Efecto de la cosecha y la labranza vertical en caña de azúcar sobre propiedades físicas del suelo en tres zonas agroecológicas del Valle del Cauca.

dc.contributor.advisorSanguino, Pedro Francisco
dc.contributor.advisorChaparro Anaya, Oscar
dc.contributor.authorSanchez Osorio , Enzo Paolo
dc.contributor.cvlacSanchez Osorio, Enzo Paolo [0002412136]
dc.contributor.googlescholarSanchez Osorio, Enzo Paolo [es&view_op]
dc.contributor.orcidSanchez Osorio, Enzo Paolo [0009-0008-1426-4396]
dc.contributor.researchgateSanchez Osorio, Enzo Paolo [Enzo-Sanchez-Osorio]
dc.coverage.temporalhttp://vocab.getty.edu/page/tgn/7005078
dc.date.accessioned2025-09-09T21:27:44Z
dc.date.available2025-09-09T21:27:44Z
dc.date.issued2025-09-08
dc.descriptionIlustraciones, fotografías a color, gráficas, tablas.spa
dc.description.abstractThe impact of mechanized harvesting and six vertical tillage treatments on bulk density (Da) and penetration resistance (Rp) was evaluated in soils from three agroecological zones (1H1, 5H3, and 15H1) cultivated with sugarcane. A Block Design in Plots with Repeated Measures was applied, and Da and Rp were measured before harvesting, after harvesting, and after tillage. The design was structured with six treatments in an arrangement of three blocks, one for each agroecological zone (ZA). The effect of using three different types of agricultural implements, commonly used in the region, named Subsoil Topo, Parabolic, Triple, and their combination, was evaluated. The results showed that mechanized harvesting caused a generalized increase in bulk density in the 0–20 cm and 20–40 cm layers of the three agroecological zones (1H1, 5H3, and 5H1), shifting initial optimal values (0.9–1.2 g/cm³) to moderate and limiting ranges (> 1.35 g/cm³), especially in the inter-row and in more clayey soils. The magnitude of this effect varied according to texture: in 1H1 (Typic Haplusterts), the greatest increases were recorded in the furrow at 20–40 cm; in 5H3 (Sodic Endoaquerts), the surface Da remained stable, but the interrow showed moderate elevations; and in 15H1 (Fluventic Haplustepts), both horizons reached critical values due to their high susceptibility to deep compaction. At the same time, penetration resistance increased significantly up to 80 cm depth: in the furrow, Rp went from < 1 MPa (0–10 cm) to > 2.5 MPa (20–40 cm), compromising the zone of maximum root proliferation; in the interrow, values reached 3 MPa at 20–40 cm. The vertical tillage implements showed soil-dependent efficacy: the triple subsoiler (T4) uniformly reduced Rp in 5H3; treatments T2 (parabolic subsoiler) and T3 (topo subsoiler) reduced Rp below the control to more than 50 cm in 15H1; and in zone 1H1, T4 and the combination T6 (topo + triple) stood out at 0–30 cm. Likewise, T3 and T6 increased surface Da, while none of the six treatments significantly modified subsurface Da, highlighting the need to adapt decompaction strategies to each agroecological zone.spa
dc.description.abstractThe impact of mechanized harvesting and six vertical tillage treatments on bulk density (Da) and penetration resistance (Rp) was evaluated in soils from three agroecological zones (1H1, 5H3, and 15H1) cultivated with sugarcane. A Block Design in Plots with Repeated Measures was applied, and Da and Rp were measured before harvesting, after harvesting, and after tillage. The design was structured with six treatments in an arrangement of three blocks, one for each agroecological zone (ZA). The effect of using three different types of agricultural implements, commonly used in the region, named Subsoil Topo, Parabolic, Triple, and their combination, was evaluated. The results showed that mechanized harvesting caused a generalized increase in bulk density in the 0–20 cm and 20–40 cm layers of the three agroecological zones (1H1, 5H3, and 5H1), shifting initial optimal values (0.9–1.2 g/cm³) to moderate and limiting ranges (> 1.35 g/cm³), especially in the inter-row and in more clayey soils. The magnitude of this effect varied according to texture: in 1H1 (Typic Haplusterts), the greatest increases were recorded in the furrow at 20–40 cm; in 5H3 (Sodic Endoaquerts), the surface Da remained stable, but the interrow showed moderate elevations; and in 15H1 (Fluventic Haplustepts), both horizons reached critical values due to their high susceptibility to deep compaction. At the same time, penetration resistance increased significantly up to 80 cm depth: in the furrow, Rp went from < 1 MPa (0–10 cm) to > 2.5 MPa (20–40 cm), compromising the zone of maximum root proliferation; in the interrow, values reached 3 MPa at 20–40 cm. The vertical tillage implements showed soil-dependent efficacy: the triple subsoiler (T4) uniformly reduced Rp in 5H3; treatments T2 (parabolic subsoiler) and T3 (topo subsoiler) reduced Rp below the control to more than 50 cm in 15H1; and in zone 1H1, T4 and the combination T6 (topo + triple) stood out at 0–30 cm. Likewise, T3 and T6 increased surface Da, while none of the six treatments significantly modified subsurface Da, highlighting the need to adapt decompaction strategies to each agroecological zone.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmira
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.methodsSe evaluó el impacto de la cosecha mecanizada y de seis tratamientos de labranza vertical sobre la densidad aparente (Da) y la resistencia a la penetración (Rp) en los suelos tres zonas agroecológicas (1H1, 5H3 y 15H1) cultivadas con caña de azúcar. Se aplicó un diseño de Bloques en Parcelas con Medidas Repetidas y se midieron Da y Rp antes de la cosecha, después de está y tras la roturación, el diseño se estructuró con seis tratamientos en un arreglo de tres bloques, uno para cada zona agroecológica (ZA), se evaluó el efecto del uso de tres tipos diferentes de implementos agrícolas, de uso común en la región denominados Subsuelo Topo, Parabólico, Triple y la combinación de ellos.
dc.format.extentxix, 90 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88681
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.relation.referencesAndrango R, Álvarez F. 2012. Manual de preparación de suelos con tracción motriz. Programa de Manejo Integrado de Plagas en América Central. Carrera de Ciencia y Producción Agropecuaria. Escuela Agrícola Panamericana, El Zamorano, Honduras. 125p.
dc.relation.referencesArana, A. (2023) Caracterización de la compactación ocasionada por un sistema de cosecha mecánica de la caña de azúcar en dos tipos de suelos del valle del cauca. Universidad Nacional de Colombia, (pág. 91). Palmira Valle, Colombia.
dc.relation.referencesArvidsson, J., & Hakansson, I. (1996). Do effects of soil compaction persist afterploughing. Soil Till Res. 39, 175-197.
dc.relation.referencesAsocaña. (2022). Informe Asocaña 2022.
dc.relation.referencesBarbosa L, Menezes Z, Franco H, Otto R, Neto J, Nunes J. (2018) Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Elsevier scientific publishing company. UK.
dc.relation.referencesBaver, L. D., Gardner, W. H., & Gardner, W. R. (1991). Soil physics (4ª ed.). Wiley.
dc.relation.referencesBengough, A. (1991). The penetrometer in relation to mechanical resistence to root growth . Soil analysis, 431-445.
dc.relation.referencesBerisso, F. E., Schjønning, P., Keller, T., Lamandé, M., Etana, A., De Jonge, L. W., & Forkman, J. (2012). Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil. Soil and Tillage Research, 122, 42–51.
dc.relation.referencesBerli, M.: Compaction of agricultural subsoils by tracked heavy construction machinery, 141pp., Tesis (en opción al grado científico de Doctor en Ciencias Técnicas), Instituto Federal Suizo de Tecnología de Zurich, Zurich, Suiza, 2001.
dc.relation.referencesBlanco, H. (2009). Compactación del suelo y manejo de la porosidad. Editorial UTP.
dc.relation.referencesBlanco, R. (2009). La relación entre la densidad aparente y la resistencia mecánica como indicadores de la compactación del suelo. Agrociencia 43, 231-239.
dc.relation.referencesBotta, G., Jorajuria, D., & Draghi, L. (2002). Influence of the axle load, tire size and configuration, on the compaction of a freshly tilled clavey soil. Terramechanics (39), 47.
dc.relation.referencesBotta G, Jorajuria D, Draghi. (2002) Compactación subsuperficial del suelo producida por distintas intensidades de transito en un sistema frutícola. Revista I.N.I.A. Instituto Nacional de Investigación Agraria. España. Vol. 1: 200 - 210.
dc.relation.referencesBotta, G. F., Jorajuría, D., & Balbuena, R. (2006). Mechanical behaviour of two tillage tools working on a silty loam soil. Soil and Tillage Research, 87(2), 173–180.
dc.relation.referencesBraunack M. (2004). A Tire Option For Sugarcane Haulot Trucks To Minimise Soil Compactation. Journal Of Terramechanics 41: 243-253.
dc.relation.referencesCairo, C. (1985). Evaluación de la densidad óptima para el desarrollo de la caña de azúcar en suelos pesados. Universidad Central de las Villas, (pág. 25). Villa Clara, Cuba.
dc.relation.referencesCarbonell J, Quintero R, Torres J, Osorio C, Isaacs C, Victoria J. (2011). Zonificación agroecológica para el cultivo de Caña de Azúcar en el Valle del río Cauca (cuarta aproximación). Principios metodológicos y aplicaciones. Cenicaña, Serie Técnica No 38.
dc.relation.referencesCasanova E. (1991). Introducción a la Ciencia del Suelo. Facultad de Agronomía, UCV. C.D.C.H.T. Litopar, C.A.
dc.relation.referencesCenicaña. (1995). El cultivo de la caña en la zona azucarera de Colombia. Cali: Publicación Cenicaña.
dc.relation.referencesChaparro, J., & Romero, T. (1995). Efectos de la compactación sobre las propiedades físicas del suelo en el cultivo de palma africana. Bogotá: Universidad Nacional de Colombia.
dc.relation.referencesChiconato, D. A., da Silveira Sousa Junior, G., dos Santos, D. M. M., & Munns, R. (2019). Adaptation of sugarcane plants to saline soil. Environmental and Experimental Botany, 162, 201–211. https://doi.org/10.1016/j.envexpbot.2019.02.021
dc.relation.referencesCopper, W. (1971). Compaction of agricultural soil: effects of tillage on soil compaction. ASAE. USA, 321-324.
dc.relation.referencesDa Silva, A. P., & Kay, B. D. (1997). Estimating the least limiting water range of soils from properties and management. Soil Science Society of America Journal, 61(3), 877–883.
dc.relation.referencesDaddow, R., & Warrington, G. (1983). Growth - limiting soil bulk densities as influenced by soil texture. USDA - F5, Watershed systems development group REP. WSD6-TN-00005, USDA - FS, Fort Collins, CO.
dc.relation.referencesDavies, D., Finney, J., & Richardson, S. (1973). Relative effects of tractor weight and wheel slip in causing soil compaction. Journal of soil science. Vol 24 N°3.
dc.relation.referencesDonahue R, Shickluna J. (1983). Soils.An introduction to soil and plant growt.Prentice all, In. USA.
dc.relation.referencesDraghi, L.; Jorajuria Collazo, D.; Sarena, D.; Bailleres, M.; Melani, E.; Castillo, J.M. y Palancar, T. (2015). Impacto del tránsito en dos sistemas de siembra. Agrociencia. 19(2): 59-67. http://www.scielo.edu.u/pdf/agro/v19n2/v19n2a08.pdf (Consultada 5 julio 2022).
dc.relation.referencesDraghi, G., Berli, M., & Salazar, A. (2015). Efectos acumulados de la cosecha mecanizada sobre Da en suelos de caña de azúcar. Soil & Tillage Research, 147, 102–110.
dc.relation.referencesDrewry, J. J., Cameron, K. C., & Buchan, G. D. (2008). Pasture yield and soil physical property responses to soil compaction from treading and grazing—a review. Australian Journal of Soil Research, 46(3), 237–256.
dc.relation.referencesEkwue, E. I., & Stone, R. J. (1995). Organic matter effects on the strength properties of compacted agricultural soils. Transactions of the ASAE, 38(2), 357–365.
dc.relation.referencesEvans, D. L. (2020). A Geophysical and Climatological Assessment of New Guinea — Implications for the Origins of Saccharum. South African Sugarcane Research Institute, Mount Edgecombe, Durban, South Africa, 1–21. https://doi.org/https://doi.org/10.1101/2020.06.20.162842
dc.relation.referencesGao W, Watts C, Ren T, Whalley W. (2012). The effects of compaction and soil drying on penetrometer resistance. Soil Tillage Res. 125, 14–22.
dc.relation.referencesGarcia I, Sánchez M, Vidal M, Betancourt R, Rosa J. (2010). Efecto de la compactación sobre las propiedades físicas del suelo y el crecimiento de la caña de azúcar. Revista Ciencias Técnicas Agropecuarias,Vol. 19, (No2), 51-56
dc.relation.referencesGardner W. (1960). Dynamic aspects of water availability to plants. Soil Sci. 89:63- 73.
dc.relation.referencesGardner H. (1963). Penetration of cotton seedling taproots as influenced by bulk density, moisture content, and strength of soil. Soil Sci. 96:153-156.
dc.relation.referencesGavande, S. (1979). Física de suelos. México: Limusa S.A.
dc.relation.referencesGavande, Y. (1979). Interacción de implementos de labranza y estructura del suelo. Journal of Agricultural Engineering Research, 24(3), 213–227.
dc.relation.referencesGill, W., & Camp, C. (1969). The effect of drying on soil strength parameters. Soil Sci. Soc. Am. Proc. 33.
dc.relation.referencesGodwin R, Spoor G. 1977. Soil failure with narrow tines. Journal of Agr. Eng. Res, Vol 22: 213-228. England.
dc.relation.referencesGutierrez, F., Vaca, V., Morales, E., Huerta, A., Pérez, D., & Saldívar, P. (2015). Compactación de un vertisol debido al transito y diferentes masas de tractores agrícolas. Rev. Mex. Cienc. Agrí Vol. 6 Núm 4, 803-813.
dc.relation.referencesGutiérrez-Rodríguez, F.; González-Huerta, A.; Pérez-López, D.D.J.; Franco-Mora, O.; Morales-Rosales, E.J.; Saldívar-Iglesias, P. y Martínez-Rueda, C.G. (2012). Compactación inducida por el rodaje de tractores agrícolas en un Vertisol. Terra Latinoamericana. 30(1): 1-7. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792012000100001 (Consultada 6 Julio 2022).
dc.relation.referencesGysi , M.; V. Maeder ; P. Weisskopf : “Pressure distribution underneath tires of agricultural vehicles”, Transactions of ASA, 44(6): 1385-1389, 2001.
dc.relation.referencesHåkansson, I., & Lipiec, J. (2000). A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil and Tillage Research, 53(2), 71–85.
dc.relation.referencesHammad E, Dawelbeit Y. 2001. Effect of tillage and field condition on soil physical properties, cane and sugar yields in vertisols of Kenana Sugar State, Sudán. Soil & Tillage Research, 30:101-109. Elsevier Publishers. The Neetherlands.
dc.relation.referencesHamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems. Soil and Tillage Research, 82(2), 121–145.
dc.relation.referencesHenderson C, Leveett A, Lisle D. (1988). The effects of soil water content and bulk density on the compactability and soil penetration resistance of some Western Australia sandy soils. Aust. J. Soil Res. 26:391-400.
dc.relation.referencesHorn, R., Domžal, H., Slowinska-Jurkiewicz, A., & van Ouwerkerk, C. (1995). Soil compaction processes and their effects on the structure of arable soils and the environment. Soil and Tillage Research, 35(1-2), 23–36.
dc.relation.referencesHorne D, Ross C, Baker C. (1997). Subsoiling and surface tillage effects on soil physical properties and forage oat stand and yield. SoilTill. Res.40:125-144.
dc.relation.referencesJaramillo, D. (2002). Introducción a la Ciencia del Suelo. Medellin, Colombia: Universidad Nacional de Colombia - Sede Medellin.
dc.relation.referencesJiménez, J., Puentes, H., & Leiva, F. (1992). Efectos de tratamientos de labranza sobre la resistencia a la penetración de un andisol. Agronomía Colombiana., v.9 N.1, 30-39.
dc.relation.referencesJorajuría, D., Draghi, L., & Aragón, A. (1995). Compactación del suelo bajo tráfico repetido. Investigación Agraria: Producción y Protección Vegetales, 10(3), 473–483.
dc.relation.referencesJorajuría D, Draghi L. (1997). The Distribution of Soil Compaction with Depth and the Response of a Perennial Forage Crop. Journal of Agricultural Engineering Research, v. 66, p. 261-265.
dc.relation.referencesJorajuría, D., Draghi, G., & Torres, M. (1997). Compactación superficial y subsuperficial inducida por tráfico agrícola. Agricultural Mechanics, 56(4), 345–352.
dc.relation.referencesJorajuría, D., Draghi, L. M., & Aragón, A. (1997). The effect of vehicle weight on the distribution of compaction with depth and the yield of Lolium/Trifolium grassland. Soil and Tillage Research, 41, 1–12.
dc.relation.referencesJorajuria, D., & Draghi, L. (2000). Sobrecompactación del suelo agrícola Parte 1: Influencia del peso y del número de pasadas. Rev. Brasileira de engenharia agricolae ambiental. 4, 445-452.
dc.relation.referencesKeller, T.: Soil compaction and soil tillage studies in agricultural soil mechanics, Tesis (en opción al grado científico de Doctor en Ciencias Técnicas), Universidad Sueca de Ciencias Agrícolas, Uppsala, Suecia, 2004.
dc.relation.referencesKeller, T. (2004). Carga acumulativa de tráfico e impacto en suelos agrícolas. Soil Science, 169(8), 620–628.
dc.relation.referencesKirbi, J. (1991). The influence of soil deformations on the permeability to air. Journal of soil science. 42, 227-235.
dc.relation.referencesKoleen, A., & Kuipers, H. (1983). Agricultural soil mechanics. Springer-Verlag.
dc.relation.referencesLaia, A., Maia, J., & Kim, M. (2006). Uso do penetrometro electronico na avaliacao da resistencia do solo cultivado com cana-de-acucar. R. Bras. Eng. Agric. Amb.,10, 523-530.
dc.relation.referencesLarson W, Gupta S, Useche R. (1980). Compression of agricultural soils from eight soil orders. Soil Sci. Soc. Am. J. 44:450-457.
dc.relation.referencesLipiec, J., & Hatano, R. (2003). Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116(1-2), 107–136.
dc.relation.referencesLetey J. (1985). Correlation of plant responses to soil oxygen diffusion rates. Hilgardia 35:567-576.
dc.relation.referencesLetey J. (1985) “Relationship between soil properties and crop production”, Adv. Soil Sci., 1: 273-294.
dc.relation.referencesLloyd J, Collis-George N. (1982). A torsional shear box for determining the shear strength of agricultural soils. Aust. J. Soil Res. 20, 203–211.
dc.relation.referencesMaterechera S, Dexter A, Alston A. (1991). Penetration of very strong soils by seedlings roots of different plant species. Plant and Soil 135: 31-41.
dc.relation.referencesMaterechera, S. A., Alston, A. M., & Alston, A. M. (1991). If root growth is impeded by soil strength. Plant and Soil, 131(1), 159–166.
dc.relation.referencesMckyes E. (1983). Soil cutting and tillage. Elsevier. The Neetherlands.
dc.relation.referencesMcKyes, E. (1983). Physics of soil loosening. Soil & Tillage Research, 3(1), 1–23.
dc.relation.referencesOwen G. (1989). Subsoiling forces and tool speed in compact soils. Canadian AgriculturalEngineering, 31:15-20. Canadá.
dc.relation.referencesOwen, L. N. (1989). Effect of speed of operation of subsoiler on soil disturbance. Journal of Soil & Tillage Research, 13(2), 125–134.
dc.relation.referencesPanzasza, P., et al. (2020). Umbrales críticos de Rp para caña de azúcar. Crop Science, 60(2), 789–797.
dc.relation.referencesPlaster, E. J. (2004). La ciencia del suelo y su manejo. Ed. Paraninfo. México.
dc.relation.referencesPorras, V. (1995). Labores de Cultivo. En Cenicaña, El cultivo de la caña en la zona azucarera de Colombia (págs. 179-189). Cali: Cenicaña.
dc.relation.referencesPorta, J., López-Acevedo, M. y Poch, R.M. (2008). Introducción a la Edafología (Uso y protección del suelo). Ed. Mundi –Prensa. Madrid.
dc.relation.referencesRodríguez L, Valencia J. (2015). Preparación de suelos para la producción sostenible de caña de azúcar. Guía metodológica. Cenicaña. Cali, Colombia. 164p. (Materiales para la transferencia de tecnología en la agroindustria de la caña de azúcar. Sistema de producción agrícola).
dc.relation.referencesSaavedra, S., & Chaparro, O. (2022). Compactación inducida durante cosecha mecánica de Saccharum spp. y su relación con propiedades estructurales del suelo. Avances en investigación agropecuaria, 155-176.
dc.relation.referencesSAE. 1992. Soil cone penetrometer ASAE standard S313.1. Agricultural engineering yearbook. St. Joseph, MI: American Society of Agricultural Engineers.
dc.relation.referencesSanchez-Giron V. (1996). Dinámica y mecánica de suelos. Ediciones agrotécnicas S.L., Madrid.
dc.relation.referencesSchargel, R. y Delgado, F. (1990). Características y manejo de los suelos utilizados en la producción de carne en Venezuela. En Plasse, D., Peña de Borsotti, N., eds. VI Cursillo sobre Bovinos de Carne. FCV-UCV, Maracay. pp. 187-220.
dc.relation.referencesScott-russell R. (1977). Plant Root Systems: Their Function and Interaction With the Soil. McGraw-Hill (UK) Limited, London England. Foster y Blaine, 1978.
dc.relation.referencesSéguy, L., Bouzinac, C., Maronezzi, V., & Taffarel, J. (1999). Plantio direto do arroz de sequeiro de alta tecnologia na zona tropical úmida do centronorte do Mato Grosso. Piracicaba: Potafos,
dc.relation.referencesSoane, B., & Van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. Elsevier Science, The Netherlands, 1-21.
dc.relation.referencesSoane, B., Blackwell, P., Dicksin, J., & Painter, D. (1981). Compaction by agricultural vehicles: a review soil and wheel characteristics. Elsevier scientific publishing company. UK.
dc.relation.referencesSoane, B. D., & van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. Soil & Tillage Research, 29(2–3), 3–18.
dc.relation.referencesStitt, R., Cassel, D., Weed, S., & Welson, L. (1982). Mechanical impedance of tillage pans in Atlantic Coastal plains soil and relationships with soil physical. Soil Sci. Soc 46, 100-106.
dc.relation.referencesSullivan, M., Dickson, J., & Campbell, D. (1967). Interpretation and presentation of cone resistance data in tillage and traffic studies. Journal of soil science, 38, 137-148.
dc.relation.referencesTaylor, H. M., & Gardner, H. R. (1963). Penetration of cotton seedling taproots as influenced by bulk density, moisture content and strength of soil. Soil Science, 96(3), 153–156.
dc.relation.referencesTaylor, J., & Gill, W. (1984). Soil compaction: State of art report. Journal of terramechanics, Oxford v.21, 195-213.
dc.relation.referencesThreadgill, E. (1982). Residual tillage effects as determined by cone index. ASAE, 25, 859-863, 867.
dc.relation.referencesThreadgill, E. D. (1982). Effects of soil moisture on cone resistance. Soil Science Society of America Journal, 46(6), 1239–1243.
dc.relation.referencesValencia J. 2012. Impacto de la labranza vertical en un suelo de terrazas altas de la planicie aluvial y su relación con la producción de caña de azúcar.
dc.relation.referencesValenzuela, G., & Torrente, A. (2010). Física de suelos. En H. Burbano, & F. Silva, Ciencia del suelo principios básicos (págs. 154-157). Bogotá, D.C: Sociedad colombiana de la ciencia del suelo.
dc.relation.referencesWood R, Morgan M, Holmes R, Brodbeck K, Carpenter T, Reeder R. (1991). Soil physical properties as affected by traffic: single, dual, and flotation tires. Trans. ASAE 34:2363-2369.
dc.relation.referencesVoorhees, W. (1983). Relative effectiveness of tillage and natural forces alleviating wheel induced soil compaction. Soil Sci. Soc Am. 47, 129-133.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.agrovocCosecha mecánica
dc.subject.agrovocMechanical harvesting
dc.subject.agrovocDensidad del suelo
dc.subject.agrovocSoil density
dc.subject.agrovocCompactación del suelo
dc.subject.agrovocSoil compaction
dc.subject.agrovocMaquinaria de labranza
dc.subject.agrovocTillage equipment
dc.subject.agrovocMecánica del suelo
dc.subject.agrovocSoil mechanics
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.proposalCompactación del suelospa
dc.subject.proposalDescompactadores verticalesspa
dc.subject.proposalDensidad aparentespa
dc.subject.proposalResistencia a la penetraciónspa
dc.subject.proposalSoil compactioneng
dc.subject.proposalVertical tillageeng
dc.subject.proposalBulk densityeng
dc.subject.proposalPenetration resistanceeng
dc.titleEfecto de la cosecha y la labranza vertical en caña de azúcar sobre propiedades físicas del suelo en tres zonas agroecológicas del Valle del Cauca.spa
dc.title.translatedEffect of harvesting and vertical tillage on sugarcane on soil physical properties in three agroecological zones of Valle del Cauca.eng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestría en Ciencias Agrarias.pdf
Tamaño:
3.36 MB
Formato:
Adobe Portable Document Format
Descripción:
6407706_2025.pdf

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia.pdf
Tamaño:
266.78 KB
Formato:
Adobe Portable Document Format
Descripción: