Iterated forcing with finitely additive measures: applications of probability to forcing theory

dc.contributor.advisorMejía Guzmán, Diego Alejandro
dc.contributor.advisorParra Londoño, Carlos Mario
dc.contributor.authorUribe Zapata, Andrés Felipe
dc.contributor.researchgate0000-0003-2463-1360spa
dc.date.accessioned2023-08-10T19:36:14Z
dc.date.available2023-08-10T19:36:14Z
dc.date.issued2023-01
dc.description.abstractThe method of finitely additive measures along finite support iterations was introduced by Saharon Shelah in 2000 (see [She00]) to show that, consistently, cov(N ) may have countable cofinality. In 2019, Jakob Kellner, Saharon Shelah and Anda Tanasie ˇ (see [KST19]) improved the method: they achieved some new generalizations and applications, such as separating the left side of Cichon’s ´ diagram with b < cov(N ). In this thesis, based on probability theory tools and the articles cited above, we develop a general theory of iterated forcing using finitely additive measures. For this purpose, we introduce two new notions: on the one hand, we define a new linkedness property, which we call “µ-FAM-linked” and, on the other hand, we generalize the notion of intersection number to forcing notions, which justifies the limit steps of our iteration theory. Finally, we apply our theory to prove in detail the consistency of cf(cov(N )) = ℵ0, and some separations of Cichon’s ´ diagram where cov(N ) is singular. In particular, we obtain a new constellation of Cichon’s diagram ´ separating the left side with cov(N ) singulareng
dc.description.abstractEn el año 2000, Saharon Shelah introdujo un método que utiliza medidas finitamente aditivas a lo largo de iteraciones de soporte finito para demostrar que, consistentemente, el cubrimiento del ideal nulo puede tener cofinalidad contable. En 2019, Jakob Kellner, Saharon Shelah y Anda R. Tanasie mejoraron el método: lograron algunas generalizaciones y nuevas aplicaciones. En esta tesis, basada en las herramientas de la teoría de la probabilidad y los trabajos mencionados anteriormente, desarrollamos una teoría general de forcing iterado utilizando medidas finitamente aditivas. Para ello, introducimos dos nociones nuevas: por un lado, definimos una nueva propiedad de ligadura, que llamamos "FAM-ligadura'' y, por otro lado, generalizamos la idea de número de intersección a nociones de forcing, que justifica los pasos límite de nuestra teoría de iteraciones. Finalmente, aplicamos nuestro enfoque para probar en detalle la consistencia de que el cubrimiento del ideal nulo puede tener cofinalidad contable y obtenemos algunas separaciones del diagrama de Cichoń donde el cubrimiento del ideal nulo es singular. En particular, obtenemos una nueva constelación del diagrama de Cichoń separando el lado izquierdo y permitiendo que el cubrimiento del ideal nulo sea singular. (texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular en Matemáticasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en ciencias matemáticasspa
dc.format.extent190 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84529
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesHannah Arendt. The Human Condition. University of Chicago Press, Chicago IL, 2018.spa
dc.relation.referencesNoga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.spa
dc.relation.referencesTomek Bartoszynski. On covering of real line by null sets. Pacific J. Math., 131(1):1– 12, 1988spa
dc.relation.referencesJorg Brendle, Miguel A. Cardona, and Diego A. Mejıa. Filter-linkedness and its effect on preservation of cardinal characteristics. Ann. Pure Appl. Logic, 172(1):102856, 2021spa
dc.relation.referencesTomek Bartoszynski, Jaime I. Ihoda, and Saharon Shelah. The cofinality of cardinal invariants related to measure and category. The Journal of Symbolic Logic, 54(3):719– 726, 1989spa
dc.relation.referencesJorg Brendle and Haim Judah. Perfect sets of random reals. Israel Journal of Mathe- matics, 83:153–176, 1993spa
dc.relation.referencesTomek Bartoszynski and Haim Judah. Set theory: On the Structure of the Real Line. A K Peters, Ltd., Wellesley, MA, 1995.spa
dc.relation.referencesTomek Bartoszynski and H Judah. Measure and category. In Handbook of Set Theory. Vols. 1, 2, 3, volume 2. 2010.spa
dc.relation.referencesWilliam Blake. The marriage of Heaven and Hell. Camden Hotten, London, 1868.spa
dc.relation.referencesAndreas Blass. Combinatorial cardinal characteristics of the continuum. In Handbook of Set Theory. Vols. 1, 2, 3, pages 395–489. Springer, Dordrecht, 2010.spa
dc.relation.referencesJ. L. Bell and M. Machover. A Course in Mathematical Logic. North-Holland Pub- lishing Co., Amsterdam-New York-Oxford, 1977.spa
dc.relation.referencesJ. L. Borges. Obras completas. Emecé, 1984.spa
dc.relation.referencesK. P. S. Bhaskara Rao and M. Bhaskara Rao. Theory of Charges: A Study of Finitely Additive Measures, volume 109 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.spa
dc.relation.referencesJorg Brendle. Larger cardinals in Cichon’s diagram. Israel Journal of Mathematics, 56(3):795–810, 1991.spa
dc.relation.referencesKai Lai Chung. A Course in Probability Theory. Academic Press, 1974.spa
dc.relation.referencesMiguel A. Cardona and Diego A. Mejía. On cardinal characteristics of Yorioka ideals. Math. Log. Q., 65(2):170–199, 2019.spa
dc.relation.referencesMiguel A. Cardona and Diego A. Mejía. Forcing constellations of Cichon’s diagram by using the Tukey order. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 22(13):14– 47, 2022. arXiv:2203.00615.spa
dc.relation.referencesPaul J. Cohen. Set Theory and the Continuum Hypothesis. W. A. Benjamin, Inc., New York-Amsterdam, 1966.spa
dc.relation.referencesRyszard Engelking and Monika Karłowicz. Some theorems of set theory and their topological consequences. Fund. Math., 57:275–285, 1965.spa
dc.relation.referencesP. Erdos. Some remarks on the theory of graphs. Bulletin of the American Mathemat- ical Society, 53(4):292 – 294, 1947.spa
dc.relation.referencesMartin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah. Preser- vation of splitting families and cardinal characteristics of the continuum. Israel Jour- nal of Mathematics, 246:73–129, 2021spa
dc.relation.referencesMartin Goldstern, Jakob Kellner, Diego Alejandro Mejía, and Saharon Shelah. Ci- chon’s maximum without large cardinals. J. Eur. Math. Soc. (JEMS), 24(11):3951– 3967, 2022.spa
dc.relation.referencesMartin Goldstern, Jakob Kellner, and Saharon Shelah. Cichon’s maximum. Ann. of Math., 190(1):113–143, 2019.spa
dc.relation.referencesMartin Goldstern, Diego Alejandro Mejía, and Saharon Shelah. The left side of Ci- chon’s diagram. Proc. Amer. Math. Soc., 144(9):4025–4042, 2016.spa
dc.relation.referencesSteven Givant and Halmos Paul. Introduction to Boolean Algebras, volume 1 of Un- dergraduate Texts in Mathematics. Springer, 2009.spa
dc.relation.referencesLorenz J. Halbeisen. Combinatorial Set Theory. Springer Monographs in Mathemat- ics. Springer, 2019.spa
dc.relation.referencesDavid Hilbert. The Foundations of Mathematics. Harvard University Press, 1927.spa
dc.relation.referencesHorowitz Haim. and Saharon Shelah. Saccharinity with ccc. arXiv:1610.02706, 2016spa
dc.relation.referencesThomas Jech. Set Theory, the Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003spa
dc.relation.referencesAlexander S. Kechris. Classical Descriptive Set Theory. Springer New York, NY, 1995.spa
dc.relation.referencesJ.L Kelley. Meaures on boolean algebras. J. Symbolic Logic, 64(2):737–746, 1959.spa
dc.relation.referencesAshutosh Kumar and Saharon Shelah. On possible restrictions of the null ideal. Jour- nal of Mathematical Logic, 19(02):1950008, 2019.spa
dc.relation.referencesJakob Kellner, Saharon Shelah, and Anda R. Tanasie. Another ordering of the ten car- dinal characteristics in Cichon’s diagram. Comment. Math. Univ. Carolin., 60(1):61– 95, 2019.spa
dc.relation.referencesKenneth Kunen. Set Theory, an Introduction to Independence Proofs, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-New York, 1980.spa
dc.relation.referencesKenneth Kunen. Set Theory, volume 34 of Studies in Logic (London). College Publi- cations, London, 2011.spa
dc.relation.referencesKenneth Kunen. The Foundation of Mathematics. College Publications, London, 2012.spa
dc.relation.referencesLuc Lauwers. Purely finitely additive measures are non-constructible objects. Working Papers of Department of Economics, Leuven, 2010.spa
dc.relation.referencesDiego A. Mejíıa. Matrix iterations with vertical support restrictions. In Proceedings of the 14th and 15th Asian Logic Conferences, pages 213–248. World Sci. Publ., Hack- ensack, NJ, 2019. arXiv:1803.05102.spa
dc.relation.referencesDiego A. Mejíıa. Forcing and combinatorics of names. Kyoto Daigaku Surikaiseki Kenkyusho Kokyuroku, 2164:34–49, 2020. http://hdl.handle.net/2433/ 261449.spa
dc.relation.referencesArnold W. Miller. Some properties of measure and category. American Mathematical Society, 266(1):93–114, 1981.spa
dc.relation.referencesArnold W. Miller. The Baire category theorem and cardinals of countable cofinality. The Journal of Symbolic Logic, 47(2):275–288, 1982.spa
dc.relation.referencesYiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.spa
dc.relation.referencesDiego Alejandro Mejía and Ismael E. Rivera-Madrid. Absoluteness theorems for ar- bitrary Polish spaces. Rev. Colombiana Mat., 53(2):109–123, 2019.spa
dc.relation.referencesJohn C. Oxtoby. Measure and Category. Graduate Texts in Mathematics. Springer, 2013.spa
dc.relation.referencesJanusz Pawlikowski. Adding dominating reals with Baire-bounding posets. American Mathematical Society, 123(2):540–547, 1992.spa
dc.relation.referencesAssaf Rinot. The Engelking-Karłowicz Theorem, and a useful corollary. Personal blog, Sep. 29, 2012. https://blog.assafrinot.com/?p=2054spa
dc.relation.referencesMaxwell Rosenlicht. Introduction to Analysis, volume 1. Dover Publications, 1968.spa
dc.relation.referencesSheldon M. Ross. A First Course in Probability. Prentice Hall, Upper Saddle River, N.J., fifth edition, 1998.spa
dc.relation.referencesSaharon Shelah. The future of set theory. In Set theory of the reals, pages 1–12. Bar-Ilan Univ, 1993.spa
dc.relation.referencesSaharon Shelah. Covering of the null ideal may have countable cofinality. Fund. Math., 166(1-2):109–136, 2000.spa
dc.relation.referencesJ. R Shoenfield. Martin’s axiom. American Mathematical Monthly, 82(6):610–617, 1975spa
dc.relation.referencesSaharon Shelah and Haim Judah. Adding dominating reals with the random algebra. American Mathematical Society, 119(1):267–273, 1993.spa
dc.relation.referencesR.M. Solovay and Tennenbaum S. Iterated Cohen extensions and Souslin’s problem. Annals of Mathematics, 94(2):201–245, 1971.spa
dc.relation.referencesJohn Truss. Connections between different amoeba algebras. Fundamenta Mathemat- icae, 130(2):137–155, 1988.spa
dc.relation.referencesCarlos Uzcátegui Aylwin and Carlos Augusto Di Prisco. Una Introducción a la Teoría Descriptiva de Conjuntos. Ediciones Uniandes-Universidad de los Andes, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticasspa
dc.subject.lembForcing (Teoría de los modelos)
dc.subject.lembTrayectoria aleatoria
dc.subject.proposalIterated forcingeng
dc.subject.proposalProbabilityeng
dc.subject.proposalFinitely additive measureeng
dc.subject.proposalConsistency resultseng
dc.subject.proposalNull seteng
dc.subject.proposalIntersection numbereng
dc.subject.proposalCardinal invarianteng
dc.subject.proposalSingular cardinaleng
dc.subject.proposalCichon’s diagrameng
dc.subject.proposalForcing iteradospa
dc.subject.proposalProbabilidadspa
dc.subject.proposalMedida finitamente aditivaspa
dc.subject.proposalResultados de consistenciaspa
dc.subject.proposalConjunto nulospa
dc.subject.proposalNumero de intersecciónspa
dc.subject.proposalCardinal invariantespa
dc.subject.proposalCardinal singularspa
dc.subject.proposaldiagrama de Cicho´nspa
dc.titleIterated forcing with finitely additive measures: applications of probability to forcing theoryeng
dc.title.translatedForcing iterado con medidas finitamente aditivas: aplicaciones de la probabilidad a la teoría del forcingspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037653497.2023.pdf
Tamaño:
1.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: