Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application

dc.contributor.advisorClavijo Grimaldo, Aleida Dianneyspa
dc.contributor.authorMuñoz González, Ana Maríaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001661109spa
dc.contributor.orcidhttps://orcid.org/0000-0002-3191-9891spa
dc.contributor.researchgroupBiomecánicaspa
dc.date.accessioned2024-07-04T19:58:01Z
dc.date.available2024-07-04T19:58:01Z
dc.date.issued2024-06-30
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractThis thesis explores the design, fabrication, and of polymeric nanofiber scaffolds with electroconductive nanofillers for cardiac tissue engineering, focusing on myocardial tissue repair through differentiated incorporation of graphene and polypyrrole (PPy) into polycaprolactone (PCL) matrices via electrospinning. The work aims to establish fabrication parameters and assess the morphological, mechanical, chemical, electrical and biocompatibility properties of the scaffolds, with the goal of selecting those that offer optimal theorical electromechanical coupling with myocardial tissue. Two strategies are distinguished: one focused on scaffolds doped with graphene, which show improvements in structural uniformity and mechanical properties, and another on scaffolds enriched with PPy, noted for their significant electrical conductivity. Both strategies present specific advantages, such as enhanced hydrophilicity and the promotion of cell adhesion and proliferation, crucial for tissue regeneration. Despite challenges like the uniform dispersion of nanoparticles and matching the mechanical properties to those of native myocardium, the research highlights the potential of in situ polymerization of PPy as a balanced method for achieving scaffolds with optimized electrical properties and biocompatibility.eng
dc.description.abstractEsta tesis explora el diseño, fabricación y análisis de andamios de nanofibras poliméricas con nanorrellenos electroconductivos para la ingeniería de tejidos cardíacos, centrándose en la reparación del tejido miocárdico mediante la incorporación diferenciada de grafeno y polipirrol (PPy) en matrices de policaprolactona (PCL) a través del electrohilado. El trabajo tiene como objetivo establecer parámetros de fabricación y evaluar las propiedades morfológicas, mecánicas, químicas, eléctricas y de biocompatibilidad de los andamios, con el fin de seleccionar aquellos que ofrezcan un acoplamiento electromecánico teórico óptimo con el tejido miocárdico. Se distinguen dos estrategias: una centrada en andamios dopados con grafeno, que muestran mejoras en la uniformidad estructural y propiedades mecánicas, y otra en andamios enriquecidos con PPy, conocidos por su significativa conductividad eléctrica. Ambas estrategias presentan ventajas específicas, como la mejora de la hidrofilicidad y la promoción de la adhesión y proliferación celular, cruciales para la regeneración del tejido. A pesar de desafíos como la dispersión uniforme de nanopartículas y la correspondencia de las propiedades mecánicas con las del miocardio nativo, la investigación resalta el potencial de la polimerización in situ de PPy como un método equilibrado para lograr andamios con propiedades eléctricas y biocompatibilidad optimizadas. (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaNanomateriales e ingeniería tisularspa
dc.format.extentxv, 201 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86396
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesAbbasi, A. M. R., Marsalkova, M., & Militky, J. (2013). Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling. Journal of Nanoparticles, 2013, 1–4. https://doi.org/10.1155/2013/690407spa
dc.relation.referencesAbdul Rahman, N., & Bahruji, H. (2022). Plastics in Biomedical Application. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 114–125). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00071-7spa
dc.relation.referencesAgrawal, R., Shah, J., Gupta, G., Srivastava, R., Sharma, C., & Kotnala, R. (2020). Significantly high electromagnetic shielding effectiveness in polypyrrole synthesized by eco-friendly and cost-effective technique. Journal of Applied Polymer Science, 137(48), 1–12. https://doi.org/10.1002/app.49566spa
dc.relation.referencesAhadian, S., Zhou, Y., Yamada, S., Estili, M., Liang, X., Nakajima, K., Shiku, H., & Matsue, T. (2016). Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 8(13), 7075–7084. https://doi.org/10.1039/c5nr07059gspa
dc.relation.referencesAjith, G., Tamilarasi, G. P., Sabarees, G., Gouthaman, S., Manikandan, K., Velmurugan, V., Alagarsamy, V., & Solomon, V. R. (2023). Recent Developments in Electrospun Nanofibers as Delivery of Phytoconstituents for Wound Healing. Drugs and Drug Candidates, 2(1), 148–171. https://doi.org/10.3390/ddc2010010spa
dc.relation.referencesAl-Abduljabbar, A., & Farooq, I. (2023). Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 15(1). https://doi.org/10.3390/polym15010065spa
dc.relation.referencesmyocardial repair. Cellular and Molecular Life Sciences, 69(16), 2635–2656. https://doi.org/10.1007/ Alcon, A., Cagavi Bozkulak, E., & Qyang, Y. (2012). Regenerating functional heart tissue for s00018-012-0942-4spa
dc.relation.referencesAlegret, N., Dominguez-Alfaro, A., & Mecerreyes, D. (2019). 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules, 20(1), 73–89. https://doi.org/10.1021/acs.biomac.8b01382spa
dc.relation.referencesAlexeev, D., Goedecke, N., Snedeker, J., & Ferguson, S. (2020). Mechanical evaluation of electrospun poly ( ε -caprolactone ) single fi bers. Materials Today Communications, 24(April), 101211. https://doi.org/10.1016/j.mtcomm.2020.101211spa
dc.relation.referencesAmariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017). The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, 209(1). https://doi.org/10.1088/1757-899X/209/1/012092spa
dc.relation.referencesAmaya, J. B. (2018). Estudio De La Degradabilidad Del Pcl (Policaprolactona) Dosificado Con La Lignina De La Fibra De Banano. Revista Iberoamericana de Polimeros y MAteriales, 19(4), 128–141.spa
dc.relation.referencesAnsari, R. (2006). Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. E-Journal of Chemistry, 3(4), 186–201. https://doi.org/10.1155/2006/860413spa
dc.relation.referencesArakawa, C. K., & DeForest, C. A. (2017). Chapter 19 - Polymer Design and Development (A. Vishwakarma & J. M. B. T.-B. and E. of S. C. N. Karp (eds.); pp. 295–314). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802734-9.00019-6spa
dc.relation.referencesAsri, N. A. N., Mahat, M. M., Zakaria, A., Safian, M. F., & Abd Hamid, U. M. (2022). Fabrication Methods of Electroactive Scaffold-Based Conducting Polymers for Tissue Engineering Application: A Review. Frontiers in Bioengineering and Biotechnology, 10(July), 1–13. https://doi.org/10.3389/fbioe.2022.876696spa
dc.relation.referencesAvouris, P., & Dimitrakopoulos, C. (2012). Graphene: synthesis and applications. Materials Today, 15(3), 86–97. https://doi.org/https://doi.org/10.1016/S1369-7021(12)70044-5spa
dc.relation.referencesAWIN, Mclennan, K. M., Rebelo, C. J. R., Corke, M. J., Holmes, M. A., & Constantino-Casas. (2014). Using facial expression to assess pain in sheep. 9, 92281.spa
dc.relation.referencesAziz, R., Falanga, M., Purenovic, J., Mancini, S., Lamberti, P., & Guida, M. (2023). A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. Nanomaterials, 13(8), 1–28. https://doi.org/10.3390/nano13081374spa
dc.relation.referencesBaei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H., & Aghdami, N. (2016). Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C, 63, 131–141. https://doi.org/10.1016/j.msec.2016.02.056spa
dc.relation.referencesBagbi, Y., Pandey, A., & Solanki, P. R. (2019). Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 275–288). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00015-Xspa
dc.relation.referencesBahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 168(March), 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044spa
dc.relation.referencesBaker, S. R., Banerjee, S., Bonin, K., & Guthold, M. (2016). Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Materials Science and Engineering C, 59, 203–212. https://doi.org/10.1016/j.msec.2015.09.102spa
dc.relation.referencesBalint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015spa
dc.relation.referencesBarba Evia, J. R. (2009). Cardiomioplastia: El papel de las células madre en la regeneración miocárdica. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio, 56(1), 50–65.spa
dc.relation.referencesBejaoui, M., Galai, H., Touati, F., & Kouass, S. (2021). Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In U. Ahmad (Ed.), Dosage Forms. IntechOpen. https://doi.org/10.5772/intechopen.99431spa
dc.relation.referencesBellet, P., Gasparotto, M., Pressi, S., Fortunato, A., Scapin, G., Mba, M., Menna, E., & Filippini, F. (2021). Graphene-Based Scaffolds for Regenerative Medicinespa
dc.relation.referencesBeltran-Vargas, N. E., Peña-Mercado, E., Sánchez-Gómez, C., Garcia-Lorenzana, M., Ruiz, J. C., Arroyo-Maya, I., Huerta-Yepez, S., & Campos-Terán, J. (2022). Sodium Alginate/Chitosan Scaffolds for Cardiac Tissue Engineering: The Influence of Its Three-Dimensional Material Preparation and the Use of Gold Nanoparticles. Polymers, 14(16). https://doi.org/10.3390/polym14163233spa
dc.relation.referencesBertuoli, P. T., Ordono, J., Armelin, E., Pérez-Amodio, S., Baldissera, A. F., Ferreira, C. A., Puiggalí, J., Engel, E., Del Valle, L. J., & Alemán, C. (2019). Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 4(2), 3660–3672. https://doi.org/10.1021/acsomega.8b03411spa
dc.relation.referencesBiscaia, S., Silva, J. C., Moura, C., Viana, T., Tojeira, A., Mitchell, G. R., Pascoal-Faria, P., Ferreira, F. C., & Alves, N. (2022). Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 14(9). https://doi.org/10.3390/polym14091669spa
dc.relation.referencesBlachowicz, T., & Ehrmann, A. (2020). Conductive electrospun nanofiber mats. Materials, 13(1). https://doi.org/10.3390/ma13010152spa
dc.relation.referencesBolonduro, O. A., Duffy, B. M., Rao, A. A., Black, L. D., & Timko, B. P. (2020). From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Research, 12(1). https://doi.org/10.1007/s12274-020-2682-3spa
dc.relation.referencesBorges, M. H. R., Nagay, B. E., Costa, R. C., Souza, J. G. S., Mathew, M. T., & Barão, V. A. R. (2023). Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. In Advances in Colloid and Interface Science (Vol. 314, Issue February). https://doi.org/10.1016/j.cis.2023.102860spa
dc.relation.referencesBoroumand, S., Haeri, A., Nazeri, N., & Rabbani, S. (2021). Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds and Pharmacological Agents. Iranian Journal of Pharmaceutical Research, 20(4), 467–496. https://doi.org/10.22037/IJPR.2021.114730.15012spa
dc.relation.referencesBoutry, C. M., Müller, M., & Hierold, C. (2012). Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy). Materials Science and Engineering C, 32(6), 1610–1620. https://doi.org/10.1016/j.msec.2012.04.051spa
dc.relation.referencesBronzino, J. D. (2006). Tissue Engineering and Artificial Organs (1st ed.) (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781420003871spa
dc.relation.referencesBrugnara, M., Della Volpe, C., Siboni, S., & Zeni, D. (2006). Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope. Scanning, 28(5), 267–273. https://doi.org/10.1002/sca.4950280504spa
dc.relation.referencesButt, H.-J., & Kappl, M. (2018). Surface and Interfacial Forces. Wiley VCH.spa
dc.relation.referencesCamacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Small mammalian animal models of heart disease. American Journal of Cardiovascular Disease, 6(3), 70–80. https://doi.org/10.3390/jcdd3040030spa
dc.relation.referencesCamman, M., Joanne, P., Agbulut, O., & Hélary, C. (2022). 3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioactive Materials, 7, 275–291. https://doi.org/10.1016/j.bioactmat.2021.05.040spa
dc.relation.referencesCenters for Disease Control and Prevention. (2022). Heart Disease Facts. https://www.cdc.gov/heartdisease/facts.htm#printspa
dc.relation.referencesCeretti, E., Ginestra, P. S., Ghazinejad, M., Fiorentino, A., & Madou, M. (2017). Electrospinning and characterization of polymer–graphene powder scaffolds. CIRP Annals - Manufacturing Technology, 66(1), 233–236. https://doi.org/10.1016/j.cirp.2017.04.122spa
dc.relation.referencesChakraborty, M. (2020). Chitosan Biopolymer on Plant Growth. Encyclopedia. https://encyclopedia.pub/entry/3639spa
dc.relation.referencesChang, W.-T., Chen, J.-S., Tsai, M.-H., Tsai, W.-C., Juang, J.-N., & Liu, P.-Y. (2016). Interplay of Aging and Hypertension in Cardiac Remodeling: A Mathematical Geometric Model. PloS One, 11(12), e0168071. https://doi.org/10.1371/journal.pone.0168071spa
dc.relation.referencesChem, G., Thomas, M. S., Pillai, P. K. S., Farrowc, S. C., Pothan, L. A., & Thomas, S. (2021). Electrospinning as an Important Tool for Fabrication of Nanofibers for Advanced Applications — a Brief Review. Figure 1, 1–7. https://doi.org/10.21127/yaoyigc20200022spa
dc.relation.referencesbehavior in tissue engineering. Biomaterials Research, 23(1), 1–12. https://doi.org/10.1186/s40824-019- Chen, C., Bai, X., Ding, Y., & Lee, I. S. (2019). Electrical stimulation as a novel tool for regulating cell 0176-8spa
dc.relation.referencesChen, Q., Xiao, S., Shi, S. Q., & Cai, L. (2020). Synthesis, Characterization, and Antibacterial Activity of N-substituted Quaternized Chitosan and Its Cellulose-based Composite Film. BioResources, 15(1), 415.spa
dc.relation.referencesChen, X., Feng, B., Zhu, D. Q., Chen, Y. W., Ji, W., Ji, T. J., & Li, F. (2019). Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. International Journal of Nanomedicine, 14, 3669–3678. https://doi.org/10.2147/IJN.S204971spa
dc.relation.referencesChiesa, E., Dorati, R., Pisani, S., Bruni, G., Rizzi, L. G., Conti, B., Modena, T., & Genta, I. (2020). Graphene nanoplatelets for the development of reinforced PLA-PCL electrospun fibers as the next-generation of biomedical mats. Polymers, 12(6). https://doi.org/10.3390/polym12061390spa
dc.relation.referencesChorro, F. J., & López-merino, L. S. V. (2009). Modelos animales de enfermedad cardiovascular. 62(I), 69–84.spa
dc.relation.referencesČíková, E., Mičušík, M., Šišková, A., Procházka, M., Fedorko, P., & Omastová, M. (2018). Conducting electrospun polycaprolactone/polypyrrole fibers. Synthetic Metals, 235(December 2017), 80–88. https://doi.org/10.1016/j.synthmet.2017.11.011spa
dc.relation.referencesClavijo-Grimaldo, D., Casadiego-Torrado, C. A., Villalobos-Elías, J., Ocampo-Páramo, A., & Torres-Parada, M. (2022). Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used. Membranes, 12(6). https://doi.org/10.3390/membranes12060563spa
dc.relation.referencesClinicalTrials.gov. (2024). ClinicalTrials.gov. https://clinicaltrials.gov/search?term=scaffold&cond=Myocardial Infarction&city=spa
dc.relation.referencesCristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019a). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. March, 1253–1264. https://doi.org/10.1002/term.2875spa
dc.relation.referencesCristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019b). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. April, 1253–1264. https://doi.org/10.1002/term.2875spa
dc.relation.referencesCui, J., Li, J., Mathison, M., Tondato, F., Mulkey, S. P., Micko, C., Chronos, N. A. F., & Robinson, K. A. (2005). A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovascular Revascularization Medicine, 6(3), 113–120. https://doi.org/10.1016/j.carrev.2005.07.006spa
dc.relation.referencesCui, S., Mao, J., Rouabhia, M., Elkoun, S., & Zhang, Z. (2021). A biocompatible polypyrrole membrane for biomedical applications. RSC Advances, 11(28), 16996–17006. https://doi.org/10.1039/d1ra01338fspa
dc.relation.referencesCui, S., Mao, J., Zhang, Z., & Rouabhia, M. (2021). A biocompatible polypyrrole membrane for biomedical applications. 16996–17006. https://doi.org/10.1039/d1ra01338fspa
dc.relation.referencesDa Silva, A. B., Marini, J., Gelves, G., Sundararaj, U., Gregório, R., & Bretas, R. E. S. (2013). Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. European Polymer Journal, 49(10), 3318–3327. https://doi.org/10.1016/j.eurpolymj.2013.06.039spa
dc.relation.referencesfor activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7 Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanismspa
dc.relation.referencesDane. (2018). Estadísticas vitales. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/nacimientos-y-defuncionesspa
dc.relation.referencesDas, S., Wajid, A. S., Bhattacharia, S. K., Wilting, M. D., Rivero, I. V., & Green, M. J. (2013). Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. Journal of Applied Polymer Science, 128(6), 4040–4046. https://doi.org/10.1002/app.38694spa
dc.relation.referencesDayan V, Benech A, Rodríguez C, Ado S, Guedes I, Sotelo V, Laguzzi F, Kapitán M, Langhain M, Ferrando R, T. C. (2011). MODELO DE INFARTO AGUDO DE MIOCARDIO MEDIANTE ISQUEMIA-REPERFUSIÓN EN OVEJAS. Revista Uruguaya de Cardiología, 31–93. http://www.scielo.edu.uy/scielo.php?pid=S1688-04202011000400007&script=sci_arttextspa
dc.relation.referencesDe Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357–1362. https://doi.org/10.1007/s10853-008-3010-6spa
dc.relation.referencesDeitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272. https://doi.org/https://doi.org/10.1016/S0032-3861(00)00250-0spa
dc.relation.referencesdel Maria Javier, M. F., Delmo, E. M. J., & Hetzer, R. (2021). Evolution of heart transplantation since Barnard’s first. Cardiovascular Diagnosis and Therapy, 11(1), 171–182. https://doi.org/10.21037/CDT-20-289spa
dc.relation.referencesDeliormanlı, A. M. (2019). Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 188(4), 1117–1133. https://doi.org/10.1007/s12010-019-02976-5spa
dc.relation.referencesDeshmukh, K., Basheer Ahamed, M., Deshmukh, R. R., Khadheer Pasha, S. K., Bhagat, P. R., & Chidambaram, K. (2017). 3 - Biopolymer Composites With High Dielectric Performance: Interface Engineering. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan, & M. A. AlMaadeed (Eds.), Biopolymer Composites in Electronics (pp. 27–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809261-3.00003-6spa
dc.relation.referencesDevlin, G., Matthews, K., McCracken, G., Stuart, S., Jensen, J., Conaglen, J., & Bass, J. (2000). An ovine model of chronic stable heart failure. Journal of Cardiac Failure, 6(2), 140–143. https://doi.org/10.1054/jcaf.2000.7279spa
dc.relation.referencesDiaz, A., Ignacio, E., & Fischer, C. (2016). Modelos Experimentales de Insuficiencia Cardiaca en Grandes Animales (Issue February).spa
dc.relation.referencesDing, B., Wang, X., & Yu, J. (2019). Electrospinning and nanofabrication and applications. Elsevier.spa
dc.relation.referencesDozois, M. D., Bahlmann, L. C., Zilberman, Y., & Tang, X. (Shirley). (2017). Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: A new frontier in cardiac tissue engineering. Carbon, 120, 338–349. https://doi.org/10.1016/j.carbon.2017.05.050spa
dc.relation.referencesEchegaray, K., Andreu, I., Lazkano, A., Villanueva, I., Sáenz, A., Elizalde, M. R., Echeverría, T., López, B., Garro, A., González, A., Zubillaga, E., Solla, I., Sanz, I., González, J., Elósegui-Artola, A., Roca-Cusachs, P., Díez, J., Ravassa, S., & Querejeta, R. (2017). Role of Myocardial Collagen in Severespa
dc.relation.referencesAortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Revista Espanola de Cardiologia (English Ed.), 70(10), 832–840. https://doi.org/10.1016/j.rec.2016.12.038spa
dc.relation.referencesEdrisi, F., Baheiraei, N., Razavi, M., Roshanbinfar, K., Imani, R., & Jalilinejad, N. (2023). Potential of graphene-based nanomaterials for cardiac tissue engineering. Journal of Materials Chemistry B, 11(31), 7280–7299. https://doi.org/10.1039/d3tb00654aspa
dc.relation.referencesEl-Sayed, N. M., El-Bakary, M. A., Ibrahim, M. A., Elgamal, M. A., & Hamza, A. A. (2021). Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering. Microscopy Research and Technique, 84(7), 1596–1606. https://doi.org/10.1002/jemt.23720spa
dc.relation.referencesElamparithi, A., Punnoose, A. M., Paul, S. F. D., & Kuruvilla, S. (2017). Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(1), 20–27. https://doi.org/10.1080/00914037.2016.1180616spa
dc.relation.referencesElkhoury, K., Morsink, M., Sanchez-Gonzalez, L., Kahn, C., Tamayol, A., & Arab-Tehrany, E. (2021). Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive Materials, 6(11), 3904–3923. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.03.040spa
dc.relation.referencesEroğlu, N. S. (2022). Production of Nanofibers from Plant Extracts by Electrospinning Method (T. Tański & P. Jarka (eds.); p. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.102614spa
dc.relation.referencesEslahi, N., Lotfi, R., Zandi, N., Mazaheri, M., Soleimani, F., & Simchi, A. (2022). 8 - Graphene-based polymer nanocomposites in biomedical applications. In S. M. Rangappa, J. Parameswaranpillai, V. Ayyappan, M. G. Motappa, S. Siengchin, & C. Soutis (Eds.), Innovations in Graphene-Based Polymer Composites (pp. 199–245). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823789-2.00016-9spa
dc.relation.referencesFakhrali, A., Nasari, M., Poursharifi, N., Semnani, D., Salehi, H., Ghane, M., & Mohammadi, S. (2021). Biocompatible graphene-embedded PCL/PGS-based nanofibrous scaffolds: A potential application for cardiac tissue regeneration. Journal of Applied Polymer Science, 138(40), 1–14. https://doi.org/10.1002/app.51177spa
dc.relation.referencesFakhrali, A., Semnani, D., Salehi, H., & Ghane, M. (2022). Electro-conductive nanofibrous structure based on PGS/PCL coated with PPy by in situ chemical polymerization applicable as cardiac patch: Fabrication and optimization. Journal of Applied Polymer Science, 139(19), 1–20. https://doi.org/10.1002/app.52136spa
dc.relation.referencesFerreira, C. L., Valente, C. A., Zanini, M. L., Sgarioni, B., Henrique, P., Tondo, F., Chagastelles, P. C., Braga, J., Campos, M. M., Malmonge, A., Regina, N., & Basso, D. S. (2019). Biocompatible PCL / PLGA / Polypyrrole Composites for Regenerating Nerves. 1800028, 1–8. https://doi.org/10.1002/masy.201800028spa
dc.relation.referencesFlaig, F., Ragot, H., Simon, A., Revet, G., Kitsara, M., Kitasato, L., Hébraud, A., Agbulut, O., & Schlatter, G. (2020). Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate)spa
dc.relation.referencesElastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 6(4), 2388–2400. https://doi.org/10.1021/acsbiomaterials.0c00243spa
dc.relation.referencesFleischer, S., Feiner, R., & Dvir, T. (2017). Cardiac tissue engineering: From matrix design to the engineering of bionic hearts. Regenerative Medicine, 12(3), 275–284. https://doi.org/10.2217/rme-2016-0150spa
dc.relation.referencesFlores-Rojas, G. G. ., Gómez-Lazaro, B. ., López-Saucedo, F. ., Vera-Graziano, R. ., Bucio, E. ., & Mendizábal, E. (2023). Electrospun Scaffolds for Tissue Engineering : A Review. Macromol, 3, 524–553. https://doi.org/https://doi.org/10.3390/macromol3030031spa
dc.relation.referencesForward, K., & Rutledge, G. (2012). Free surface electrospinning from a wire electrode. Chemical Engineering Journal, 183, 492–503. https://doi.org/10.1016/j.cej.2011.12.045spa
dc.relation.referencesFujihara, K., Teo, E., Teik-Cheng, L., & Ma, Z. (2005). An Introduction To Electrospinning And Nanofibers. In World Scientific: Singapore (Vol. 3). https://doi.org/10.1142/9789812567611_0003spa
dc.relation.referencesFujita, B., & Zimmermann, W. H. (2017). Engineered Heart Repair. Clinical Pharmacology and Therapeutics, 102(2), 197–199. https://doi.org/10.1002/cpt.724spa
dc.relation.referencesFurth, M. E., & Atala, A. (2014). Chapter 6 - Tissue Engineering: Future Perspectives. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (Fourth Edi, pp. 83–123). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-398358-9.00006-9spa
dc.relation.referencesGabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41(11), 2251–2269. https://doi.org/10.1088/0031-9155/41/11/002spa
dc.relation.referencesGálvez-Montón, C., Prat-Vidal, C., Díaz-Güemes, I., Crisóstomo, V., Soler-Botija, C., Roura, S., Llucià-Valldeperas, A., Perea-Gil, I., Sánchez-Margallo, F. M., & Bayes-Genis, A. (2014). Comparison of two preclinical myocardial infarct models: Coronary coil deployment versus surgical ligation. Journal of Translational Medicine, 12(1), 1–9. https://doi.org/10.1186/1479-5876-12-137spa
dc.relation.referencesGálvez-Montón, C., Prat-Vidal, C., Roura, S., Soler-Botija, C., & Bayes-Genis, A. (2013). Ingeniería tisular cardiaca y corazón bioartificial. Revista Espanola de Cardiologia, 66(5), 391–399. https://doi.org/10.1016/j.recesp.2012.11.013spa
dc.relation.referencesGelmi, A., Zhang, J., Cieslar-Pobuda, A., Ljunngren, M. K., Los, M. J., Rafat, M., & Jager, E. W. H. (2015). Electroactive 3D materials for cardiac tissue engineering. Electroactive Polymer Actuators and Devices (EAPAD) 2015, 9430, 94301T. https://doi.org/10.1117/12.2084165spa
dc.relation.referencesGhovvati, M., Kharaziha, M., Ardehali, R., & Annabi, N. (2022). Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2200055.spa
dc.relation.referencesGhuran, A. V., & Camm, A. J. (2001). Ischaemic heart disease presenting as arrhythmias. British Medical Bulletin, 59, 193–210. https://doi.org/10.1093/bmb/59.1.193spa
dc.relation.referencesGinestra, P. (2019). Manufacturing of polycaprolactone - Graphene fibers for nerve tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 100(July), 103387. https://doi.org/10.1016/j.jmbbm.2019.103387spa
dc.relation.referencesGómez, J., Vásquez, M., Mantione, D., & Alegret, N. (2021). Carbon Nanomaterials Embedded in Conductive Polymers : A State of the Art.spa
dc.relation.referencesGreenlund, K. J., Giles, W. H., Keenan, N. L., Malarcher, A. M., Zheng, Z. J., Casper, M. L., & Croft, J. B. (2006). 381Heart Disease and Stroke Mortality in the Twentieth Century. In J. W. Ward & C. Warren (Eds.), Silent Victories: The History and Practice of Public Health in Twentieth Century America (p. 0). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195150698.003.18spa
dc.relation.referencesGryshkov, O., Al Halabi, F., Kuhn, A. I., Leal-Marin, S., Freund, L. J., Förthmann, M., Meier, N., Barker, S. A., Haastert-Talini, K., & Glasmacher, B. (2021). Pvdf and p(Vdf-trfe) electrospun scaffolds for nerve graft engineering: A comparative study on piezoelectric and structural properties, and in vitro biocompatibility. International Journal of Molecular Sciences, 22(21), 1–27. https://doi.org/10.3390/ijms222111373spa
dc.relation.referencesGrzeszczuk, M. (2018). Polymer electrodes: Preparation, properties, and applications. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11676-2spa
dc.relation.referencesGu, H., Huang, J., Li, N., Yang, H., Wang, Y., Zhang, Y., Dong, C., Chen, G., & Guan, H. (2022). Polystyrene-Modulated Polypyrrole to Achieve Controllable Electromagnetic-Wave Absorption with Enhanced Environmental Stability. Nanomaterials, 12(15). https://doi.org/10.3390/nano12152698spa
dc.relation.referencesGuo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering [Review-article]. Biomacromolecules, 19(6), 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276spa
dc.relation.referencesGuo, Q.-Y., Yang, J.-Q., Feng, X.-X., & Zhou, Y.-J. (2023). Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Medical Research, 10(1), 18. https://doi.org/10.1186/s40779-023-00452-0spa
dc.relation.referencesHagen, R. (2012). 10.12 - Polylactic Acid. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 231–236). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53349-4.00269-7spa
dc.relation.referencesHaider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015spa
dc.relation.referencesHan, J., Li, H., Xu, X., Yuan, L., Wang, N., & Yu, H. (2016). Cu2(OH)PO4 pretreated by composite surfactants for the micro-domino effect: A high-efficiency Fenton catalyst for the total oxidation of dyes. Materials Letters, 166, 71–74. https://doi.org/https://doi.org/10.1016/j.matlet.2015.12.046spa
dc.relation.referencesHao, D., Swindell, H. S., Ramasubramanian, L., Liu, R., Lam, K. S., Farmer, D. L., & Wang, A. (2020). Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Frontiers in Bioengineering and Biotechnology, 8(June). https://doi.org/10.3389/fbioe.2020.00633spa
dc.relation.referencesHao, L., Dong, C., Zhang, L., Zhu, K., & Yu, D. (2022). Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers, 14(23). https://doi.org/10.3390/polym14235139spa
dc.relation.referencesHaq, A. U., Carotenuto, F., De Matteis, F., Prosposito, P., Francini, R., Teodori, L., Pasquo, A., & Di Nardo, P. (2021). Intrinsically conductive polymers for striated cardiac muscle repair. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168550spa
dc.relation.referencesHarlin, A., & Ferenets, M. (2006). Introduction to conductive materials. Intelligent Textiles and Clothing, 217–238. https://doi.org/10.1533/9781845691622.3.217spa
dc.relation.referencesHashizume, R., Fujimoto, K. L., Hong, Y., Guan, J., Toma, C., Tobita, K., & Wagner, W. R. (2013). Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model. Journal of Thoracic and Cardiovascular Surgery, 146(2), 391-399.e1. https://doi.org/10.1016/j.jtcvs.2012.11.013spa
dc.relation.referencesHe, S., Wu, J., Li, S., Wang, L., Sun, Y., Xie, J., & Ramnath, D. (2020). The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials, 120285. https://doi.org/10.1016/j.biomaterials.2020.120285spa
dc.relation.referencesHeidari, M., Bahrami, H., & Ranjbar-Mohammadi, M. (2017). Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 78, 218–229. https://doi.org/10.1016/j.msec.2017.04.095spa
dc.relation.referencesHeidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 103(May), 109768. https://doi.org/10.1016/j.msec.2019.109768spa
dc.relation.referencesHeikhmakhtiar, A. K., & Lim, K. M. (2018). Computational Prediction of the Combined Effect of CRT and LVAD on Cardiac Electromechanical Delay in LBBB and RBBB. Computational and Mathematical Methods in Medicine, 2018(September), 10–12. https://doi.org/10.1155/2018/4253928spa
dc.relation.referencesHeng, B. C., Bai, Y., Li, X., Lim, L. W., Li, W., Ge, Z., Zhang, X., & Deng, X. (2023). Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. Advanced Science, 10(2), 2204502. https://doi.org/https://doi.org/10.1002/advs.202204502spa
dc.relation.referencesHirenkumar, M., & Steven, S. (2012). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1–19. https://doi.org/10.3390/polym3031377.Polyspa
dc.relation.referencesHohman, M., Shin, M., Rutledge, G., & Brenner, M. (2001). Electrospinning and Electrically Forced Jets. I. Stability Theory. Physics of Fluids - PHYS FLUIDS, 13. https://doi.org/10.1063/1.1383791spa
dc.relation.referencesHouse, A., Atalla, I., Lee, E. J., & Guvendiren, M. (2021). Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. 2000022, 1–16. https://doi.org/10.1002/anbr.202000022spa
dc.relation.referencesHu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9, 895035. https://doi.org/10.3389/fcvm.2022.895035spa
dc.relation.referencesHuang, C., Niu, H., Wu, J., Ke, Q., Mo, X., & Lin, T. (2012). Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 473872. https://doi.org/10.1155/2012/473872spa
dc.relation.referencesHuang, P., Liu, Y., Chen, Z., Zheng, Y., Vasilovna, K. V., Faritovich, G. R., & Xin, B. (2023). Preparation and Characterization of PU/PDA/PPy Flexible Composite Film for Electric Heating. Fibers and Polymers. https://doi.org/10.1007/s12221-023-00416-0spa
dc.relation.referencesHuang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/https://doi.org/10.1016/S0266-3538(03)00178-7spa
dc.relation.referencesIbrahim, I. M., Yunus, S., & Hashim, M. A. (2013). Relative performance of isoproopylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. International Journal of Scientific & Engineering Research, 4(2), 1–12.spa
dc.relation.referencesIkram, H., Rogers, S. J., Charles, C. J., Sands, J., Richards, A. M., Bridgman, P. G., & Gooneratne, R. (1997). An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology, 48(8), 679–688. https://doi.org/10.1177/000331979704800803spa
dc.relation.referencesImani, F., Karimi-Soflou, R., Shabani, I., & Karkhaneh, A. (2021). PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer, 218(September 2020), 123487. https://doi.org/10.1016/j.polymer.2021.123487spa
dc.relation.referencesJain, A., Nabeel, A. N., Bhagwat, S., Kumar, R., Sharma, S., Kozak, D., Hunjet, A., Kumar, A., & Singh, R. (2023). Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon, 9(7), e17611. https://doi.org/10.1016/j.heliyon.2023.e17611spa
dc.relation.referencesJana, S., Bhagia, A., & Lerman, A. (2019). Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomedical Materials (Bristol), 14(6). https://doi.org/10.1088/1748-605X/ab3d24spa
dc.relation.referencesJang, Y., Park, Y., & Kim, J. (2020). Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 10, 925. https://doi.org/10.3390/coatings10100925spa
dc.relation.referencesJiang, L., Chen, D., Wang, Z., Zhang, Z., Xia, Y., Xue, H., & Liu, Y. (2019). Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Applied Biochemistry and Biotechnology, 188(4), 952–964. https://doi.org/10.1007/s12010-019-02967-6spa
dc.relation.referencesJohn, J., & Jayalekshmi, S. (2023). Polypyrrole with appreciable solubility, crystalline order and electrical conductivity synthesized using various dopants appropriate for device applications. Polymer Bulletin, 80(6), 6099–6116. https://doi.org/10.1007/s00289-022-04354-4spa
dc.relation.referencesJung, H.-S., Kim, M. H., Shin, J. Y., Park, S. R., Jung, J.-Y., & Park, W. H. (2018). Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr. Polym., 193, 205.spa
dc.relation.referencesKai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011a). Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 98 B(2), 379–386. https://doi.org/10.1002/jbm.b.31862spa
dc.relation.referencesKai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011b). Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 99 A(3), 376–385. https://doi.org/10.1002/jbm.a.33200spa
dc.relation.referencesKalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020). A review of piezoelectric pvdf film by electrospinning and its applications. Sensors (Switzerland), 20(18), 1–42. https://doi.org/10.3390/s20185214spa
dc.relation.referencesKariduraganavar, M. Y., Kittur, A. A., & Kamble, R. R. (2014). Chapter 1 - Polymer Synthesis and Processing. In S. G. Kumbar, C. T. Laurencin, & M. Deng (Eds.), Natural and Synthetic Biomedical Polymers (pp. 1–31). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-396983-5.00001-6spa
dc.relation.referencesKarimi, S. N. H., Aghdam, R. M., Ebrahimi, S. A. S., & Chehrehsaz, Y. (2022). Tri-layered alginate/poly(epsilon-caprolactone) electrospun scaffold for cardiac tissue engineering. POLYMER INTERNATIONAL, 71(9), 1099–1108. https://doi.org/10.1002/pi.6371spa
dc.relation.referencesKarkan, S. F., Davaran, S., Rahbarghazi, R., Salehi, R., & Akbarzadeh, A. (2019). Electrospun nanofibers for the fabrication of engineered vascular grafts. Journal of Biological Engineering, 7, 1–13.spa
dc.relation.referencesKashou, A. H., & Chhabra, H. B. L. (2020). Physiology, Sinoatrial Node. StatPearls [Internet], 1–6.spa
dc.relation.referencesKausar, A. (2021). Chapter 5 - Perspectives on nanocomposite with polypyrrole and nanoparticles. In A. Kausar (Ed.), Conducting Polymer-Based Nanocomposites (pp. 103–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822463-2.00006-3spa
dc.relation.referencesKazu Kikuchi, & Poss, K. D. (2008). Cardiac Regenerative Capacity and Mechanisms. Annual Review of Cell and Developmental Biology, 28(1), 719–741. https://doi.org/doi.org/10.1146/annurev-cellbio-101011-155739spa
dc.relation.referencesKesornsit, S., Direksilp, C., Phasuksom, K., Thummarungsan, N., Sakunpongpitiporn, P., Rotjanasuworapong, K., Sirivat, A., & Niamlang, S. (2022). Synthesis of Highly Conductive Poly(3-hexylthiophene) by Chemical Oxidative Polymerization Using Surfactant Templates. Polymers, 14(18), 1–19. https://doi.org/10.3390/polym14183860spa
dc.relation.referencesKharaziha, M., Shin, S. R., Nikkhah, M., Topkaya, S. N., Masoumi, N., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2014). Tough and flexible CNT-polymeric hybrid scaffolds for engineeringspa
dc.relation.referencescardiac constructs. Biomaterials, 35(26), 7346–7354. https://doi.org/10.1016/j.biomaterials.2014.05.014spa
dc.relation.referencesKhatti, T., Naderi-Manesh, H., & Kalantar, S. M. (2019). Polypyrrole-Coated Polycaprolactone-Gelatin Conductive Nanofibers: Fabrication and Characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 250(October), 114440. https://doi.org/10.1016/j.mseb.2019.114440spa
dc.relation.referencesKierszenbaum, Abraham L.; Tres, Laura L.; Fernández Aceñero, M. J. (2016). Histología y biología celular : introducción a la anatomía patológica (Elsevier (ed.)).spa
dc.relation.referencesKim, S., Tserengombo, B., Choi, S.-H., Noh, J., Huh, S., Choi, B., Chung, H., Kim, J., & Jeong, H. (2018). Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. International Communications in Heat and Mass Transfer, 91, 95–102. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2017.12.011spa
dc.relation.referencesKotadia, I., Whitaker, J., Roney, C., Niederer, S., O’Neill, M., Bishop, M., & Wright, M. (2020). Anisotropic Cardiac Conduction. Arrhythmia & Electrophysiology Review, 9(4), 202–210. https://doi.org/10.15420/aer.2020.04spa
dc.relation.referencesKrista McLennan. (n.d.). Recognising, assessing and alleviating pain in sheep. Farm Animal Well Being.spa
dc.relation.referencesKumar, A., & Kumar, A. (2019). Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: Versatility in biomedical applications. In Materials for Biomedical Engineering: Absorbable Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818415-8.00007-3spa
dc.relation.referencesKumar, M., & Kumari, P. (2020). The effect of reciprocating motion of drum collector on electrospun PVDF nanofiber for energy harvesting application. WCMNM, 18–21.spa
dc.relation.referencesKumar, S., & Chatterjee, K. (2016). Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. In ACS Applied Materials and Interfaces (Vol. 8, Issue 40, pp. 26431–26457). American Chemical Society. https://doi.org/10.1021/acsami.6b09801spa
dc.relation.referencesKurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136(July). https://doi.org/10.1016/j.eurpolymj.2020.109919spa
dc.relation.referencesLaforgue, A., & Robitaille, L. (2010). Deposition of ultrathin coatings of polypyrrole and poly(3,4- ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chemistry of Materials, 22(8), 2474–2480. https://doi.org/10.1021/cm902986gspa
dc.relation.referencesLanger, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920–926. https://doi.org/10.1126/science.8493529spa
dc.relation.referencesLe, T. H., Kim, Y., & Yoon, H. (2017). Electrical and electrochemical properties of conducting polymers. Polymers, 9(4). https://doi.org/10.3390/polym9040150spa
dc.relation.referencesLee, J. K. Y., Chen, N., Peng, S., Li, L., Tian, L., Thakor, N., & Ramakrishna, S. (2018). Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Progress in Polymer Science, 86, 40–84. https://doi.org/10.1016/j.progpolymsci.2018.07.002spa
dc.relation.referencesLee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042spa
dc.relation.referencesLee, M., Kim, M. C., & Lee, J. Y. (2022). Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine, 17, 6181–6200. https://doi.org/10.2147/IJN.S386763spa
dc.relation.referencesLeung, V., & Ko, F. (2011). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22, 350–365. https://doi.org/10.1002/pat.1813spa
dc.relation.referencesLewis, T. W. (1998). A Study of The Overoxidation of The Conducting Polymer Polypyrrole. 230.spa
dc.relation.referencesLi, J., Xu, C., Tian, H., Zha, F., Qi, W., & Wang, Q. (2018). Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 494–499. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.11.043spa
dc.relation.referencesLi, J., Zhang, X., Jiang, J., Wang, Y., Jiang, H., Zhang, J., Nie, X., & Liu, B. (2018). Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicological Sciences, 167(1), 269–281. https://doi.org/10.1093/toxsci/kfy235spa
dc.relation.referencesLi, S., Yu, X., & Li, Y. (2022). Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fibrous mat : influence of drug delivery and Schwann cells proliferation Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fi. Biomedical Physics & Engineering Express, 8.spa
dc.relation.referencesLi, T. T., Yan, M., Zhong, Y., Ren, H. T., Lou, C. W., Huang, S. Y., & Lin, J. H. (2019). Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 8(6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035spa
dc.relation.referencesLi, Y., Wei, L., Lan, L., Gao, Y., Zhang, Q., Dawit, H., Mao, J., Guo, L., Shen, L., & Wang, L. (2022). Conductive biomaterials for cardiac repair: A review. Acta Biomaterialia, 139, 157–178. https://doi.org/10.1016/j.actbio.2021.04.018spa
dc.relation.referencesLiang, Y., & Goh, J. C.-H. (2020). Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity, 2(2), 101–119. https://doi.org/10.1089/bioe.2020.0010spa
dc.relation.referencesLiang, Y., Mitriashkin, A., Lim, T. T., & Goh, J. C. H. (2021). Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials, 276(January), 121008. https://doi.org/10.1016/j.biomaterials.2021.121008spa
dc.relation.referencesLiau, B., Zhang, D., & Bursac, N. (2012). Functional cardiac tissue engineering. Regenerative Medicine, 7(2), 187–206. https://doi.org/10.2217/rme.11.122spa
dc.relation.referencesLindsey, M. L., Bolli, R., Canty, J. M., Du, X. J., Frangogiannis, N. G., Frantz, S., Gourdie, R. G., Holmes, J. W., Jones, S. P., Kloner, R. A., Lefer, D. J., Liao, R., Murphy, E., Ping, P., Przyklenk, K., Recchia, F. A., Longacre, L. S., Ripplinger, C. M., Van Eyk, J. E., & Heusch, G. (2018). Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 314(4), H812–H838. https://doi.org/10.1152/ajpheart.00335.2017spa
dc.relation.referencesLiu, H., Paul, C., & Xu, M. (2017). Optimal environmental stiffness for stem cell mediated ischemic myocardium repair. Adult Stem Cells, 293–304.spa
dc.relation.referencesLiu, Y., & Wu, F. (2023). Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Advances, 3606–3618. https://doi.org/10.1039/d3na00138espa
dc.relation.referencesLonghin, E. M., El Yamani, N., Rundén-Pran, E., & Dusinska, M. (2022). The alamar blue assay in the context of safety testing of nanomaterials. Frontiers in Toxicology, 4, 981701. https://doi.org/10.3389/ftox.2022.981701spa
dc.relation.referencesLoyo, C., Cordoba, A., Palza, H., Canales, D., Melo, F., Vivanco, J. F., Baier, R. V., Millán, C., Corrales, T., & Zapata, P. A. (2023). Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration. Polymers, 16(1), 129. https://doi.org/10.3390/polym16010129spa
dc.relation.referencesLu, H., Li, X., & Lei, Q. (2021). Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Frontiers in Chemistry, 9(September), 6–11. https://doi.org/10.3389/fchem.2021.732132spa
dc.relation.referencesLukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., Dolatshahi-Pirouz, A., & Orive, G. (2022). Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics, 14(6), 1–19. https://doi.org/10.3390/pharmaceutics14061177spa
dc.relation.referencesMa, Z., Shi, W., Yan, K., Pan, L., & Yu, G. (2019). Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 10(25), 6232–6244. https://doi.org/10.1039/c9sc02033kspa
dc.relation.referencesMacDonald, E. A., Rose, R. A., & Quinn, T. A. (2020). Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00170spa
dc.relation.referencesMaharjan, B., Kaliannagounder, V. K., Jang, S. R., Awasthi, G. P., Bhattarai, D. P., Choukrani, G., Park, C. H., & Kim, C. S. (2020). In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering C, 114(April), 111056. https://doi.org/10.1016/j.msec.2020.111056spa
dc.relation.referencesMahmoudi, T., Wang, Y., & Hahn, Y.-B. (2018). Graphene and its derivatives for solar cells application. Nano Energy, 47, 51–65. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.02.047spa
dc.relation.referencesMahun, A., Abbrent, S., Bober, P., Brus, J., & Kobera, L. (2020). Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals, 259, 116250. https://doi.org/https://doi.org/10.1016/j.synthmet.2019.116250spa
dc.relation.referencesMajid, Q. A., Fricker, A. T. R., Gregory, D. A., Davidenko, N., Hernandez Cruz, O., Jabbour, R. J., Owen, T. J., Basnett, P., Lukasiewicz, B., Stevens, M., Best, S., Cameron, R., Sinha, S., Harding, S. E., & Roy, I. (2020). Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 7(October), 1–32. https://doi.org/10.3389/fcvm.2020.554597spa
dc.relation.referencesMalmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195058239.001.0001spa
dc.relation.referencesMancino, C., Hendrickson, T., Whitney, L. V., Paradiso, F., Abasi, S., Tasciotti, E., Taraballi, F., & Guiseppi-Elie, A. (2022). Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 44, 102567. https://doi.org/10.1016/j.nano.2022.102567spa
dc.relation.referencesMannhardt, I., Breckwoldt, K., Letuffe-Brenière, D., Schaaf, S., Schulz, H., Neuber, C., Benzin, A., Werner, T., Eder, A., Schulze, T., Klampe, B., Christ, T., Hirt, M. N., Huebner, N., Moretti, A., Eschenhagen, T., & Hansen, A. (2016). Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 7(1), 29–42. https://doi.org/10.1016/j.stemcr.2016.04.011spa
dc.relation.referencesManousiouthakis, E., Park, J., Hardy, J. G., Lee, J. Y., & Schmidt, C. E. (2022). Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomaterialia, 139, 22–42. https://doi.org/https://doi.org/10.1016/j.actbio.2021.07.065spa
dc.relation.referencesManteca, X., Temple, D., Mainau, E., & Llonch, P. (2017). Evaluación del dolor en el ganado ovino. Fawec, 17(1), 1–2. https://doi.org/10.13130/AWINspa
dc.relation.referencesMao, J., & Zhang, Z. (2018). Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. Advances in Experimental Medicine and Biology, 1078, 347–370. https://doi.org/10.1007/978-981-13-0950-2_18spa
dc.relation.referencesMargerrison, E., Argentieri, M., Kommala, D., & Schabowsky, C. N. (2021). Polycaprolactone (PCL) Safety Profile Report Details Date of Submission ECRI Corporate Governance Project Manager. 540.spa
dc.relation.referencesMarkowitz, S. M., & Lerman, B. B. (2018). A contemporary view of atrioventricular nodal physiology. Journal of Interventional Cardiac Electrophysiology, 52(3), 271–279. https://doi.org/10.1007/s10840-018-0392-5spa
dc.relation.referencesMatysiak, W., Tański, T., Smok, W., Gołombek, K., & Schab-Balcerzak, E. (2020). Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Applied Surface Science, 509(December 2019). https://doi.org/10.1016/j.apsusc.2019.145068spa
dc.relation.referencesMbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & ullah khan, A. (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/https://doi.org/10.1016/j.rechem.2021.100163spa
dc.relation.referencesMcClelland, R., Dennis, R., Reid, L. M., Palsson, B., & Macdonald, J. M. (2005). 7 - TISSUE ENGINEERING. In J. D. Enderle, S. M. Blanchard, & J. D. Bronzino (Eds.), Introduction to Biomedical Engineering (Second Edition) (Second Edi, pp. 313–402). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-238662-6.50009-4spa
dc.relation.referencesMcivor, M. J., Maolmhuaidh, F. Ó., Meenagh, A., Hussain, S., Bhattacharya, G., Fishlock, S., Ward, J., Mcferran, A., Acheson, J. G., Cahill, P. A., Forster, R., Mceneaney, D. J., Boyd, A. R., & Meenan, B. J. (2022). 3D Fabrication and Characterisation of Electrically Receptive Tissue Modelsspa
dc.relation.referencesMckee, C. T., Last, J. A., Russell, P., & Murphy, C. J. (2011). Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Engineering. Part B, Reviews, 17 3, 155–164.spa
dc.relation.referencesMcKeen, L. (2021). Chapter11 - The effect of heat aging on the properties of sustainable polymers. In L. McKeen (Ed.), The Effect of Long Term Thermal Exposure on Plastics and Elastomers (Second Edition) (Second Edi, pp. 313–332). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-85436-8.00001-1spa
dc.relation.referencesMcMahan, S., Taylor, A., Copeland, K. M., Pan, Z., Liao, J., & Hong, Y. (2020). Current advances in biodegradable synthetic polymer based cardiac patches. Journal of Biomedical Materials Research - Part A, 108(4), 972–983. https://doi.org/10.1002/jbm.a.36874spa
dc.relation.referencesMcMillen, C. (2001). The sheep - an ideal model for biomedical research? Anzccart News, 14(2), 1–4.spa
dc.relation.referencesMegelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456–8466. https://doi.org/10.1021/ma020444aspa
dc.relation.referencesMehta, P. P., & Pawar, V. S. (2018). 22 - Electrospun nanofiber scaffolds: Technology and applications. In Inamuddin, A. M. Asiri, & A. Mohammad (Eds.), Applications of Nanocomposite Materials in Drug Delivery (pp. 509–573). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-813741-3.00023-6spa
dc.relation.referencesMit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327–2338. https://doi.org/https://doi.org/10.1002/macp.200400225spa
dc.relation.referencesMittal, T. (2005). Pacemakers- A journey through the years. Indian Journal of Thoracic and Cardiovascular Surgery, 21, 236–249. https://doi.org/doi.org/10.1007/s12055-005-0060-0spa
dc.relation.referencesMohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.01.013spa
dc.relation.referencesMontes, A., Valor, D., Penabad, Y., Dom, M., Pereyra, C., Mart, E., & Ossa, D. (2023). Formation of PLGA – PEDOT : PSS Conductive Scaffolds by Supercritical Foaming. 1–20.spa
dc.relation.referencesMorsink, M., Severino, P., Luna-Ceron, E., Hussain, M. A., Sobahi, N., & Shin, S. R. (2022). Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomaterialia, 139, 141–156. https://doi.org/10.1016/j.actbio.2021.11.022spa
dc.relation.referencesMota, K. O., & Corrêa, C. B. (2021). Effect of Preparation Additives on the Antimicrobial Activity and Cytotoxicity of Polypyrrole. 32(6), 1203–1212.spa
dc.relation.referencesMurugan, S. S., Dalavi, P. A., Devi G.V., Y., Chatterjee, K., & Venkatesan, J. (2022). Natural and Synthetic Biopolymeric Biomaterials for Bone Tissue Engineering Applications. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 746–757). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00246-7spa
dc.relation.referencesMutepfa, A. R., Hardy, J. G., & Adams, C. F. (2022). Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Frontiers in Medical Technology, 4(February). https://doi.org/10.3389/fmedt.2022.693438spa
dc.relation.referencesNag, A., Mitra, A., & Mukhopadhyay, S. C. (2018). Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 270, 177–194. https://doi.org/https://doi.org/10.1016/j.sna.2017.12.028spa
dc.relation.referencesNagiah, N., El Khoury, R., Othman, M. H., Akimoto, J., Ito, Y., Roberson, D. A., & Joddar, B. (2022). Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. ACS Omega, 7(16), 13894–13905. https://doi.org/10.1021/acsomega.2c00271spa
dc.relation.referencesNair, N. R., Sekhar, V. C., Nampoothiri, K. M., & Pandey, A. (2017). 32 - Biodegradation of Biopolymers. In A. Pandey, S. Negi, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 739–755). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63662-1.00032-4spa
dc.relation.referencesNajafi Tireh Shabankareh, A., Samadi Pakchin, P., Hasany, M., & Ghanbari, H. (2023). Development of a new electroconductive nanofibrous cardiac patch based on polyurethane-reduced graphene oxide nanocomposite scaffolds. Materials Chemistry and Physics, 305(May), 127961. https://doi.org/10.1016/j.matchemphys.2023.127961spa
dc.relation.referencesNamsheer, K., & Rout, C. S. (2021). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 11(10), 5659–5697. https://doi.org/10.1039/d0ra07800jspa
dc.relation.referencesNasr, S. M., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., Bagherzadeh, M., Ghadiri, A. M., Rabiee, M., Jajarmi, V., & Webster, T. J. (2020). Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. International Journal of Nanomedicine, 15, 4205–4224. https://doi.org/10.2147/IJN.S245936spa
dc.relation.referencesNational Farm Animal Care Council. (2013). Code of practice for the care and handling of sheep. In Practice.spa
dc.relation.referencesNational Research Council. (1992). 4 Recognition and Assessment of Pain, Stress, and Distress. In Recognition and Alleviation of Pain and Distress in Laboratory Animals. The National Academies Press. https://doi.org/doi: 10.17226/1542spa
dc.relation.referencesNekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134(June 2020), 111083. https://doi.org/10.1016/j.materresbull.2020.111083spa
dc.relation.referencesNguyen-truong, M., & Li, Y. V. (2020). Mechanical Considerations of Electrospun Sca ff olds for Myocardial Tissue and Regenerative Engineering. 1–22.spa
dc.relation.referencesNguyen, T. D., Roh, S., Thi, M., Nguyen, N., & Lee, J. S. (2023). Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications.spa
dc.relation.referencesNikkhah, M., Akbari, M., Paul, A., Memic, A., Dolatshahi-Pirouz, A., & Khademhosseini, A. (2016). Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering. In Biomaterials from Nature for Advanced Devices and Therapies (pp. 37–62). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119126218.ch3spa
dc.relation.referencesNostril, A., & Lip, A. (n.d.). Sheep Pain Facial Expression Scale * Sheep Pain Facial Expression Scale ( SPFES ). 0–1.spa
dc.relation.referencesO’Brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.xspa
dc.relation.referencesOjrzynska, M., Wroblewska, A., Judek, J., Malolepszy, A., Duzynska, A., & Zdrojek, M. (2020). Study of optical properties of graphene flakes and its derivatives in aqueous solutions. Optics Express, 28(5), 7274. https://doi.org/10.1364/oe.382523spa
dc.relation.referencesOprea, A. E., Ficai, A., & Andronescu, E. (2019). Electrospun nanofibers for tissue engineering applications. In Materials for Biomedical Engineering. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816909-4.00004-xspa
dc.relation.referencesPang, A. L., Arsad, A., & Ahmadipour, M. (2021). Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies, 32(4), 1428–1454. https://doi.org/10.1002/pat.5201spa
dc.relation.referencesPark, D. W., Ness, J. P., Brodnick, S. K., Esquibel, C., Novello, J., Atry, F., Baek, D. H., Kim, H., Bong, J., Swanson, K. I., Suminski, A. J., Otto, K. J., Pashaie, R., Williams, J. C., & Ma, Z. (2018). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. ACS Nano, 12(1), 148–157. https://doi.org/10.1021/acsnano.7b04321spa
dc.relation.referencesPatino, M. G., Neiders, M. E., Andreana, S., Noble, B., & Cohen, R. E. (2002). Collagen : An Overview. 280–285. https://doi.org/10.1097/01.ID.0000019547.50849.3Bspa
dc.relation.referencesPfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. Journal of Biomechanical Engineering, 136(2), 21007. https://doi.org/10.1115/1.4026221spa
dc.relation.referencesPomeroy, J. E., Helfer, A., & Bursac, N. (2020). Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances, 42, 107353. https://doi.org/https://doi.org/10.1016/j.biotechadv.2019.02.009spa
dc.relation.referencesPotdar, A., Kale, A., Marathe, P., Talekar, P., & Yadav, S. (2020). A Review On Applications Of Graphene. IJRAR1AA1390 International Journal of Research and Analytical Reviews (IJRAR) Www.Ijrar.Org, 80(4), 80–85. www.ijrar.orgspa
dc.relation.referencesPrecedence Research. (2022). Transplantation Market Size, Share and Growth Analysis.spa
dc.relation.referencesPushp, P., Bhaskar, R., Kelkar, S., Sharma, N., Pathak, D., & Gupta, M. K. (2021). Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) based patches with tunable mechanical properties for cardiac tissue engineering applications. Biotechnology and Bioengineering, 118(6), 2312–2325. https://doi.org/10.1002/bit.27743spa
dc.relation.referencesQasim, M., Arunkumar, P., Powell, H. M., & Khan, M. (2019). Current research trends and challenges in tissue engineering for mending broken hearts. Life Sciences, 229(March), 233–250. https://doi.org/10.1016/j.lfs.2019.05.012spa
dc.relation.referencesRabbani, S., Ahmadi, H., Fayazzadeh, E., Sahebjam, M., Boroumand, M. A., Sotudeh, M., & Nassiri, S. M. (2008). Development of an ovine model of myocardial infarction. ANZ Journal of Surgery, 78(1–2), 78–81. https://doi.org/10.1111/j.1445-2197.2007.04359.xspa
dc.relation.referencesRandviir, E. P., Brownson, D. A. C., & Banks, C. E. (2014). A decade of graphene research: Production, applications and outlook. In Materials Today (Vol. 17, Issue 9, pp. 426–432). Elsevier. https://doi.org/10.1016/j.mattod.2014.06.001spa
dc.relation.referencesRashid, S. T., Salacinski, H. J., Hamilton, G., & Seifalian, A. M. (2004). The use of animal models in developing the discipline of cardiovascular tissue engineering: A review. Biomaterials, 25(9), 1627–1637. https://doi.org/10.1016/S0142-9612(03)00522-2spa
dc.relation.referencesRatih, D., Siburian, R., & Andriayani. (2018). The performance of graphite/n-graphene and graphene/n-graphene as electrode in primary cell batteries. Rasayan Journal of Chemistry, 11(4), 1649–1656. https://doi.org/10.31788/RJC.2018.1145007spa
dc.relation.referencesRay, S. S., Chen, S.-S., Nguyen, N. C., & Nguyen, H. T. (2019). Chapter 9 - Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 247–273). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00014-8spa
dc.relation.referencesRefate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Batikh, H., El-Kashif, E., El-Khatib, S., & Mehanny, S. (2023). Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon, 9(6), e17051. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e17051spa
dc.relation.referencesRen, X., Jiang, Z., & Tang, M. (2023). Application of conductive hydrogels in cardiac tissue engineering. 4(2), 1–7.spa
dc.relation.referencesReneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002spa
dc.relation.referencesReneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547. https://doi.org/10.1063/1.373532spa
dc.relation.referencesResearch, P. (2022). Scaffold Technology Market (By Product: Hydrogels, Micropatterned Surface Microplates, and Nanofiber Based Scaffolds; By Application: Neurology, Orthopedics, Dental, Cardiology & Vascular, Cancer, Skin & Integumentary, GI & Gynecologyand Urology; By End-U. https://www.precedenceresearch.com/scaffold-technology-marketspa
dc.relation.referencesReshmy, R., Philip, E., Vaisakh, P. H., Sindhu, R., Binod, P., Madhavan, A., Pandey, A., Sirohi, R., & Tarafdar, A. (2021). Chapter 14 - Biodegradable polymer composites (P. Binod, S. Raveendran, & A. B. T.-B. Pandey Biofuels, Biochemicals (eds.); pp. 393–412). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821888-4.00003-4spa
dc.relation.referencesRiehle, C., & Bauersachs, J. (2019). Small animal models of heart failure. 1838–1849. https://doi.org/10.1093/cvr/cvz161spa
dc.relation.referencesRoacho-p, J. A., Garza-treviño, E. N., Moncada-saucedo, N. K., Carriquiry-chequer, P. A., Valencia-g, L. E., Matthews, E. R., G, V., Simental-mend, M., Delgado-gonzalez, P., Delgado-gallegos, J. L., Padilla-rivas, G. R., & Islas, J. F. (2022). Artificial Scaffolds in Cardiac Tissue Engineering. 1–21.spa
dc.relation.referencesRobinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A. F., Matheny, R. G., & Badylak, S. F. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 SUPPL.), 135–143. https://doi.org/10.1161/CIRCULATIONAHA.104.525436spa
dc.relation.referencesRodrigues, I. C. P., Kaasi, A., Maciel Filho, R., Jardini, A. L., & Gabriel, L. P. (2018). Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo, Brazil), 16(3), eRB4538. https://doi.org/10.1590/S1679-45082018RB4538spa
dc.relation.referencesRoser, M., & Ritchie, H. (2023). How has world population growth changed over time? Our World in Data.spa
dc.relation.referencesRoshanbinfar, K., Vogt, L., Ruther, F., Roether, J. A., Boccaccini, A. R., & Engel, F. B. (2020). Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering. 1908612. https://doi.org/10.1002/adfm.201908612spa
dc.relation.referencesSaberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R., & Mozafari, M. (2019). Electrically conductive materials: Opportunities and challenges in tissue engineering. In Biomolecules (Vol. 9, Issue 9). https://doi.org/10.3390/biom9090448spa
dc.relation.referencesSack, K. L., Baillargeon, B., Acevedo-Bolton, G., Genet, M., Rebelo, N., Kuhl, E., Klein, L., Weiselthaler, G. M., Burkhoff, D., Franz, T., & Guccione, J. M. (2016). Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart inspa
dc.relation.referencessilico. The International Journal of Artificial Organs, 39(8), 421–430. https://doi.org/10.5301/ijao.5000520spa
dc.relation.referencesSadeghi, A., Moztarzadeh, F., & Aghazadeh Mohandesi, J. (2019). Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. International Journal of Biological Macromolecules, 121, 625–632. https://doi.org/10.1016/j.ijbiomac.2018.10.022spa
dc.relation.referencesSadeghianmaryan, A., Karimi, Y., Naghieh, S., Alizadeh Sardroud, H., Gorji, M., & Chen, X. (2019). Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03192-xspa
dc.relation.referencesSartoretto, S. C., Uzeda, M. J., Miguel, F. B., Nascimento, J. R., Ascoli, F., & Calasans-Maia, M. D. (2016). Sheep as an experimental model for biomaterial implant evaluation. Acta Ortopedica Brasileira, 24(5), 262–266. https://doi.org/10.1590/1413-785220162405161949spa
dc.relation.referencesSasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., & Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: A review. BioResources, 6(3), 3585–3620. https://doi.org/10.15376/biores.6.3.3585-3620spa
dc.relation.referencesSavchenko, A., Yin, R. T., Kireev, D., Efimov, I. R., & Molokanova, E. (2021). Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 9(December), 1–8. https://doi.org/10.3389/fbioe.2021.797340spa
dc.relation.referencesSaxena, P., & Shukla, P. (2021). A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Advanced Composites and Hybrid Materials, 4(1), 8–26. https://doi.org/10.1007/s42114-021-00217-0spa
dc.relation.referencesScheetz, S. D., & Upadhyay, G. A. (2022). Physiologic Pacing Targeting the His Bundle and Left Bundle Branch: a Review of the Literature. Current Cardiology Reports, 24(8), 959–978. https://doi.org/10.1007/s11886-022-01723-3spa
dc.relation.referencesSchmitt, P. R., Dwyer, K. D., & Coulombe, K. L. K. (2022). Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Applied Bio Materials, 5(6), 2461–2480. https://doi.org/10.1021/acsabm.2c00174spa
dc.relation.referencesSchmitt, P. R., Dwyer, K. D., Minor, A. J., & Coulombe, K. L. K. (2022). Wet-Spun Polycaprolactone Scaffolds Provide Customizable Anisotropic Viscoelastic Mechanics for Engineered Cardiac Tissues.spa
dc.relation.referencesSell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., & Bowlin, G. L. (2009). Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 61(12), 1007–1019. https://doi.org/https://doi.org/10.1016/j.addr.2009.07.012spa
dc.relation.referencesSenthil, T., & Anandhan, S. (2017). Effect of Solvents on the Solution Electrospinning of Discover more interesting articles and news on the subject ! Entdecken Sie weitere interessante Artikel und News zum Thema !spa
dc.relation.referencesSerafin, A., Murphy, C., Rubio, M. C., & Collins, M. N. (2021). Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Materials Science and Engineering C, 122(January), 111927. https://doi.org/10.1016/j.msec.2021.111927spa
dc.relation.referencesShafei, S., Foroughi, J., Chen, Z., Wong, C. S., & Naebe, M. (2017). Short oxygen plasma treatment leading to long-term hydrophilicity of conductive PCL-PPy nanofiber scaffolds. Polymers, 9(11). https://doi.org/10.3390/polym9110614spa
dc.relation.referencesShafei, S., Foroughi, J., Stevens, L., Wong, C. S., Zabihi, O., & Naebe, M. (2017). Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Research on Chemical Intermediates, 43(2), 1235–1251. https://doi.org/10.1007/s11164-016-2695-4spa
dc.relation.referencesShang, L., Qi, Y., Lu, H., Pei, H., Li, Y., Paul, J. A., Chool, S. O. N. S., Engineering, O. F., & S, A. P. P. S. C. (2019). 7. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In Theranostic Bionanomaterials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815341-3.00007-9spa
dc.relation.referencesShao, H., Fang, J., Wang, H., & Lin, T. (2015). Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 5(19), 14345–14350. https://doi.org/10.1039/c4ra16360espa
dc.relation.referencesSharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent advances in cardiac tissue engineering for the management of myocardium infarction. In Cells (Vol. 10, Issue 10). https://doi.org/10.3390/cells10102538spa
dc.relation.referencesShinde, S. S., Gund, G. S., Dubal, D. P., Jambure, S. B., & Lokhande, C. D. (2014). Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochimica Acta, 119, 1–10. https://doi.org/10.1016/j.electacta.2013.10.174spa
dc.relation.referencesShokrollahi, P., Omidi, Y., Cubeddu, L. X., & Omidian, H. (2023). Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 111(11), 1979–1995. https://doi.org/10.1002/jbm.b.35293spa
dc.relation.referencesSigaroodi, F., Rahmani, M., Parandakh, A., Boroumand, S., Rabbani, S., & Khani, M. M. (2023). Designing cardiac patches for myocardial regeneration–a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0(0), 1–19. https://doi.org/10.1080/00914037.2023.2180510spa
dc.relation.referencesSocci, M. C., Rodríguez, G., Oliva, E., Fushimi, S., Takabatake, K., Nagatsuka, H., Felice, C. J., & Rodríguez, A. P. (2023). Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering, 10(2). https://doi.org/10.3390/bioengineering10020218spa
dc.relation.referencesSolazzo, M., O’Brien, F. J., Nicolosi, V., & Monaghan, M. G. (2019). The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 3(4), 041501. https://doi.org/10.1063/1.5116579spa
dc.relation.referencesSon, W. K., Youk, J. H., Lee, T. S., & Park, W. H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959–2966. https://doi.org/10.1016/j.polymer.2004.03.006spa
dc.relation.referencesSong, H., Li, T., Han, Y., Wang, Y., Zhang, C., & Wang, Q. (2016). Optimizing the polymerization conditions of conductive polypyrrole. Journal of Photopolymer Science and Technology, 29(6), 803–808. https://doi.org/10.2494/photopolymer.29.803spa
dc.relation.referencesSovilj, S., Magjarević, R., Al Abed, A., Lovell, N. H., & Dokos, S. (2014). Simplified 2D bidomain model of whole heart electrical activity and ECG generation. Measurement Science Review, 14(3), 136–143. https://doi.org/10.2478/msr-2014-0018spa
dc.relation.referencesSowmya, B., Hemavathi, A. B., & Panda, P. K. (2021). Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Progress in Biomaterials, 10(2), 91–117. https://doi.org/10.1007/s40204-021-00157-4spa
dc.relation.referencesSudwilai, T., Ng, J. J., Boonkrai, C., Israsena, N., Chuangchote, S., & Supaphol, P. (2014). Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: Effects of coating on electrical conductivity and neural cell growth. Journal of Biomaterials Science, Polymer Edition, 25(12), 1240–1252. https://doi.org/10.1080/09205063.2014.926578spa
dc.relation.referencesSuh, T. C., Amanah, A. Y., & Gluck, J. M. (2020). Electrospun Sca ff olds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. 1–21.spa
dc.relation.referencesSun, M., Chi, G., Li, P., Lv, S., Xu, J., Xu, Z., Xia, Y., Tan, Y., Xu, J., Li, L., & Li, Y. (2018). Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. International Journal of Medical Sciences, 15(3), 257–268. https://doi.org/10.7150/ijms.21620spa
dc.relation.referencesSun, Y., Liu, J., Xu, Z., Lin, X., Zhang, X., Li, L., & Li, Y. (2021). Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. 13(2), 2231–2250.spa
dc.relation.referencesSurekha, G., Krishnaiah, K. V., Ravi, N., & Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1). https://doi.org/10.1088/1742-6596/1495/1/012012spa
dc.relation.referencesSzewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. https://doi.org/https://doi.org/10.1016/j.cis.2020.102315spa
dc.relation.referencesTakada, T., Sasaki, D., Matsuura, K., Miura, K., Sakamoto, S., Goto, H., Ohya, T., Iida, T., Homma, J., Shimizu, T., & Hagiwara, N. (2022). Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials, 281, 121351. https://doi.org/https://doi.org/10.1016/j.biomaterials.2021.121351spa
dc.relation.referencesTalebi, A., Labbaf, S., & Karimzadeh, F. (2019). A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polymer Testing, 75(December 2018), 254–261. https://doi.org/10.1016/j.polymertesting.2019.02.029spa
dc.relation.referencesTamimi, M., Rajabi, S., & Pezeshki-Modaress, M. (2020). Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. International Journal of Biological Macromolecules, 164, 389–402. https://doi.org/10.1016/j.ijbiomac.2020.07.134spa
dc.relation.referencesTavakkol, E., Tavanai, H., Abdolmaleki, A., & Morshed, M. (2017). Production of conductive electrospun polypyrrole/poly(vinyl pyrrolidone) nanofibers. Synthetic Metals, 231(July), 95–106. https://doi.org/10.1016/j.synthmet.2017.06.017spa
dc.relation.referencesTayebi, T., Baradaran-Rafii, A., Hajifathali, A., Rahimpour, A., Zali, H., Shaabani, A., & Niknejad, H. (2021). Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86340-wspa
dc.relation.referencesTenreiro, M. F., Louro, A. F., Alves, P. M., & Serra, M. (2021). Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 6(1). https://doi.org/10.1038/s41536-021-00140-4spa
dc.relation.referencesTian, L., Prabhakaran, M. P., Hu, J., Chen, M., Besenbacher, F., & Ramakrishna, S. (2016). Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2016.05.032spa
dc.relation.referencesTiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core–shell fibers. Materials Science and Engineering: C, 32(5), 1037–1042. https://doi.org/https://doi.org/10.1016/j.msec.2012.02.019spa
dc.relation.referencesTopuz, F., Abdulhamid, M. A., Holtzl, T., & Szekely, G. (2021). Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Materials & Design, 198, 109280. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109280spa
dc.relation.referencesTorabi, M., Abazari, M. F., Zare Karizi, S., Kohandani, M., Hajati-Birgani, N., Norouzi, S., Nejati, F., Mohajerani, A., Rahmati, T., & Mokhames, Z. (2021). Efficient cardiomyocyte differentiation of induced pluripotent stem cells on PLGA nanofibers enriched by platelet-rich plasma. Polymers for Advanced Technologies, 32(3), 1168–1175. https://doi.org/10.1002/pat.5164spa
dc.relation.referencesTortora, G., & Derrickson, B. (2006). Principios de Anatomía y Fisiología. In Editorial Panamericana (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesTsao, Connie W; Aday, Aaron W.; Almarzooq, Z. I. (2022). Heart Disease and Stroe Statistics-2022 Update: A Report From the american Heart Association. Circulation, 145(8). https://doi.org/10.1161/IR.0000000000001052spa
dc.relation.referencesTsui, J. H., Leonard, A., Camp, N. D., Long, J. T., Nawas, Z. Y., Chavanachat, R., Choi, J. S., Wolf-Yadlin, A., Murry, C. E., Sniadecki, N. J., & Kim, D.-H. (2019). Functional Maturation of Human iPSC-spa
dc.relation.referencesbased Cardiac Microphysiological Systems with Tunable Electroconductive Decellularized Extracellular Matrices. BioRxiv, 786657. https://doi.org/10.1101/786657spa
dc.relation.referencesŢucureanu, V., Matei, A., & Avram, A. M. (2016). FTIR Spectroscopy for Carbon Family Study. Critical Reviews in Analytical Chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013spa
dc.relation.referencesU.S. FDA Center for Devices and Radiological Health. (2020). Medical Device Material Performance Study Poly Lactic-co-Glycolic Acid [ P ( L / G ) A ] Safety Profile Submitted to. 804.spa
dc.relation.referencesUnited Nations, Department of Economic and Social Affairs, P. D. (2022). World Population Prospects 2022.spa
dc.relation.referencesVacanti, C. (2006). The history of tissue engineering. Journal of Cellular and Molecular Medicine, 1(3), 569–576. https://doi.org/10.2755/jcmm010.003.20spa
dc.relation.referencesValdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To scaffold, or not to scaffold, that is the question. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/ijms222312690spa
dc.relation.referencesValverde, I. (2017). Impresión tridimensional de modelos cardiacos : aplicaciones en el campo de la educación y el intervencionismo estructural. 70(4), 282–291.spa
dc.relation.referencesVogt, L., Rivera, L. R., Liverani, L., Piegat, A., El Fray, M., & Boccaccini, A. R. (2019). Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science and Engineering C, 103(February), 109712. https://doi.org/10.1016/j.msec.2019.04.091spa
dc.relation.referencesVunjak-Novakovic, G. (2017). Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 153(3), 593–595. https://doi.org/10.1016/j.jtcvs.2016.08.057spa
dc.relation.referencesVunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., & Radisic, M. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352spa
dc.relation.referencesWang, J. (2021). Meta-analysis of Cellular Toxicity for Graphene via Data-Mining the Literature and Machine Learning.spa
dc.relation.referencesWang, L., Wu, Y., Hu, T., Guo, B., & Ma, P. X. (2017). Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 59, 68–81. https://doi.org/10.1016/j.actbio.2017.06.036spa
dc.relation.referencesWang, Y., & Feng, W. (2022). Conductive Polymers and Their Composites. In Conductive Polymers and their Composites. https://doi.org/10.1007/978-981-19-5363-7spa
dc.relation.referencesWaremra, R. S., & Betaubun, P. (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences, 73, 1–4. https://doi.org/10.1051/e3sconf/20187313019spa
dc.relation.referencesWee, J. H., Yoo, K. D., Sim, S. B., Kim, H. J., Kim, H. J., Park, K. N., Kim, G. H., Moon, M. H., You, S. J., Ha, M. Y., Yang, D. H., Chun, H. J., Ko, J. H., & Kim, C. H. (2022). Stem cell laden nano and microspa
dc.relation.referencescollagen / PLGA bimodal fibrous patches for myocardial regeneration. Biomaterials Research, 1–17. https://doi.org/10.1186/s40824-022-00319-wspa
dc.relation.referencesWHO, W. H. O. (2022). Cardiovascular diseases (CVDs). 11 June 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)spa
dc.relation.referencesWorld Heart Federation. (2022). World Heart Vision 2030. 4–9.spa
dc.relation.referencesXu, B., Li, Y., Deng, B., Liu, X., Wang, L., & Zhu, Q. L. (2017). Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Experimental and Therapeutic Medicine, 13(2), 588–594. https://doi.org/10.3892/etm.2017.4026spa
dc.relation.referencesXu, H., Holzwarth, J. M., Yan, Y., Xu, P., Zheng, H., Yin, Y., Li, S., & Ma, P. X. (2014). Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 35(1), 225–235. https://doi.org/10.1016/j.biomaterials.2013.10.002spa
dc.relation.referencesXu, M., Qin, M., Cheng, Y., Niu, X., Kong, J., Zhang, X., Huang, D., & Wang, H. (2021). Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydrate Polymers, 266, 118128. https://doi.org/10.1016/j.carbpol.2021.118128spa
dc.relation.referencesYalcinkaya, F., Yalcinkaya, B., & Jirsak, O. (2015). Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions. Journal of Nanomaterials, 2015, 134251. https://doi.org/10.1155/2015/134251spa
dc.relation.referencesYang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of Solvents on the Formation of Ultrathin Uniform Poly(Vinyl Pyrrolidone) Nanofibers with Electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42, 3721–3726. https://doi.org/10.1002/polb.20222spa
dc.relation.referencesYe, G., & Qiu, X. (2017). Conductive biomaterials in cardiac tissue engineering. Biotarget, 1(5), 9–9. https://doi.org/10.21037/biotarget.2017.08.01spa
dc.relation.referencesYou, J. O., Rafat, M., Ye, G. J. C., & Auguste, D. T. (2011). Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Letters, 11(9), 3643–3648. https://doi.org/10.1021/nl201514aspa
dc.relation.referencesYuan, S., Xiong, G., Wang, X., Zhang, S., & Choong, C. (2012). Surface modification of polycaprolactone substrates using collagen-conjugated poly(methacrylic acid) brushes for the regulation of cell proliferation and endothelialisation. Journal of Materials Chemistry, 22, 13039–13049. https://doi.org/10.1039/C2JM31213Aspa
dc.relation.referencesYue, B. (2014). NIH Public Access Author Manuscript J Glaucoma. Author manuscript; available in PMC 2015 October 01. Published in final edited form as: J Glaucoma. 2014 ; : S20–S23. doi:10.1097/IJG.0000000000000108. Biology of the Extracellular Matrix: An Overview Beatri. J Glaucoma., 23(1), 1–7. https://doi.org/10.1097/IJG.0000000000000108.Biologyspa
dc.relation.referencesYussuf, A., Al-Saleh, M., Al-Enezi, S., & Abraham, G. (2018). Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/4191747spa
dc.relation.referencesZaarour, B., Zhang, W., Zhu, L., Jin, X. Y., & Huang, C. (2019). Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Research Journal, 89(12), 2406–2422. https://doi.org/10.1177/0040517518792748spa
dc.relation.referencesZaarour, B., Zhu, L., & Jin, X. (2019). Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 17(2), 181–189. https://doi.org/10.1080/1539445X.2019.1582542spa
dc.relation.referencesZahari, A. S., Mazwir, M. H., & Misnon, I. I. (2021). Influence of molecular weight on dielectric properties and piezoelectric constant of poly(vinylidene fluoride) membranes obtained by electrospinning. Polimery/Polymers, 66(10), 532–537. https://doi.org/10.14314/polimery.2021.10.4spa
dc.relation.referencesZaragoza, C., Gomez-guerrero, C., Martin-ventura, J. L., Blanco-colio, L., Tarin, C., Mas, S., Ortiz, A., & Egido, J. (2011). Animal Models of Cardiovascular Diseases. 2011. https://doi.org/10.1155/2011/497841spa
dc.relation.referencesZarei, M., Samimi, A., Khorram, M., Abdi, M. M., & Golestaneh, S. I. (2021). Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. International Journal of Biological Macromolecules, 168, 175–186. https://doi.org/10.1016/j.ijbiomac.2020.12.031spa
dc.relation.referencesZargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics, 7(4), 155892501200700400. https://doi.org/10.1177/155892501200700414spa
dc.relation.referencesZhang, H., Cheng, J., & Ao, Q. (2021). Preparation of alginate-based biomaterials and their applications in biomedicine. Marine Drugs, 19(5), 1–24. https://doi.org/10.3390/md19050264spa
dc.relation.referencesZhang, X, Peng, X., & Zhang, S. W. (2017). 7 - Synthetic biodegradable medical polymers: Polymer blends. In Xiang Zhang (Ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (pp. 217–254). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100372-5.00007-6spa
dc.relation.referencesZhang, Xuewei, Chen, X., Hong, H., Hu, R., Liu, J., & Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 10, 15–31. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.09.014spa
dc.relation.referencesZhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/https://doi.org/10.1038/s41427-018-0092-8spa
dc.relation.referencesZhao, W., Tu, H., Chen, J., Wang, J., Liu, H., Zhang, F., & Li, J. (2023). Functionalized hydrogels in neural injury repairing. Frontiers in Neuroscience, 17(June), 1–9. https://doi.org/10.3389/fnins.2023.1199299spa
dc.relation.referencesZhou, J., Chen, J., Sun, H., Qiu, X., Mou, Y., Liu, Z., Zhao, Y., Li, X., Han, Y., Duan, C., Tang, R., Wang, C., Zhong, W., Liu, J., Luo, Y., Xing, M. M., & Wang, C. (2014). Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports, 4, 1–11. https://doi.org/10.1038/srep03733spa
dc.relation.referencesZimmermann, W.-H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J. F., Kostin, S., Neuhuber, W. L., & Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230. https://doi.org/10.1161/hh0202.103644spa
dc.relation.referencesZhuang, R. Z., Lock, R., Liu, B., & Vunjak-Novakovic, G. (2022). Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 6(4), 327–338. https://doi.org/10.1038/s41551-022-00885-3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.decsMateriales Biocompatibles/análisisspa
dc.subject.decsBiocompatible Materials/analysiseng
dc.subject.decsIngeniería de Tejidos/métodosspa
dc.subject.decsTissue Engineering/methodseng
dc.subject.decsMiocardio/patologíaspa
dc.subject.decsMyocardium/pathologyeng
dc.subject.proposalElectrospinningeng
dc.subject.proposalNanofillereng
dc.subject.proposalElectroconductiveeng
dc.subject.proposalPolycaprolactoneeng
dc.subject.proposalPolypyrroleeng
dc.subject.proposalGrapheneeng
dc.subject.proposalScaffoldeng
dc.subject.proposalTissue engineeringeng
dc.subject.proposalElectrohiladospa
dc.subject.proposalRelleno conductorspa
dc.subject.proposalNanorellenospa
dc.subject.proposalPolicaprolactonaspa
dc.subject.proposalPolipirrolspa
dc.subject.proposalGrafenospa
dc.subject.proposalAndamiospa
dc.subject.proposalIngeniería de tejidosspa
dc.titleEvaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering applicationeng
dc.title.translatedEvaluación de la adición de nanorrellenos conductores en andamios para aplicaciones de ingeniería de tejidos miocárdicosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018457635.2024.pdf
Tamaño:
7.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: