), 297–300. https://doi.org/10.4067/S0717-75182015000300011. | spa |
dc.relation.references | (240) Mujica, V.; Delgado, M.; Ramírez, M.; Velásquez, I.; Pérez, C.; Rodríguez-Corella, M. Formulación de Un Producto Cosmético Con Propiedades Antiarrugas a Partir Del Aceite de Semilla de Merey (Anacardium Occidentale L). Revista de la Facultad de Ingeniería Universidad Central de Venezuela 2010, 25 (2), 119–131. | spa |
dc.relation.references | (241) Valenzuela, G. M.; Gruszycki, M. R.; Pérez Zamora, C.; Nuñez, M. B.; Chiappetta, D. A.; Giménez, M. C.; Valenzuela, G. M.; Gruszycki, M. R.; Pérez Zamora, C.; Nuñez, M. B.; Chiappetta, D. A.; Giménez, M. C. Formulación de Productos Cosméticos Con Aceite de Semillas de Cucurbita Argyrosperma C. Huber. Revista Colombiana de Ciencias Químico - Farmacéuticas 2020, 49 (1), 159–170. https://doi.org/10.15446/RCCIQUIFA.V49N1.87031. | spa |
dc.relation.references | (242) Ahmad, S.; Rigano ’, L. Un Ingrediente Para Cosméticos Derivados Del Aceite de Palmiste. Palmas 2004, 25 (2), 45–47. https://doi.org/10.56866/ISSN.0121-2923. | spa |
dc.relation.references | (243) Verschooten, L.; Claerhout, S.; Laethem, A. Van; Agostinis, P.; Garmyn, M. New Strategies of Photoprotection. Photochem Photobiol 2006, 82 (4), 1016. https://doi.org/10.1562/2006-04-27-IR-884.1. | spa |
dc.relation.references | (244) Gilaberte, Y.; González, S. Novedades En Fotoprotección. Actas Dermosifiliogr 2010, 101 (8), 659–672. https://doi.org/10.1016/J.AD.2010.04.003. | spa |
dc.relation.references | (245) Rhodes, L. E.; O’Farrell, S.; Jackson, M. J.; Friedmann, P. S. Dietary Fish-Oil Supplementation in Humans Reduces UVB-Erythemal Sensitivity but Increases Epidermal Lipid Peroxidation. J Invest Dermatol 1994, 103 (2), 151–154. https://doi.org/10.1111/1523-1747.EP12392604. | spa |
dc.relation.references | (246) Wu, H.; Jiang, H.; Liu, C.; Deng, Y. Growth, Pigment Composition, Chlorophyll Fluorescence and Antioxidant Defenses in the Red Alga Gracilaria Lemaneiformis (Gracilariales, Rhodophyta) under Light Stress. South African Journal of Botany 2015, 100, 27–32. https://doi.org/10.1016/J.SAJB.2015.05.017. | spa |
dc.relation.references | (247) Arcos Limiñana, V.; Benoist, T.; Anton Sempere, S.; Maestre Pérez, S. E.; Prats Moya, M. S. Chemical Composition of Sustainable Mediterranean Macroalgae Obtained from Land-Based and Sea-Based Aquaculture Systems. Food Biosci 2023, 54, 102902. https://doi.org/10.1016/J.FBIO.2023.102902. | spa |
dc.relation.references | (248) Venkatesan, M.; Arumugam, V.; Pugalendi, R.; Ramachandran, K.; Sengodan, K.; Vijayan, S. R.; Sundaresan, U.; Ramachandran, S.; Pugazhendhi, A. Antioxidant, Anticoagulant and Mosquitocidal Properties of Water Soluble Polysaccharides (WSPs) from Indian Seaweeds. Process Biochemistry 2019, 84, 196–204. https://doi.org/10.1016/J.PROCBIO.2019.05.029. | spa |
dc.relation.references | (249) Huovinen, P.; Gómez, I.; Figueroa, F. L.; Ulloa, N.; Morales, V.; Lovengreen, C. Ultraviolet-Absorbing Mycosporine-like Amino Acids in Red Macroalgae from Chile. Botanica Marina. De Gruyter February 26, 2004, pp 21–29. https://doi.org/10.1515/BOT.2004.003. | spa |
dc.relation.references | (250) Tsujino I.; Shoguchi, E. Studies on the Compounds Specific for Each Group of Marine Algae, I : Presence of Characteristic Ultraviolet Absorbing Material in Rhodophyceae. Bull. Fac. Fish., Hokkaido Univ. 1961, 12 (1), 49–58. https://doi.org/10.1111/JPY.13219. | spa |
dc.relation.references | (251) Leach, C. M. ULTRAVIOLET-ABSORBING SUBSTANCES ASSOCIATED WITH LIGHT-INDUCED SPORULATION IN FUNGI. https://doi.org/10.1139/b65-024 2011, 43 (2), 185–200. https://doi.org/10.1139/B65-024. | spa |
dc.relation.references | (252) Favre-Bonvin, J.; Bernillon, J.; Salin, N.; Arpin, N. Biosynthesis of Mycosporines: Mycosporine Glutaminol in Trichothecium Roseum. Phytochemistry 1987, 26 (9), 2509–2514. https://doi.org/10.1016/S0031-9422(00)83866-2. | spa |
dc.relation.references | (253) Balskus, E. P.; Walsh, C. T. The Genetic and Molecular Basis for Sunscreen Biosynthesis in Cyanobacteria. Science (1979) 2010, 329 (5999), 1653–1656. https://doi.org/10.1126/SCIENCE.1193637/SUPPL_FILE/BALSKUS.SOM.PDF. | spa |
dc.relation.references | (254) Karsten, U.; Wiencke, C. Factors Controlling the Formation of UV-Absorbing Mycosporine-like Amino Acids in the Marine Red Alga Palmaria Palmata from Spitsbergen (Norway). J Plant Physiol 1999, 155 (3), 407–415. https://doi.org/10.1016/S0176-1617(99)80124-2. | spa |
dc.relation.references | (255) Conde, F. R.; Churio, M. S.; Previtali, C. M. The Photoprotector Mechanism of Mycosporine-like Amino Acids. Excited-State Properties and Photostability of Porphyra-334 in Aqueous Solution. J Photochem Photobiol B 2000, 56 (2–3), 139–144. https://doi.org/10.1016/S1011-1344(00)00066-X. | spa |
dc.relation.references | (256) Becker, K.; Hartmann, A.; Ganzera, M.; Fuchs, D.; Gostner, J. M. Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334. Marine Drugs 2016, Vol. 14, Page 119 2016, 14 (6), 119. https://doi.org/10.3390/MD14060119. | spa |
dc.relation.references | (257) Korbee, N.; Figueroa, F. L.; Aguilera, J. Acumulación de Aminoácidos Tipo Micosporina (MAAs): Biosíntesis, Fotocontrol y Funciones Ecofisiológicas. Revista chilena de historia natural 2006, 79 (1), 119–132. https://doi.org/10.4067/S0716-078X2006000100010. | spa |
dc.relation.references | (258) Sinha, R. P.; Singh, S. P.; Häder, D. P. Database on Mycosporines and Mycosporine-like Amino Acids (MAAs) in Fungi, Cyanobacteria, Macroalgae, Phytoplankton and Animals. J Photochem Photobiol B 2007, 89 (1), 29–35. https://doi.org/10.1016/J.JPHOTOBIOL.2007.07.006. | spa |
dc.relation.references | (259) Favre-Bonvin, J.; Bernillon, J.; Salin, N.; Arpin, N. Biosynthesis of Mycosporines: Mycosporine Glutaminol in Trichothecium Roseum. Phytochemistry 1987, 26 (9), 2509–2514. https://doi.org/10.1016/S0031-9422(00)83866-2. | spa |
dc.relation.references | (260) Portwich, A.; Garcia-Pichel, F. Biosynthetic Pathway of Mycosporines (Mycosporine-like Amino Acids) in the Cyanobacterium Chlorogloeopsis Sp. Strain PCC 6912. Phycologia 2003, 42 (4), 384–392. https://doi.org/10.2216/I0031-8884-42-4-384.1. | spa |
dc.relation.references | (261) Dunlap, W. C.; Yamamoto, Y. Small-Molecule Antioxidants in Marine Organisms: Antioxidant Activity of Mycosporine-Glycine. Comp Biochem Physiol B Biochem Mol Biol 1995, 112 (1), 105–114. https://doi.org/10.1016/0305-0491(95)00086-N. | spa |
dc.relation.references | (262) Suh, H.-J.; Lee, H.-W.; Jung, J. Mycosporine Glycine Protects Biological Systems Against Photodynamic Damage by Quenching Singlet Oxygen with a High Efficiency¶. Photochem Photobiol 2003, 78 (2), 109–113. https://doi.org/10.1562/0031-8655(2003)0780109MGPBSA2.0.CO2. | spa |
dc.relation.references | (263) Karentz, D.; McEuen, F. S.; Land, M. C.; Dunlap, W. C. Survey of Mycosporine-like Amino Acid Compounds in Antarctic Marine Organisms: Potential Protection from Ultraviolet Exposure. Mar Biol 1991, 108 (1), 157–166. https://doi.org/10.1007/BF01313484/METRICS. | spa |
dc.relation.references | (264) Karsten, U.; West, J. A. Living in the Intertidal Zone — Seasonal Effects on Heterosides and Sun-Screen Compounds in the Red Alga Bangia Atropurpurea (Bangiales). J Exp Mar Biol Ecol 2000, 254 (2), 221–234. https://doi.org/10.1016/S0022-0981(00)00280-X. | spa |
dc.relation.references | (265) Geraldes, V.; Jacinavicius, F. R.; Genuário, D. B.; Pinto, E. Identification and Distribution of Mycosporine-like Amino Acids in Brazilian Cyanobacteria Using Ultrahigh-Performance Liquid Chromatography with Diode Array Detection Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Rapid Communications in Mass Spectrometry 2020, 34 (S3), e8634. https://doi.org/10.1002/RCM.8634. | spa |
dc.relation.references | (266) ICH Official web site : ICH. https://www.ich.org/ (accessed 2024-09-29). | spa |
dc.relation.references | (267) Vega, J.; Schneider, G.; Moreira, B. R.; Herrera, C.; Bonomi-Barufi, J.; Figueroa, F. L. Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. Applied Sciences 2021, Vol. 11, Page 5112 2021, 11 (11), 5112. https://doi.org/10.3390/APP11115112. | spa |
dc.relation.references | (268) Cardozo, K. H. M. Estudos de Compostos Fotoprotetores Da Radiação Ultravioleta Em Algas: Aminoácidos Tipo Micosporinas (MAAs). 2008. https://doi.org/10.11606/T.46.2007.TDE-08022008-164422. | spa |
dc.relation.references | (269) Geraldes, V.; Pinto, E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals 2021, Vol. 14, Page 63 2021, 14 (1), 63. https://doi.org/10.3390/PH14010063. | spa |
dc.relation.references | (270) Carignan, M. O.; Cardozo, K. H. M.; Oliveira-Silva, D.; Colepicolo, P.; Carreto, J. I. Palythine-Threonine, a Major Novel Mycosporine-like Amino Acid (MAA) Isolated from the Hermatypic Coral Pocillopora Capitata. J Photochem Photobiol B 2009, 94 (3), 191–200. https://doi.org/10.1016/J.JPHOTOBIOL.2008.12.001. | spa |
dc.relation.references | (271) Álvarez-Gómez, F.; Korbee, N.; Casas-Arrojo, V.; Abdala-Díaz, R. T.; Figueroa, F. L. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules 2019, Vol. 24, Page 341 2019, 24 (2), 341. https://doi.org/10.3390/MOLECULES24020341. | spa |
dc.relation.references | (272) Figueiroa, F.; Gil, C.; Rico, R.; … M. M.-L. A. C.; 2011, undefined. Biofiltración de Efluentes Mediante Algas: Valorización de La Biomasa (Alimentos Funcionales y Biodiesel). researchgate.netFL Figueiroa, C Gil, RM Rico, MÁ Moriñigo, JL Gómez-Pinchetti, R Abdala DíazLas Algas Como Recurso: Valorización, Aplicaciones Industriales y, 2011•researchgate.net 2015. | spa |
dc.relation.references | (273) Peinado, N. K.; Abdala Díaz, R. T.; Figueroa, F. L.; Helbling, E. W. Ammonium and UV Radiation Stimulate the Accumulation of Mycosporine like Amino Acids in Porphyra Columbina (Rhodophyta) from Patagonia, Argentina. J Phycol 2020, 40 (2), 248–259. https://doi.org/10.1046/J.1529-8817.2004.03013.X. | spa |
dc.relation.references | (274) Médice, R. V.; Crnkovic, C. M.; Pinto Junior, E. Caracterização e Bioprospecção Da Biomassa de Cianobactérias e Microalgas Presentes Em Reservatórios de Água Visando Seu Potencial Biotecnológico. 2023. https://doi.org/10.11606/T.9.2023.TDE-12122023-113247. | spa |
dc.relation.references | (275) Karsten, U.; Sawall, T.; Hanelt, D.; Bischof, K.; Figueroa, F. L.; Flores-Moya, A.; Wiencke, C. An Inventory of UV-Absorbing Mycosporine-like Amino Acids in Macroalgae from Polar to Warm-Temperate Regions. Botanica Marina 1998, 41 (5), 443–453. https://doi.org/10.1515/BOTM.1998.41.1-6.443/MACHINEREADABLECITATION/RIS. | spa |
dc.relation.references | (276) Bischof, K.; Hanelt, D.; Wiencke, C. Effects of Ultraviolet Radiation on Photosynthesis and Related Enzyme Reactions of Marine Macroalgae. Planta 2000, 211 (4), 555–562. https://doi.org/10.1007/S004250000313/METRICS. | spa |
dc.relation.references | (277) Instituto de Hidrología, M. y E. A. EVALUACIÓN DE LA RADIACIÓN GLOBAL EN COLOMBIA. 2019. | spa |
dc.relation.references | (278) IDEAM; HENRY OSWALDO BENAVIDES BALLESTEROS; OVIDIO SIMBAQUEVA FONSECA; HENRY JOSUÉ ZAPATA LESMES. Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; 2017. | spa |
dc.relation.references | (279) Van Den Burg, S. W. K.; Dagevos, H.; Helmes, R. J. K. Towards Sustainable European Seaweed Value Chains: A Triple P Perspective. ICES Journal of Marine Science 2021, 78 (1), 443–450. https://doi.org/10.1093/ICESJMS/FSZ183. | spa |
dc.relation.references | (280) Algamarine. https://algamarine.com.au/ (accessed 2024-09-23). | spa |
dc.relation.references | (281) Kim, S.; Park, B. G.; Jin, H.; Lee, D.; Teoh, J. Y.; Kim, Y. J.; Lee, S.; Kim, S. J.; Moh, S. H.; Yoo, D.; Choi, W.; Hahn, J. S. Efficient Production of Natural Sunscreens Shinorine, Porphyra-334, and Mycosporine-2-Glycine in Saccharomyces Cerevisiae. Metab Eng 2023, 78, 137–147. https://doi.org/10.1016/J.YMBEN.2023.05.009. | spa |
dc.relation.references | (282) Tosato, M. G.; Orallo, D. E.; Ali, S. M.; Churio, M. S.; Martin, A. A.; Dicelio, L. Confocal Raman Spectroscopy: In Vivo Biochemical Changes in the Human Skin by Topical Formulations under UV Radiation. J Photochem Photobiol B 2015, 153, 51–58. https://doi.org/10.1016/J.JPHOTOBIOL.2015.08.030. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.proposal | Fotoprotección | spa |
dc.subject.proposal | Algas rojas | spa |
dc.subject.proposal | Archipiélago de San Andrés | spa |
dc.subject.proposal | MAAs | spa |
dc.subject.proposal | FPS | spa |
dc.subject.proposal | Cosmética | spa |
dc.subject.proposal | Captación del radical DPPH• | spa |
dc.subject.proposal | PUFAs | spa |
dc.subject.proposal | Photoprotection | eng |
dc.subject.proposal | Red algae | eng |
dc.subject.proposal | Archipelago of San Andrés | eng |
dc.subject.proposal | MAAs | eng |
dc.subject.proposal | SPF | eng |
dc.subject.proposal | Cosmetics | eng |
dc.subject.proposal | Antioxidant | eng |
dc.subject.proposal | PUFAs | eng |
dc.subject.unesco | Investigación química | spa |
dc.subject.unesco | Chemical research | eng |
dc.subject.wikidata | cosmético | spa |
dc.subject.wikidata | cosmetics | eng |
dc.subject.wikidata | Macroalga | spa |
dc.subject.wikidata | seaweed | eng |
dc.title | Estudio químico de macroalgas rojas del departamento Archipiélago de San Andrés, Providencia y Santa Catalina con potencial uso en la industria cosmética | spa |
dc.title.translated | Chemical study of red macroalgae from the Department of the Archipelago of San Andrés, Providencia, and Santa Catalina with potential use in the cosmetic industry | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1087205506.2025_Tesis_Quimica_de_algas_EibarAngulo2.pdf
- Tamaño:
- 9.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: