Estudio electro-óptico y termodinámico de una molécula artificial D+2 confinada en acoples epitaxiales de punto-anillo cuántico

dc.contributor.advisorRincon Fulla, Marlon
dc.contributor.advisorSuaza Tabares, Yoder Alberto
dc.contributor.authorHernández Zapata, Nicolás
dc.contributor.cvlacHernandez Zapata, Nicolasspa
dc.contributor.orcidHernández Zapata, Nicolás [0000-0002-3383-9799]
dc.date.accessioned2025-08-26T15:23:16Z
dc.date.available2025-08-26T15:23:16Z
dc.date.issued2024-10-28
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEsta tesis está enfocada al cálculo de propiedades electro-ópticas y termodinámicas de sistemas de pocas partículas confinados en acoples de punto anillo cuántico (CQDR por sus siglas en ingles) de GaAs recubiertos por una matriz de Ga 1−xAlxAs en presencia de campos externos como campo magnético, eléctrico, de presión hisdrostática y variaciones de la temperatura y de la concentración de material dopante. Para modelar los acoples de punto anillo cuántico se propone un modelo que permite ajustarse a la geometría real del CQDR mostrada en microscopias de fuerza atómica, permitiendo modificar la geometría del punto y del anillo de forma independiente. Las propiedades electrónicas se calcularon haciendo uso de la aproximación de masa efectiva y la función envolvente. Adicionalmente, la dimensionalidad de la nanoestructura nos permitió hacer uso de la aproximación adiabática. Los resultados finales se obtienen de forma numérica usando el método de elementos finitos. Los resultados fueron validados con sistemas que presentan soluciones analíticas y que se replican al llevar nuestra geometría a casos limites como lo son los puntos y los anillos cuánticos. Con la obtención de los niveles energéticos, y haciendo uso del formalismo de la matriz de densidad se obtuvieron distintas propiedades ópticas lineales, no lineales y totales entre las cuales destacan la absorción óptica y el cambio en el índice de refracción. La presente tesis esta soportada por diversos artículos científicos que fueron publicados durante el transcurso del trabajo doctoral. El manuscrito está compuesto por un primer capítulo introductorio donde se plantea el estado del arte y el marco teórico utilizado. El segundo capítulo corresponde al estudio de propiedades ópticas en anillos cuánticos, el cual esta fundamentado en dos artículos científicos. En el tercer capítulo se aborda el estudio de las propiedades electro-ópticas de sistemas de pocas partículas confinadas en CQDRs. Este capítulo realiza una discusión basada en a dos artículos publicados recientemente los cuales muestran adicionalmente avances sobre la investigación de otras propiedades ópticas de interés. Finalmente, el cuarto y último capítulo está dedicado a la exploración de algunas propiedades termodinámicas y su variación de acuerdo a cambios geométricos que pueden dar lugar a estructuras deformadas. (Tomado de la fuente)spa
dc.description.abstractThis thesis is focused on the calculation of electro-optical and thermodynamic properties of few-particle systems confined in GaAs quantum dot-ring couplings (CQDR) coated by a Ga 1-xAlxAs matrix in the presence of external fields such as magnetic field, electric field, hisdostatic pressure, temperature and dopant concentration variations. To model the quantum dot-ring couplings, a model is proposed that allows to fit the real geometry of the CQDR shown in atomic force microscopy, allowing to modify the geometry of the dot and the ring independently. The electronic properties were calculated using the effective mass approximation and the envelope function. Additionally, the dimensionality of the nanostructure allowed us to make use of the adiabatic approximation. The final results are obtained numerically using the finite element method. The results were validated with systems that present analytical solutions and that are replicated by taking our geometry to limiting cases such as quantum dots and rings. By obtaining the energy levels, and using the density matrix formalism, different linear, nonlinear and total optical properties were obtained, among which the optical absorption and the change in the refractive index stand out. This thesis is supported by several scientific articles that were published during the course of the doctoral work. The manuscript is composed of a first introductory chapter where the state of the art and the theoretical framework used are presented. The second chapter corresponds to the study of optical properties in quantum rings, which is based on two scientific articles. The third chapter deals with the study of the electro-optical properties of confined few-particle systems in CQDRs. This chapter makes a discussion based on two recently published articles which additionally show advances on the investigation of other optical properties of interest. Finally, the fourth and last chapter is devoted to the exploration of some thermodynamic properties and their variation according to geometrical changes that can lead to deformed structures.eng
dc.description.curricularareaFísica.Sede Medellín
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.format.extent69 páginas
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88468
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.indexedLaReferencia
dc.relation.references[1] N. W. Strom, Z. M. Wang, J. H. Lee, Z. Y. AbuWaar, Y. I. Mazur, G. J. Salamo, Self-assembled inas quantum dot formation on gaas ring like nanostructure templates, Nanoscale Research Letters 2 (2) (2007) 112–117. doi:10.1007/s11671-007-9040-1.
dc.relation.references[2] C. Somaschini, S. Bietti, N. Koguchi, S. Sanguinetti, Coupled quantum dot–ring structures by droplet epitaxy, Nanotechnology 22 (18) (2011) 185602. doi:10.1088/0957-4484/22/18/185602.
dc.relation.references[3] N. Hernández, R. López, J. Álvarez, J. Marín, M. Fulla, H. Tobón, Optical absorption computation of a d2+ artificial molecule in gaas/ga1xalxas nanometer-scale rings, Optik 245 (2021) 167637. doi:https: //doi.org/10.1016/j.ijleo.2021.167637.
dc.relation.references[4] V. Gudmundsson, V. Mughnetsyan, N. R. Abdullah, C.-S. Tang, V. Moldoveanu, A. Manolescu, Controlling the excitation spectrum of a quantum dot array with a photon cavity, Phys. Rev. B 108 (2023) 115306. doi:10.1103/PhysRevB.108.115306.
dc.relation.references[5] M. A. Hossain, K. T. Khoo, X. Cui, G. K. Poduval, T. Zhang, X. Li, W. M. Li, B. Hoex, Atomic layer deposition enabling higher efficiency solar cells: A review, Nano Materials Science 2 (3) (2020) 204–226, special issue on nanostructured materials for energy conversion and storage. doi:https://doi.org/10.1016/j.nanoms.2019.10.001.
dc.relation.references[6] S. Bednarek, B. Szafran, J. Adamowski, Many-electron artificial atoms, Phys. Rev. B 59 (1999) 13036–13042. doi:10.1103/PhysRevB.59. 13036.110
dc.relation.references[7] S.-J. Cheng, W. Sheng, P. Hawrylak, Theory of excitonic artificial atoms: Ingaas/gaas quantum dots in strong magnetic fields, Phys. Rev. B 68 (2003) 235330. doi:10.1103/PhysRevB.68.235330.
dc.relation.references[8] J. Woo, W. Kim, D. Lee, Hot topics in surface science: Quantum dots for optoelectronic applications (htss-qdoa), Applied Surface Science Advances 5 (Sep. 2021). doi:10.1016/j.apsadv.2021.100092.
dc.relation.references[9] M. Henini, Self-assembled quantum dots on gaas for optoelectronic applications, Microelectronics Journal 34 (5) (2003) 333–336.
dc.relation.references[10] N. N. Ledentsov, D. Bimberg, V. M. Ustinov, Z. I. Alferov, J. A. Lott, Self-organized ingaas quantum dots for advanced applications in optoelectronics, Japanese Journal of Applied Physics 41 (2S) (2002) 949. doi:10.1143/JJAP.41.949.
dc.relation.references[11] P. J. Werbos, Quantum technology to expand soft computing, Systems and Soft Computing 4 (2022) 200031. doi:https://doi.org/10.1016/ j.sasc.2022.200031.
dc.relation.references[12] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, L. P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot, Nature 430 (6998) (2004) 431–435. doi:10.1038/nature02693.
dc.relation.references[13] T. A. Tabish, H. Hayat, A. Abbas, R. J. Narayan, Graphene quantum dots-based electrochemical biosensing platform for early detection of acute myocardial infarction, Biosensors 12 (2) (2022). doi:10.3390/ bios12020077.
dc.relation.references[14] A. D. Yoffe, Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems, Advances in Physics 50 (1) (2001) 1–208. doi:10.1080/ 00018730010006608.
dc.relation.references[15] L. A. Cipriano, G. Di Liberto, S. Tosoni, G. Pacchioni, Quantum confinement in group iii–v semiconductor 2d nanostructures, Nanoscale 12 (2020) 17494–17501. doi:10.1039/D0NR03577G.
dc.relation.references[16] A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, O. G. Schmidt, Hierarchical self-assembly of GaAs/AlGaAs quantum dots, Phys. Rev. Lett. 92 (2004) 166104. doi:10.1103/PhysRevLett.92.166104.
dc.relation.references[17] S. Parida, G. Mangamma, C. Singha, A. Bhattacharyya, S. Dhara, Determining the polarity of droplet epitaxy grown algan nanorods using piezoresponse force microscopy, Nano-Structures & Nano-Objects 20 (2019) 100398. doi:https://doi.org/10.1016/j.nanoso.2019.100398.
dc.relation.references[18] Y. Zhang, Z. Dong, P. Li, Construction of electron and grain boundary barrier in quantum dots light-emitting diodes: The role of nio interface coating, Optical Materials 117 (2021) 111204. doi:https://doi.org/ 10.1016/j.optmat.2021.111204.
dc.relation.references[19] D. Yao, Z. Hu, Y. Su, S. Chen, W. Zhang, W. L¨ u, H. Xu, Significant efficiency enhancement of cdse/cds quantum-dot sensitized solar cells by black tio2 engineered with ultrashort filamentating pulses, Applied Surface Science Advances 6 (2021) 100142. doi:https://doi.org/10. 1016/j.apsadv.2021.100142.
dc.relation.references[20] A. Lorke, R. Blossey, J. Garcia, M. Bichler, G. Abstreiter, Morphological transformation of inyga1-yas islands, fabricated by stranski–krastanov growth, Materials Science and Engineering: B 88 (2) (2002) 225–229. doi:https://doi.org/10.1016/S0921-5107(01)00870-4.
dc.relation.references[21] S. Sanguinetti, C. Somaschini, S. Bietti, N. Koguchi, Complex nanostructures by pulsed droplet epitaxy, Nanomaterials and Nanotechnology 1 (2011) 4. doi:10.5772/50944.
dc.relation.references[22] P. Boonpeng, S. Kiravittaya, S. Thainoi, S. Panyakeow, S. Ratanathammaphan, Ingaas quantum-dot-in-ring structure by droplet epitaxy, Journal of Crystal Growth 378 (2013) 435–438, the 17th International Conference on Molecular Beam Epitaxy. doi:https://doi.org/10.1016/ j.jcrysgro.2012.12.056.
dc.relation.references[23] G. Linares-García, L. Meza-Montes, E. Stinaff, S. M. Alsolamy, M. E. Ware, Y. I. Mazur, Z. M. Wang, J. Lee, G. J. Salamo, Optical properties of a quantum dot-ring system grown using droplet epitaxy, Nanoscale Research Letters 11 (1) (2016) 309. doi:10.1186/s11671-016-1518-2.
dc.relation.references[24] L. Su, B. Liang, Y. Wang, Q. Yuan, Q. Guo, S. Wang, G. Fu, D. L. Huffaker, Y. I. Mazur, M. E. Ware, Y. Maidaniuk, G. J. Salamo, Abnormal photoluminescence for gaas/al0.2ga0.8as quantum dot-ring hybrid nanostructure grown by droplet epitaxy, Journal of Luminescence 195 (2018) 187–192. doi:https://doi.org/10.1016/j.jlumin.2017.11. 008.
dc.relation.references[25] M. Elborg, T. Noda, T. Mano, T. Kuroda, Y. Yao, Y. Sakuma, K. Sakoda, Self-assembly of vertically aligned quantum ring-dot structure by multiple droplet epitaxy, Journal of Crystal Growth 477 (2017) 239–242, proceeding of the 19th International Conference on Molecular Beam Epitaxy. doi:https://doi.org/10.1016/j.jcrysgro.2017.03.023.
dc.relation.references[26] B. Szafran, F. M. Peeters, S. Bednarek, Electron spin and charge switching in a coupled quantum-dot–quantum ring system, Phys. Rev. B 70 (2004) 125310. doi:10.1103/PhysRevB.70.125310.
dc.relation.references[27] C. Duque, M. Mora-Ramos, J. Correa, Donor-impurity-related second and third harmonic generation and optical absorption in gaas-(ga,al)as 3d coupled quantum dot-rings under applied electric field, Superlattices and Microstructures 87 (2015) 25–31, proceedings of the 16th International Conference on the Physics of Light–Matter Coupling in Nanostructures, PLMCN 2015 (Medellín, Colombia), 3-8 February, 2015. doi:https://doi.org/10.1016/j.spmi.2015.07.037.
dc.relation.references[28] M. Barseghyan, A. Manaselyan, D. Laroze, A. Kirakosyan, Impuritymodulated aharonov–bohm oscillations and intraband optical absorption in quantum dot–ring nanostructures, Physica E: Low-dimensional Systems and Nanostructures 81 (2016) 31–36. doi:https://doi.org/ 10.1016/j.physe.2016.02.012.
dc.relation.references[29] Z. Zeng, C. S. Garoufalis, S. Baskoutas, Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system, Physics Letters A 378 (36) (2014) 2713–2718. doi:https: //doi.org/10.1016/j.physleta.2014.07.036.
dc.relation.references[30] J. L. Movilla, A. Ballester, J. Planelles, Coupled donors in quantum dots: Quantum size and dielectric mismatch effects, Phys. Rev. B 79 (2009) 195319. doi:10.1103/PhysRevB.79.195319.
dc.relation.references[31] C. Hermann, C. Weisbuch, k · p perturbation theory in iii-v compounds and alloys: a reexamination, Phys. Rev. B 15 (1977) 823–833. doi: 10.1103/PhysRevB.15.823.
dc.relation.references[32] E. Reyes-Gómez, N. Raigoza, L. E. Oliveira, Effects of hydrostatic pressure and aluminum concentration on the conduction-electron g factor in gaas-(ga,al)as quantum wells under in-plane magnetic fields, Phys. Rev. B 77 (2008) 115308. doi:10.1103/PhysRevB.77.115308.
dc.relation.references[33] E. Kasapoglu, The hydrostatic pressure and temperature effects on donor impurities in gaas/ga1-xalxas double quantum well under the external fields, Physics Letters A 373 (1) (2008) 140–143. doi:https: //doi.org/10.1016/j.physleta.2008.10.080.
dc.relation.references[34] F. J. Culchac, N. Porras-Montenegro, A. Latgé, Hydrostatic pressure effects on electron states in gaas–(ga,al)as double quantum rings, Journal of Applied Physics 105 (9) (2009) 094324. doi:10.1063/1.3124643.
dc.relation.references[35] N. Hernández, R. López-Doria, M. Fulla, Optical and electronic properties of a singly ionized double donor confined in coupled quantum dot-rings, Physica E: Low-dimensional Systems and Nanostructures 151 (2023) 115736. doi:https://doi.org/10.1016/j.physe.2023.115736.
dc.relation.references[36] R. López-Doria, N. Hernández, I. Rivera, M. Fulla, Spectral and optical properties of a d2+ molecular complex confined in inas/gaas quantum camels: A spatial finite element method treatment, Physica E: Low-dimensional Systems and Nanostructures 161 (2024) 115967. doi:https://doi.org/10.1016/j.physe.2024.115967.
dc.relation.references[37] N. Hernández, R. A. López-Doria, I. E. Rivera, M. R. Fulla, Refractive index change of a d2+complex in gaas/alxga1-xas quantum ring, Journal of Materials Science 57 (18) (2022) 8417–8424. doi:10.1007/ s10853-021-06763-8.
dc.relation.references[38] K. Khachatryan, M. Mkrtchyan, D. Hayrapetyan, E. Kazaryan, H. Sarkisyan, Adiabatic description of the electroabsorption in strongly prolate and oblate conical quantum dots, Physica E: Low-dimensional Systems and Nanostructures 134 (2021) 114887. doi:https://doi.org/ 10.1016/j.physe.2021.114887.
dc.relation.references[39] C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum mechanics; 1st ed., Wiley, New York, NY, 1977.
dc.relation.references[40] C. Inc., Comsol (2022). URL http://www.comsol.com/products/multiphysics/
dc.relation.references[41] F. Zaouali, A. Bouazra, M. Said, Size-dependent interband optical properties of lens-shaped inas/inp quantum wire, Optics & Laser Technology 147 (2022) 107676. doi:https://doi.org/10.1016/j. optlastec.2021.107676.
dc.relation.references[42] E. Giraldo-Tobón, J. Palacio, M. Fulla, W. Ospina, G. L. Miranda, Nonlinear optical absorption and refractive index change in realistic gaas/ga1-xalxas v-groove quantum wires, Materials Science in Semiconductor Processing 148 (2022) 106762. doi:https://doi.org/10.1016/j.mssp.2022.106762.
dc.relation.references[43] B. Alaydin, D. Altun, E. Ozturk, Linear and nonlinear optical properties of semi-elliptical inas quantum dots: Effects of wetting layer thickness and electric field, Thin Solid Films 755 (2022) 139322. doi:https: //doi.org/10.1016/j.tsf.2022.139322.
dc.relation.references[44] F. Zaouali, A. Bouazra, M. Said, Numerical modelling of electronic and optical properties of isolated and self-assembled inas/inp quantum dots, Optik 182 (2019) 731–738. doi:https://doi.org/10.1016/j.ijleo. 2019.01.075.
dc.relation.references[45] R. Boyd, D. Prato, Nonlinear Optics, Elsevier Science, Burlington, 2008.
dc.relation.references[46] Doyeol Ahn, Shun-lien Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field, IEEE Journal of Quantum Electronics 23 (12) (1987) 21962204.
dc.relation.references[47] C. F. T. Marc Baus, Equilibrium Statistical Physics, Springer Berlin, Heidelberg, 2008.
dc.relation.references[48] E. Gallardo, L. J. Martínez, A. K. Nowak, D. Sarkar, D. Sanvitto, H. P. van der Meulen, J. M. Calleja, I. Prieto, D. Granados, A. G. Taboada, J. M. García, P. A. Postigo, Single-photon emission by semiconductor quantum rings in a photonic crystal, J. Opt. Soc. Am. B 27 (6) (2010) A21–A24. doi:10.1364/JOSAB.27.000A21.
dc.relation.references[49] P. J. Carrington, A. S. Mahajumi, M. C. Wagener, J. R. Botha, Q. Zhuang, A. Krier, Type ii gasb/gaas quantum dot/ring stacks with extended photoresponse for efficient solar cells, Physica B: Condensed Matter 407 (10) (2012) 1493–1496, proceedings of the 4th South African Conference on Photonic Materials (SACPM 2011). doi:https: //doi.org/10.1016/j.physb.2011.09.069.
dc.relation.references[50] Electronic and optical properties of a nanoring in the presence of external magnetic field, Superlattices and Microstructures 51 (6) (2012) 868–876. doi:https://doi.org/10.1016/j.spmi.2012.02.012.
dc.relation.references[51] The rashba and dresselhaus spin-orbit interactions effects on the optical properties of a quantum ring, Physica B: Condensed Matter 543 (2018) 27–31. doi:https://doi.org/10.1016/j.physb.2018.04.046.
dc.relation.references[52] D. Nasri, On the eccentricity effects on the intraband optical transitions in two dimensional quantum rings with and without donor impurity, Physica B: Condensed Matter 540 (2018) 51–57. doi:https://doi. org/10.1016/j.physb.2018.04.025.
dc.relation.references[53] S. Ghajarpour-Nobandegani, M. Karimi, Effects of hydrogenic impurity and external fields on the optical absorption in a ring-shaped elliptical quantum dot, Optical Materials 82 (2018) 75–80. doi:https://doi. org/10.1016/j.optmat.2018.05.045.
dc.relation.references[54] N. Hernández, R. López-Doria, Y. Suaza, M. Fulla, Neutral donors confined in semiconductor coupled quantum dot-rings: Position-dependent properties and optical transparency phenomenon, Physica E: Lowdimensional Systems and Nanostructures 165 (2025) 116122. doi: https://doi.org/10.1016/j.physe.2024.116122.
dc.relation.references[55] N. Hernández, R. López-Doria, Y. Suaza, M. Fulla. Neutral donors confined in semiconductor coupled quantum dot-rings: Position dependent properties and optical transparency phenomenon, Physica E: Low dimensional Systems and Nanostructures 165 (2025) 113122. doi: https://doi.org/10.1016/j.physe.2024.116122
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Físicaspa
dc.subject.proposalquantum dotseng
dc.subject.proposalpuntos cuánticosspa
dc.subject.proposallow dimensional systemseng
dc.subject.proposalSistemas de baja dimensionalidadspa
dc.subject.proposalmecanica cuanticaspa
dc.subject.proposalquantum mechanicseng
dc.titleEstudio electro-óptico y termodinámico de una molécula artificial D+2 confinada en acoples epitaxiales de punto-anillo cuánticospa
dc.title.translatedElectro-optical and thermodynamic study of an artificial D+2 molecule confined in quantum dot-ring epitaxial couplingseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ciencias - Física
Tamaño:
13.1 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: