Comportamiento de elección frente al riesgo. Una comparación entre los modelos Prospect Valence Learning y Expectancy Valence

dc.contributor.advisorGarcía Molina, Mario
dc.contributor.authorVáquiro Cuéllar, Karen Liseth
dc.contributor.researchgroupGrupo Interdisciplinario en Teoría e Investigación Aplicada en Ciencias Económicasspa
dc.date.accessioned2021-04-26T20:44:38Z
dc.date.available2021-04-26T20:44:38Z
dc.date.issued2020
dc.descriptionilustraciones a color, tablasspa
dc.description.abstractLa tarea basada en el juego de cartas, Iowa Gambling Task modela la toma de decisiones bajo riesgo. El propósito del presente estudio es proveer evidencia acerca de los procesos inherentes al comportamiento de elección bajo riesgo a partir de esta tarea, en términos de utilidad, actualización de expectativas y mecanismo de elección de un grupo de (15) hombres y (15) mujeres. Además de verificar si existe diferencia en el comportamiento de elección frente al riesgo entre hombres y mujeres. Así, se compararon y evaluaron los modelos de decisión Expectancy Valence y Prospect Valence, a través de la estimación de máxima verosimilitud y de los criterios de diferencias logarítmicas, de bondad de ajuste, G2 y de Información Bayesiano. Los resultados proveen evidencia que los procesos inherentes al comportamiento de elección bajo riesgo en mujeres, están relacionados con la función de utilidad prospectiva (PU), la regla de actualización de refuerzo (DRI) y el mecanismo de elección independiente del ensayo (TIC) – modelo Prospect Valence; mientras que los procesos inherentes al comportamiento de elección bajo riesgo en hombres, están relacionados con la función de utilidad de expectativa (EU), la regla de actualización de refuerzo (DRI) y el mecanismo de elección independiente del ensayo (TIC) – modelo Expectancy – Prospect Valence.spa
dc.description.abstractTask-based card game, Iowa Gambling Task models low-risk decision making. The purpose of this study is to provide evidence about the processes inherent to low-risk choice behavior from this task, in terms of utility, updating of expectations and choice mechanism of a group of (15) men and (15) women. . In addition to verifying if there is a difference in the behavior of choice regarding risk between men and women. Thus, the Expectancy Valence and Prospect Valence decision models were compared and evaluated, through the estimation of maximum likelihood and the criteria of logarithmic differences, goodness of fit, G2 and Bayesian Information. The results provide evidence that the processes inherent to low-risk choice behavior in women are related to the prospective utility function (PU), the reinforcement update rule (DRI) and the trial independent choice mechanism (TIC) - Prospect Valence model; while the processes inherent in low-risk choice behavior in men are related to the expectation utility function (EU), the reinforcement update rule (DRI) and the trial independent choice mechanism (TIC) - Expectancy model - Prospect Valence.eng
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso en línea (99 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79415
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de Economíaspa
dc.publisher.facultyFacultad de Ciencias Económicasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Ciencias Económicasspa
dc.relation.referencesAhn, W., Busemeyer, J., Wagenmakers, E., & Stout, J. (2008). Comparison of Decision Learning Models Using the Generalization Criterion Method. Cognitive Science, 32, 1376 – 1402. https://doi.org/10.1080/03640210802352992spa
dc.relation.referencesBagneux, V., Font, H., & Bollon, T. (2013). Incidental emotions associated with uncertainty appraisals impair decisions in the Iowa Gambling Task. Motivation and Emotion, 37, 818 – 827.spa
dc.relation.referencesBarren, G., & Erev, I. (2003). Small feedback – based decisions and their limited correspondence to description – based decisions. Journal of Behavioral Decision Making, 16, 215 – 233.spa
dc.relation.referencesBechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1 – 3), 7 – 15. https://doi.org/10.1016/0010-0277(94)90018-3spa
dc.relation.referencesBusemeyer, J. R., & Myung, I. J. (1992). An adaptive approach to human decision making: Learning theory, decision theory, and human performance. Journal of Experimental Psychology: General, 121(2), 177–194. https://doi.org/10.1037/0096- 3445.121.2.177spa
dc.relation.referencesBusemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara Gambling Task. Psychological Assessment, (14)3 253 – 262.spa
dc.relation.referencesCampos – Vazquez, R. M., & Cuilty, E. (2014). The role of emotions on risk aversion: A prospect theory experiment. Journal of Behavioral and Experimental Economics, 50, 1 – 9. https://doi.org/10.1016/j.socec.2014.01.001spa
dc.relation.referencesCarvalho, J. C. N., Schneider-Bakos, D., Cotrena, C., Kristensen, H. C. & Fonseca, R. P. (2012). Tomada de decisão no Iowa Gambling Task: comparação quanto à variável escolaridade. RIDEP, 32(2), 171 – 186.spa
dc.relation.referencesDenburg, N., Recknor, E., Bechara, A., & Tranel, D. (2006). Psychophysiological anticipation of positive outcomes promotes advantageous decision – making in normal older persons. International Journal of Psychophysiology, 61, 19 – 25.spa
dc.relation.referencesErev, I., & Barron, G. (2005). On adaptation, maximization, and reinforcement learning among cognitive strategies. Psychological Review, 112(4), 912 – 931.spa
dc.relation.referencesErev, I., & Roth, A. (1998). Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria. American Economic Review 88(4), 848–881.spa
dc.relation.referencesFatás, E., & Roig, J. (2004). Una introducción a la metodología experimental en economía. Cuadernos de Economía, 27, 7–36.spa
dc.relation.referencesFischbacher, U. (2007). z-Tree: Zurich toolbox for ready – made economic experiments. Experimental Economics, 10(2), 171 – 178. https://doi.org/10.1007/s10683-006-9159-4spa
dc.relation.referencesFranken, I. H. A., & Muris, P. (2005). Individual differences indecision – making. Personality and Individual Differences, 39(5), 991–998.spa
dc.relation.referencesFridberg, D., Queller, S., Ahn, W-Y., Kim, W., Bishara, A., Busemeyer, J. R., Porrino, L., & Stout, J. (2010). Cognitive mechanisms underlying risky decision-making in chronic cannabis users. Journal of Mathematical Psychology, 54(1), 28 – 38. https://doi.org/10.1016/j.jmp.2009.10.002spa
dc.relation.referencesHertwig, R., Barren, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15, 534 – 539.spa
dc.relation.referencesHinson, J.M., Jameson, T.L. & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioral Neuroscience, 2, 341–353. https://doi.org/10.3758/CABN.2.4.341spa
dc.relation.referencesKaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning: A Survey Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237 – 285.spa
dc.relation.referencesKeynes, J. M. (1921). A Treatise on Probabilityspa
dc.relation.referencesKnight, F. (1921). Risk, Uncertainty, and Profit. Boston MA: Hart, Schaffner and Marx; Houghton Mifflin. https://oll.libertyfund.org/titles/306spa
dc.relation.referencesKahneman, D., & Tversky, A. (1987). Teoría prospective: un análisis de la decision bajo riesgo. Infancia y Aprendizaje, 30, 95 – 124.spa
dc.relation.referencesLuce, R. D. (1959). Individual choice behavior Individual choice behavior. New York: Wiley.spa
dc.relation.referencesMaia, T. V., & McClelland, J. L. (2004). A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proceedings of the National Academy of Sciences of the United States of America, 101(45), 16075 – 16080.spa
dc.relation.referencesNelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308 – 313.spa
dc.relation.referencesSchneider – Bakos, D., Denburg, N., Fonseca, R. P. & Parente, M. A. P. (2010). A cultural study on decision making: performance differenceson the Iowa gambling task between selected groups of Brazilians and Americans. Psychology y Neuroscience, 3(1), 101 – 107.spa
dc.relation.referencesSchwartz, G. (1978). Estimating the dimension of a model Estimating the dimension of a model. Annals of Statistics, 5, 461 – 464.spa
dc.relation.referencesSmith, V. (1976). Experimental economics: Induced value theory. The American Economic Review, 66(2), 274 – 279.spa
dc.relation.referencesSmith, V. (1982). Microeconomic systems as an experimental science. The American Economic Review, 72(5), 923 – 955.spa
dc.relation.referencesSteingroever, H., Wetzels, R., & Wagenmakers, E. (2013). Validating the PVL – Delta model for the Iowa gambling task. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00898spa
dc.relation.referencesStout, J., Busemeyer, J., Lin, A., Grant, S., & Bonson, K. (2004). Cognitive modeling analysis of decision – making processes in cocaine abusers. Psychonomic Bulletin y Review, 11, 742 – 47. http://dx.doi.org/10.3758/BF03196629spa
dc.relation.referencesTversky, A., & Kahneman, D. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263 – 292.spa
dc.relation.referencesTversky, A., & Kahneman, D. (1986). Rational choice and the framing of decisions. The Journal of Business, 59(4), 251 – 278.spa
dc.relation.referencesTversky, A., & Kahneman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5, 297 – 323.spa
dc.relation.referencesWagar, B. M., & Dixon, M. (2006). Affective guidance in the Iowa gambling task. Cognitive, Affective & Behavioral Neuroscience, 6(4), 277–290. https://doi.org/10.3758/CABN.6.4.277spa
dc.relation.referencesWetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. J. (2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using 855 t Tests. Perspectives on psychological science : a journal of the Association for Psychological Science, 6(3), 291 – 298. https://doi.org/10.1177/1745691611406923.spa
dc.relation.referencesWood, S., Busemeyer, J., Koling, A., Cox, C. R., & Davis, H. (2005). Older adults as adaptive decision makers: Evidence from the Iowa gambling task. Psychology and Aging, 20, 220 – 25. http://dx.doi.org/10.1037/0882-7974.20.2.220spa
dc.relation.referencesWorthy, D., Hawthorne, M. & Otto, A. (2013). “Heterogeneity of strategy use in the Iowa gambling task: A comparison of win-stay/lose-shift and reinforcement learning models”. Psychonomic bulletin y review, 20(2), 364 – 371.spa
dc.relation.referencesYechiam, E., Stout, J.C., Busemeyer, J.R., Rock, S.L., & Finn, P.R. (2005). Individual differences in the response to forgone payoffs: An examination of high functioning drug abusers. Journal of Behavioral Decision Making, 18, 97–110.spa
dc.relation.referencesYechiam, E., & Busemeyer, J.R. (2008). Evaluating generalizability and parameter consistency in learning models. Games and Economic Behavior, (63)1, 370 – 394. https://doi.org/10.1016/j.geb.2007.08.011.spa
dc.relation.referencesYechiam, E., & Ert, E. (2007). Evaluating the reliance on past choices in adaptive learning models. Journal of Mathematical Psychology, 51, 75 – 84.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc650 - Gerencia y servicios auxiliares::658 - Gerencia generalspa
dc.subject.proposalComportamiento de elecciónspa
dc.subject.proposalRiesgospa
dc.subject.proposalProbabilidadspa
dc.subject.proposalProspect Valence Learning Modelspa
dc.subject.proposalExpectancy Valence Learning Modelspa
dc.subject.proposalIowa Gambling Taskspa
dc.subject.proposalChoice behavioreng
dc.subject.proposalDecision makingeng
dc.subject.proposalRiskeng
dc.subject.proposalProbabilityeng
dc.subject.unescoGestión de riesgos
dc.subject.unescoRisk management
dc.subject.unescoToma de decisiones
dc.subject.unescoDecision making
dc.titleComportamiento de elección frente al riesgo. Una comparación entre los modelos Prospect Valence Learning y Expectancy Valencespa
dc.title.translatedDecision making under risk. A comparison between the Prospect Valence Learning and Expectancy Valence modelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
VERSIÓN FINAL. KAREN LISETH VAQUIRO CUELLAR. DNI 1013645052.pdf
Tamaño:
1.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Económicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: