Análisis de variantes genéticas en una familia con diagnóstico clínico de cáncer hereditario de síndrome de Li-Fraumeni like mediante panel de secuencia de nueva generación

dc.contributor.advisorYunis Londoño, Juan Jose
dc.contributor.authorUsme Romero, Solangy
dc.contributor.cvlacUsme Romero, Solangy [0001371016]spa
dc.contributor.datacollectorMaria Luz Lara Márquez
dc.contributor.googlescholarUsme Romero, Solangy [xcFiUpoAAAAJ]spa
dc.contributor.researchgateSolangy Usme-Romerospa
dc.contributor.researchgroupPatología Molecularspa
dc.contributor.subjectmatterexpertLuz Karime Yunis Hazbun
dc.date.accessioned2024-07-18T14:50:35Z
dc.date.available2024-07-18T14:50:35Z
dc.date.issued2024-07-11
dc.descriptionIlustraciones a color, diagramasspa
dc.description.abstractLi-Fraumeni syndrome is one of the hereditary cancer syndromes that account for 5-10% of all cancers and is related to pathogenic variants inherited within family, increasing the risk of cancer significantly. It has an approximate prevalence of 1:3,555 to 1:5,476 people worldwide, with high interregional variability. In Colombia, this information is unknown. The disease occurs in two clinical forms: classic Li-Fraumeni syndrome (LFS) and Li-Fraumeni-like syndrome (LFL), which have different clinical classification criteria. In LFL, the prevalence of germline variants in the TP53 gene is lower, and its occurrence is likely related to other altered genes. Detection rates for TP53 variants range from 55% to 70% when classical classification criteria are met, 25% to 30% for LFL criteria, and 20% to 35% for Chompret criteria. This means that up to 45% of patients meeting classical LFS criteria and up to 80% of patients meeting either Chompret or LFL criteria remain genetically unexplained. The aim of this study was to characterize germline genetic variants in a family with a clinical diagnosis of hereditary LFL cancer using a whole-exome-expanded next-generation sequencing (NGS) panel in the index case. No pathogenic, likely pathogenic or uncertain clinical significance (VUS) variants were identified in the TP53 gene or any of the candidate genes linked to the FL phenotype. Possible unevaluated mechanisms that could contribute to the phenotype include methylation of TP53 promoter regions, deep intronic variants or variants in TP53 regulatory regions, and alterations in the expression of TP53 isoforms. Therefore, additional studies should be performed to provide an explanation for the occurrence of this familial phenotype.eng
dc.description.abstractEl síndrome de Li-Fraumeni es uno de los síndromes de cáncer hereditario que engloban el 5-10% de todos los cánceres y se relacionan con variantes patogénicas que son heredadas en línea familiar y aumentan significativamente el riesgo de cáncer, tiene una prevalencia aproximada de 1:3.555 a 1:5.476 personas en todo el mundo, con una alta variabilidad interregional, en Colombia se desconoce esta información. La enfermedad se presenta en dos formas clínicas a saber el síndrome de Li-Fraumeni clásico (LFS) y el síndrome de Li-Fraumeni like (LFL), cuyos criterios clínicos de clasificación difieren, ya que en este último la prevalencia de variantes germinales en el gen TP53 es menor y su aparición está probablemente relacionada a otros genes alterados. Las tasas de detección de variantes en TP53 varían de 55 al 70% cuando se cumplen los criterios de clasificación clásicos, 25% a 30% en los criterios de LFL y del 20% al 35% en los criterios de Chompret. Esto significa que hasta el 45% de los pacientes que cumplen los criterios clásicos de LFS y hasta el 80% de los pacientes que cumplen los criterios de Chompret o LFL quedan sin explicación genética. El objetivo de este estudio fue caracterizar variantes genéticas en línea germinal en una familia con diagnóstico clínico de cáncer hereditario LFL mediante panel de secuencia de nueva generación (NGS) y ampliado con exoma completo en el caso índice. No se identificaron variantes patogénicas probablemente patogénicas ni de significado clínico incierto (VUS) en el gen TP53 ni el ninguno de los genes candidatos que se han relacionado con el fenotipo de LF. Entre los posibles mecanismos no evaluados que podrían contribuir al fenotipo se encuentran: metilación de regiones promotoras de TP53, variantes profundas intrónicas o en regiones reguladoras de TP53 y alteraciones en la expresión de isoformas de TP53, por lo que habría que realizarse estudios adicionales que permitan dar una explicación a la aparición de este fenotipo familiar. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Genética Humanaspa
dc.description.methodsEstudio analítico-descriptivospa
dc.description.sponsorshipServicios Médicos Yunis Turbay aportó pruebas de diagnóstico molecular y equipos para análisisspa
dc.format.extentxii, 50 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86556
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Genética Humanaspa
dc.relation.referencesAchatz, M. I., & Zambetti, G. P. (2016). The Inherited p53 Mutation in the Brazilian Population. Cold Spring Harbor perspectives in medicine, 6(12), a026195. https://doi.org/10.1101/cshperspect.a026195spa
dc.relation.referencesAlday-Parejo, B., Richard, F., Wörthmüller, J., Rau, T., Galván, J. A., Desmedt, C., Santamaria-Martinez, A., & Rüegg, C. (2020). MAGI1, a New Potential Tumor Suppressor Gene in Estrogen Receptor Positive Breast Cancer. Cancers, 12(1), 223. https://doi.org/10.3390/cancers12010223spa
dc.relation.referencesBatalini, F., Peacock, E. G., Stobie, L., Robertson, A., Garber, J., Weitzel, J. N., & Tung, N. M. (2019). Li-Fraumeni syndrome: not a straightforward diagnosis anymore-the interpretation of pathogenic variants of low allele frequency and the differences between germline PVs, mosaicism, and clonal hematopoiesis. Breast cancer research : BCR, 21(1), 107. https://doi.org/10.1186/s13058-019-1193-1spa
dc.relation.referencesBerry, D. K., Gillis, N., Padron, E., Moore, C., Barton, L. V., Gewandter, K. R., Haskins, C. G., & Knepper, T. C. (2023). Interpretation of ambiguous TP53 test results: Mosaicism, clonal hematopoiesis, and variants of uncertain significance. Journal of genetic counseling, 10.1002/jgc4.1789. Advance online publication. https://doi.org/10.1002/jgc4.1789spa
dc.relation.referencesBhai, P., Levy, M. A., Rooney, K., Carere, D. A., Reilly, J., Kerkhof, J., Volodarsky, M., Stuart, A., Kadour, M., Panabaker, K., Schenkel, L. C., Lin, H., Ainsworth, P., & Sadikovic, B. (2021). Analysis of Sequence and Copy Number Variants in Canadian Patient Cohort With Familial Cancer Syndromes Using a Unique Next Generation Sequencing Based Approach. Frontiers in genetics, 12, 698595. https://doi.org/10.3389/fgene.2021.698595spa
dc.relation.referencesBirch, J. M., Hartley, A. L., Tricker, K. J., Prosser, J., Condie, A., Kelsey, A. M., Harris, M., Jones, P. H., Binchy, A., & Crowther, D. (1994). Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer research, 54(5), 1298–1304.spa
dc.relation.referencesCalvete, O., Martinez, P., Garcia-Pavia, P., Benitez-Buelga, C., Paumard-Hernández, B., Fernandez, V., Dominguez, F., Salas, C., Romero-Laorden, N., Garcia-Donas, J., Carrillo, J., Perona, R., Triviño, J. C., Andrés, R., Cano, J. M., Rivera, B., Alonso-Pulpon, L., Setien, F., Esteller, M., Rodriguez-Perales, S., … Benítez, J. (2015). A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nature communications, 6, 8383. https://doi.org/10.1038/ncomms9383spa
dc.relation.referencesCardona, A. F., Zatarain-Barrón, Z. L., Rubio, C., Martínez, S., Ruiz-Patiño, A., Ricaurte, L., Serna, A., Barrios, R., Garzón, J. C., Navarrete, C., Balaguera, A., Corrales, L., Rojas, L., & Arrieta, O. (2018). Probable hereditary familial overlap syndrome with multiple synchronous lung tumors. Lung cancer (Amsterdam, Netherlands), 124, 279–282. https://doi.org/10.1016/j.lungcan.2018.08.022spa
dc.relation.referencesChang, X., & Wang, K. (2012). wANNOVAR: annotating genetic variants for personal genomes via the web. Journal of medical genetics, 49(7), 433–436. https://doi.org/10.1136/jmedgenet-2012-100918spa
dc.relation.referencesChompret, A., Brugières, L., Ronsin, M., Gardes, M., Dessarps-Freichey, F., Abel, A., Hua, D., Ligot, L., Dondon, M. G., Bressac-de Paillerets, B., Frébourg, T., Lemerle, J., Bonaïti-Pellié, C., & Feunteun, J. (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. British journal of cancer, 82(12), 1932–1937. https://doi.org/10.1054/bjoc.2000.1167spa
dc.relation.referencesCroteau, D. L., Singh, D. K., Hoh Ferrarelli, L., Lu, H., & Bohr, V. A. (2012). RECQL4 in genomic instability and aging. Trends in genetics: TIG, 28(12), 624–631. https://doi.org/10.1016/j.tig.2012.08.003spa
dc.relation.referencesDaly MB, Pal T, Berry MP, Buys SS, Dickson P, Domchek SM, Elkhanany A, Friedman S, Goggins M, Hutton ML; CGC, Karlan BY, Khan S, Klein C, Kohlmann W; CGC, Kurian AW, Laronga C, Litton JK, Mak JS; LCGC, Menendez CS, Merajver SD, Norquist BS, Offit K, Pederson HJ, Reiser G; CGC, Senter-Jamieson L; CGC, Shannon KM, Shatsky R, Visvanathan K, Weitzel JN, Wick MJ, Wisinski KB, Yurgelun MB, Darlow SD, Dwyer MA. (2021). Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021 Jan 6;19(1):77-102. https://doi:10.6004/jnccn.2021.0001spa
dc.relation.referencesDaly, M. B., Pal, T., Maxwell, K. N., Churpek, J., Kohlmann, W., AlHilli, Z., Arun, B., Buys, S. S., Cheng, H., Domchek, S. M., Friedman, S., Giri, V., Goggins, M., Hagemann, A., Hendrix, A., Hutton, M. L., Karlan, B. Y., Kassem, N., Khan, S., Khoury, K., … Darlow, S. D. (2023). NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024. Journal of the National Comprehensive Cancer Network : JNCCN, 21(10), 1000–1010. https://doi.org/10.6004/jnccn.2023.0051spa
dc.relation.referencesDe Andrade, K. C., Frone, M. N., Wegman-Ostrosky, T., Khincha, P. P., Kim, J., Amadou, A., Santiago, K. M., Fortes, F. P., Lemonnier, N., Mirabello, L., Stewart, D. R., Hainaut, P., Kowalski, L. P., Savage, S. A., & Achatz, M. I. (2019). Variable population prevalence estimates of germline TP53 variants: A gnomAD-based analysis. Human mutation, 40(1), 97–105. https://doi.org/10.1002/humu.23673spa
dc.relation.referencesDe Andrade, K. C., Strande, N. T., Kim, J., Haley, J. S., Hatton, J. N., Frone, M. N., Khincha, P. P., Thone, G. M., Mirshahi, U. L., Schneider, C., Desai, H., Dove, J. T., Smelser, D. T., Penn Medicine BioBank, Regeneron Genetics Center, Levine, A. J., Maxwell, K. N., Stewart, D. R., Carey, D. J., & Savage, S. A. (2024). Genome-first approach of the prevalence and cancer phenotypes of pathogenic or likely pathogenic germline TP53 variants. HGG advances, 5(1), 100242. https://doi.org/10.1016/j.xhgg.2023.100242spa
dc.relation.referencesEeles R. A. (1995). Germline mutations in the TP53 gene. Cancer surveys, 25, 101–124.spa
dc.relation.referencesFortuno, C., Richardson, M., Pesaran, T., Yussuf, A., Horton, C., James, P. A., & Spurdle, A. B. (2023). CHEK2 is not a Li-Fraumeni syndrome gene: time to update public resources. Journal of medical genetics, 60(12), 1215–1217. https://doi.org/10.1136/jmg-2023-109464spa
dc.relation.referencesGarber, J. E., & Offit, K. (2005). Hereditary cancer predisposition syndromes. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 23(2), 276–292. https://doi.org/10.1200/JCO.2005.10.042spa
dc.relation.referencesGargallo, P., Yáñez, Y., Segura, V., Juan, A., Torres, B., Balaguer, J., Oltra, S., Castel, V., & Cañete, A. (2020). Li-Fraumeni syndrome heterogeneity. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 22(7), 978–988. https://doi.org/10.1007/s12094-019-02236-2spa
dc.relation.referencesGarutti, M., Foffano, L., Mazzeo, R., Michelotti, A., Da Ros, L., Viel, A., Miolo, G., Zambelli, A., & Puglisi, F. (2023). Hereditary Cancer Syndromes: A Comprehensive Review with a Visual Tool. Genes, 14(5), 1025. https://doi.org/10.3390/genes14051025spa
dc.relation.referencesGlobocan 2020 Graph production: Global Cancer Observatory (http://gco.iarc.fr)spa
dc.relation.referencesGrissom, A. A., & Friend, P. J. (2016). Multigene Panel Testing for Hereditary Cancer Risk. Journal of the advanced practitioner in oncology, 7(4), 394–407. https://doi:10.6004/jadpro.2016.7.4.3spa
dc.relation.referencesInsuasty-Enríquez, J. S., Ortega Apraez, V., Arias-Quiroz, E. J., Alarcón-Tarazona, M. L., & Calderón-Cortés, C. A. (2021). Síndrome de Li-Fraumeni: Presentación metacrónica de sarcoma de tejidos blandos, sarcoma cardiaco y cáncer gástrico. Acta Médica Colombiana, 47(1). https://doi.org/10.36104/amc.2022.2198spa
dc.relation.referencesJouenne, F., Chauvot de Beauchene, I., Bollaert, E., Avril, M. F., Caron, O., Ingster, O., Lecesne, A., Benusiglio, P., Terrier, P., Caumette, V., Pissaloux, D., de la Fouchardière, A., Cabaret, O., N'Diaye, B., Velghe, A., Bougeard, G., Mann, G. J., Koscielny, S., Barrett, J. H., Harland, M., … Bressac-de Paillerets, B. (2017). Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma. Journal of medical genetics, 54(9), 607–612. https://doi.org/10.1136/jmedgenet-2016-104402spa
dc.relation.referencesKasmintan A. Schrader, Ravi Sharaf, Shaheen Alanee, and Kenneth Offit. Genetic Factors: Hereditary Cancer Predisposition Syndromes. (2015) Part I: Science of Clinical Oncology chapter 2spa
dc.relation.referencesKouidou, S., Malousi, A., & Maglaveras, N. (2009). Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements. Molecular carcinogenesis, 48(10), 895–902. https://doi.org/10.1002/mc.20537spa
dc.relation.referencesKratz, C. P., Freycon, C., Maxwell, K. N., Nichols, K. E., Schiffman, J. D., Evans, D. G., Achatz, M. I., Savage, S. A., Weitzel, J. N., Garber, J. E., Hainaut, P., & Malkin, D. (2021). Analysis of the Li-Fraumeni Spectrum Based on an International Germline TP53 Variant Data Set: An International Agency for Research on Cancer TP53 Database Analysis. JAMA oncology, 7(12), 1800–1805. https://doi.org/10.1001/jamaoncol.2021.4398spa
dc.relation.referencesKulkarni, A., & Carley, H. (2016). Advances in the recognition and management of hereditary cancer. British medical bulletin, 120(1), 123–138. https://doi.org/10.1093/bmb/ldw046spa
dc.relation.referencesKumamoto, T., Yamazaki, F., Nakano, Y., Tamura, C., Tashiro, S., Hattori, H., Nakagawara, A., & Tsunematsu, Y. (2021). Medical guidelines for Li-Fraumeni syndrome 2019, version 1.1. International journal of clinical oncology, 26(12), 2161–2178. https://doi.org/10.1007/s10147-021-02011-wspa
dc.relation.referencesLamolle, G., Marin, M., & Alvarez-Valin, F. (2006). Silent mutations in the gene encoding the p53 protein are preferentially located in conserved amino acid positions and splicing enhancers. Mutation research, 600(1-2), 102–112. https://doi.org/10.1016/j.mrfmmm.2006.03.004spa
dc.relation.referencesLi, F. P., & Fraumeni, J. F., Jr (1969). Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. Journal of the National Cancer Institute, 43(6), 1365–1373.spa
dc.relation.referencesLiu, Y., Wang, M., Chen, Q., Zheng, Q., Li, G., Cheng, Q., Liu, S., & Ye, S. (2019). A novel heterozygous large deletion of MSH6 gene in a Chinese family with Lynch syndrome. Gene, 704, 103–112. https://doi.org/10.1016/j.gene.2019.04.011spa
dc.relation.referencesLynch, H. T., & de la Chapelle, A. (2003). Hereditary colorectal cancer. The New England journal of medicine, 348(10), 919–932. https://doi.org/10.1056/NEJMra012242spa
dc.relation.referencesMester, J. L., Jackson, S. A., Postula, K., Stettner, A., Solomon, S., Bissonnette, J., Murphy, P. D., Klein, R. T., & Hruska, K. S. (2020). Apparently Heterozygous TP53 Pathogenic Variants May Be Blood Limited in Patients Undergoing Hereditary Cancer Panel Testing. The Journal of molecular diagnostics: JMD, 22(3), 396–404. https://doi.org/10.1016/j.jmoldx.2019.12.003spa
dc.relation.referencesOssa, C. A., Molina, G., & Cock-Rada, A. M. (2016). Li-Fraumeni syndrome. Biomedica : revista del Instituto Nacional de Salud, 36(2), 182–187. https://doi.org/10.7705/biomedica.v36i3.2793spa
dc.relation.referencesPenkert, J., Schmidt, G., Hofmann, W., Schubert, S., Schieck, M., Auber, B., Ripperger, T., Hackmann, K., Sturm, M., Prokisch, H., Hille-Betz, U., Mark, D., Illig, T., Schlegelberger, B., & Steinemann, D. (2018). Breast cancer patients suggestive of Li-Fraumeni syndrome: mutational spectrum, candidate genes, and unexplained heredity. Breast cancer research : BCR, 20(1), 87. https://doi.org/10.1186/s13058-018-1011-1spa
dc.relation.referencesPilarski R. (2019). Cowden syndrome: a critical review of the clinical literature. J Genet Couns. 2009 Feb;18(1):13-27. https://doi:10.1007/s10897-008-9187-7spa
dc.relation.referencesRenaux-Petel, M., Charbonnier, F., Théry, J. C., Fermey, P., Lienard, G., Bou, J., Coutant, S., Vezain, M., Kasper, E., Fourneaux, S., Manase, S., Blanluet, M., Leheup, B., Mansuy, L., Champigneulle, J., Chappé, C., Longy, M., Sévenet, N., Paillerets, B. B., Guerrini-Rousseau, L., … Bougeard, G. (2018). Contribution of de novo and mosaic TP53 mutations to Li-Fraumeni syndrome. Journal of medical genetics, 55(3), 173–180. https://doi.org/10.1136/jmedgenet-2017-104976spa
dc.relation.referencesSchneider, K., Zelley, K., Nichols, K. E., & Garber, J. (1999). Li-Fraumeni Syndrome. In M. P. Adam (Eds.) et. al., GeneReviews®. Rev 2019. University of Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK1311/spa
dc.relation.referencesSchwartz, A. N., Hyman, S. R., Stokes, S. M., Castillo, D., Tung, N. M., Weitzel, J. N., Rana, H. Q., & Garber, J. E. (2021). Evaluation of TP53 Variants Detected on Peripheral Blood or Saliva Testing: Discerning Germline From Somatic TP53 Variants. JCO precision oncology, 5, 1677–1686. https://doi.org/10.1200/PO.21.00278spa
dc.relation.referencesSorrell, A. D., Espenschied, C. R., Culver, J. O., & Weitzel, J. N. (2013). Tumor protein p53 (TP53) testing and Li-Fraumeni syndrome: current status of clinical applications and future directions. Molecular diagnosis & therapy, 17(1), 31–47. https://doi.org/10.1007/s40291-013-0020-0spa
dc.relation.referencesSubasri, V., Light, N., Kanwar, N., Brzezinski, J., Luo, P., Hansford, J. R., Cairney, E., Portwine, C., Elser, C., Finlay, J. L., Nichols, K. E., Alon, N., Brunga, L., Anson, J., Kohlmann, W., de Andrade, K. C., Khincha, P. P., Savage, S. A., Schiffman, J. D., Weksberg, R., … Malkin, D. (2023). Multiple Germline Events Contribute to Cancer Development in Patients with Li-Fraumeni Syndrome. Cancer research communications, 3(5), 738–754. https://doi.org/10.1158/2767-9764.CRC-22-0402spa
dc.relation.referencesTornaletti, S., & Pfeifer, G. P. (1995). Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene, 10(8), 1493–1499.spa
dc.relation.referencesToss, A., Venturelli, M., Peterle, C., Piacentini, F., Cascinu, S., & Cortesi, L. (2017). Molecular Biomarkers for Prediction of Targeted Therapy Response in Metastatic Breast Cancer: Trick or Treat?. International journal of molecular sciences, 18(1), 85. https://doi.org/10.3390/ijms18010085spa
dc.relation.referencesVahteristo, P., Tamminen, A., Karvinen, P., Eerola, H., Eklund, C., Aaltonen, L. A., Blomqvist, C., Aittomäki, K., & Nevanlinna, H. (2001). p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer research, 61(15), 5718–5722.spa
dc.relation.referencesVieler, M., & Sanyal, S. (2018). p53 Isoforms and Their Implications in Cancer. Cancers, 10(9), 288. https://doi.org/10.3390/cancers10090288spa
dc.relation.referencesVogel W. H. (2017). Li-Fraumeni Syndrome. Journal of the advanced practitioner in oncology, 8(7), 742–746. https://doi.org/10.6004/jadpro.2017.8.7.7spa
dc.relation.referencesWeiss, J. M., Gupta, S., Burke, C. A., Axell, L., Chen, L. M., Chung, D. C., Clayback, K. M., Dallas, S., Felder, S., Gbolahan, O., Giardiello, F. M., Grady, W., Hall, M. J., Hampel, H., Hodan, R., Idos, G., Kanth, P., Katona, B., Lamps, L., Llor, X., … Campbell, M. (2021). NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 1.2021. Journal of the National Comprehensive Cancer Network: JNCCN, 19(10), 1122–1132. https://doi.org/10.1164/jnccn.2021.0048spa
dc.relation.referenceshttps://www.lfsassociation.org/what-is-lfs/lfs-critieria/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.lembCancerspa
dc.subject.otherSíndrome de Li-Fraumenispa
dc.subject.otherLi-Fraumeni Syndromeeng
dc.subject.otherProteína p53 Supresora de Tumorspa
dc.subject.proposalLi-Fraumeni likespa
dc.subject.proposalsecuencia de nueva generación (NGS)spa
dc.subject.proposalcáncer hereditariospa
dc.subject.proposalnext-generation sequencing (NGS)eng
dc.subject.proposalhereditary cancereng
dc.subject.proposalLi-Fraumeni likeeng
dc.titleAnálisis de variantes genéticas en una familia con diagnóstico clínico de cáncer hereditario de síndrome de Li-Fraumeni like mediante panel de secuencia de nueva generaciónspa
dc.title.translated"Analysis of Genetic Variants in a Family with a Clinical Diagnosis of Hereditary Li-Fraumeni Syndrome Using a Next-Generation Sequencing Panel"eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018408177.2024.pdf
Tamaño:
1016.3 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Genética Humana

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: