Desarrollo de un candidato a material de referencia para la detección y cuantificación de Escherichia coli O157 H7 por PCR

dc.contributor.advisorCalderón Ozuna, Martha Nancyspa
dc.contributor.advisorLeguizamón Guerrero, Jhon Emersonspa
dc.contributor.authorTere Peña, Claudia Patriciaspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.corporatenameInstituto Nacional de Metrologíaspa
dc.contributor.researchgroupBioquímica y Biología Molecular de las Micobacteriasspa
dc.date.accessioned2020-08-05T02:58:31Zspa
dc.date.available2020-08-05T02:58:31Zspa
dc.date.issued2020-02-14spa
dc.description.abstractThe E. coli O157: H7 is an enterohemorrhagic bacteria producing Shiga toxin. It can trigger diseases such as hemolytic uremic syndrome (HUS) and hemorrhagic colitis. It has been found associated with outbreaks of foodborne illness. Therefore, it is important to ensure their absence in the production chain of agroindustrial products through the use of sensitive, fast and specific measurement systems such as PCR. There are currently different methods to identify and quantify E. coli O157: H7 in several matrices, but there is no equivalence or comparability between the results of the measurements produced by these methods, due to the absence of traceable reference materials to the international system of units. In order to contribute to the comparability and traceability of the measures carried out by methods based on nucleic acid amplification, a candidate for reference material (MR) of genomic DNA from E. coli O157: H7 was first made in Colombia. After optimizing the culture and DNA extraction conditions of the microorganism, two batches were prepared with concentrations of 172 ± 30 copies / µL and 164864 ± 13096 copies / µL (Uα=0,95; k=2), they proved to be homogeneous and stable for 3 months. In the characterization of the MR candidate a method was used by digital PCR in droplet mode, validated to detect and quantify E. coli O157: H7 DNA in a measurement range of 8 to 8000 copies/μL with measurement uncertainty between 1.5 to 10% depending on the concentration level. The reference material produced could be used for the quality control of the measurements made by real-time PCR, allowing to establish equivalences between the measurement results obtained by the different commercial tests and guarantee traceability to the international system of units.spa
dc.description.abstractE. coli O157:H7 es una bacteria enterohemorrágica productora de toxinas Shiga capaz de desencadenar enfermedades como el síndrome urémico hemolítico (SUH) y colitis hemorrágica. Se ha encontrado asociada a brotes de enfermedades transmitidas por alimentos, por lo que es importante garantizar su ausencia en toda la cadena productiva de los productos agroindustriales a través del uso de sistemas de medición sensibles, rápidos y específicos como la PCR. Actualmente hay diferentes métodos para identificar y cuantificar E. coli O157:H7 en varias matrices, pero no existe equivalencia o comparabilidad entre los resultados de las mediciones producidas por estas metodologías, debido a la ausencia de materiales de referencia trazables al sistema internacional de unidades. Con el objetivo de contribuir a la comparabilidad y trazabilidad de las medidas realizadas por métodos basados en la amplificación de ácidos nucleicos, se produjo en Colombia por primera vez un candidato a material de referencia (MR) de ADN genómico de E. coli O157:H7. Luego de optimizar las condiciones de cultivo y extracción de ADN del microorganismo se prepararon dos lotes con concentraciones de 172 ± 30 copias/µL y 164864 ± 13096 copias/µL (Uα=0,95; k=2), los que demostraron ser homogéneos y estables durante 3 meses. En la caracterización del candidato a MR se empleó un método por PCR digital en modo gota, previamente validado para detectar y cuantificar ADN de E. coli O157:H7 en un intervalo de medición de 8 a 8000 copias/μL con incertidumbre de medición entre 1.5 a 10% según el nivel de concentración. El material de referencia producido se podría emplear para el control de calidad de las medidas realizadas por PCR tiempo real, permitiendo establecer equivalencias entre los resultados de medición obtenidos por los distintos ensayos comerciales y garantizar la trazabilidad al sistema internacional de unidades.spa
dc.description.additionalLínea de Investigación: Bioprocesosspa
dc.description.degreelevelMaestríaspa
dc.description.projectDesarrollo de materiales de referencia o biometrológicos para la detección de Escherichia coli y Salmonella spp. en productos agroindustriales del programa de transformación productivaspa
dc.description.sponsorshipMinisterio de Cienciasspa
dc.format.extent159spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77923
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.references[3] World health organization, “Foodborne Disease Burden.” [Online]. Available: https://extranet.who.int/sree/Reports?op=vs&path=/WHO_HQ_Reports/G36/PROD/EXT/FoodborneDiseaseBurden. [Accessed: 12-Jan-2020].spa
dc.relation.references[1] Food & Drugs Administration (FDA), “Qué es una enfermedad transmitida por los alimentos.” [Online]. Available: https://www.fda.gov/food/people-risk-foodborne-illness/que-es-una-enfermedad-transmitida-por-los-alimentos. [Accessed: 13-Jan-2020].spa
dc.relation.references[2] Organización Mundial de la Salud (OMS), “Enfermedades de transmisión alimentaria,” 2016.spa
dc.relation.references[4] S. E. Majowicz et al., “Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis.,” Foodborne Pathog. Dis., vol. 11, no. 6, pp. 447–55, 2014.spa
dc.relation.references[5] W. Gossman, A. Wasey, and P. Salen, Escherichia Coli (E. Coli 0157: H7). 2019.spa
dc.relation.references[6] B. Devleesschauwer, S. M. Pires, I. Young, A. Gill, and S. E. Majowicz, “Associating sporadic, foodborne illness caused by Shiga toxin-producing Escherichia coli with specific foods: A systematic review and meta-analysis of case-control studies,” Epidemiol. Infect., vol. 147, 2019.spa
dc.relation.references[7] S. Wang et al., “Food safety trends: from globalization of whole genome sequencing to application of new tools to prevent foodborne diseases,” Trends Food Sci. Technol., vol. 57, pp. 188–198, 2016.spa
dc.relation.references[8] D. Y. C. Fung, “Rapid methods and automation in microbiology: A review,” Irish J. Agric. Food Res., vol. 39, no. 2, pp. 301–307, 2000.spa
dc.relation.references[9] M. Ricchi et al., “Comparison among the quantification of bacterial pathogens by qPCR, dPCR, and cultural methods,” Front. Microbiol., vol. 8, no. JUN, pp. 1–15, 2017.spa
dc.relation.references[10] G. A. M. Tarr et al., “Performance of commercial tests for molecular detection of Shiga toxin-producing Escherichia coli (STEC): A systematic review and meta-analysis protocol,” BMJ Open, vol. 9, no. 3, pp. 1–6, 2019.spa
dc.relation.references[11] A. Garrido, M.-J. Chapela, B. Román, P. Fajardo, J. M. Vieites, and A. G. Cabado, “In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes,” Int. J. Food Microbiol., vol. 164, no. 1, pp. 92–98, 2013.spa
dc.relation.references[12] J. Cloke et al., “Validation of the thermo scientific SureTect Escherichia coli O157:H7 real-time PCR assay for raw beef and produce matrixes,” J. AOAC Int., vol. 98, no. 5, pp. 1301–1314, 2015.spa
dc.relation.references[13] I. Son, R. Binet, A. Maounounen-Laasri, A. Lin, T. S. Hammack, and J. A. Kase, “Detection of five Shiga toxin-producing Escherichia coli genes with multiplex PCR,” Food Microbiol., vol. 40, 2014.spa
dc.relation.references[14] B. Li, H. Liu, and W. Wang, “Multiplex real-time PCR assay for detection of Escherichia coli O157 : H7 and screening for non-O157 Shiga toxin-producing E . coli,” pp. 1–13, 2017.spa
dc.relation.references[15] V. Barwick and S. Wood, “Achieving metrological traceability in chemical and bioanalytical measurement,” J. Anal. At. Spectrom., vol. 25, no. 6, pp. 785–799, 2010.spa
dc.relation.references[16] L. Wang et al., “Development of a Reference Standard of Escherichia coli DNA for Residual DNA Determination in China,” vol. 8, no. 9, pp. 1–6, 2013.spa
dc.relation.references[17] P. Van Iwaarden et al., “Certification of a Reference Material of Purified Genomic DNA from Escherichia Coli O157 Certified Reference Material IRMM-449,” 2006.spa
dc.relation.references[18] A. S. Devonshire, R. Elaswarapu, and C. A. Foy, “Applicability of RNA standards for evaluating RT-qPCR assays and platforms,” BMC Genomics, vol. 12, p. 10, Feb. 2011.spa
dc.relation.references[19] American Type Culture Collection (ATCC), “Certified Reference Materials (CRMs).” [Online]. Available: https://www.atcc.org/en/Standards/Standards_Programs/Certified_Reference_Materials_CRMs.aspx. [Accessed: 13-Jan-2020].spa
dc.relation.references[20] P. Corbisier et al., “CCQM-K86/P113.1: Relative quantification of genomic DNA fragments extracted from a biological tissue,” Metrologia, vol. 49, no. 1A, pp. 08002–08002, 2012.spa
dc.relation.references[21] S. Bhat and K. R. Emslie, “Digital polymerase chain reaction for characterisation of DNA reference materials,” Biomol. Detect. Quantif., vol. 10, pp. 47–49, 2016.spa
dc.relation.references[22] Proexport, “Programa de transformación productiva,” El priódico las oportunidades, pp. 1–24, 2012.spa
dc.relation.references[23] G. G. Moy and Y. Motarjemi, Public Health Measures: International Standards and Harmonization of Food Safety Legislation BT - Encyclopedia of Food Safety, vol. 4. Elsevier Ltd., 2014.spa
dc.relation.references[24] INS (Instituto Nacional de Salud), “Protocolo de vigilancia y control de enfermedades transmitidas por alimentos,” Bogotá D.C., 2011.spa
dc.relation.references[25] Ministerio de Salud y Protección Social, Resolución 4393 de 1991. Colombia, 1991, p. 3.spa
dc.relation.references[26] INVIMA, “Parametros microbiologicos de alimentos.,” 2011. .spa
dc.relation.references[27] Ministerio de Seguridad en Alimentos y Fármacos, “Food Code Corea Article 5.”spa
dc.relation.references[28] C. U. Europea, Reglamento (CE) n o 2073/2005 de la Comisión, de 15 de noviembre de 2005 , relativo a los criterios microbiológicos aplicables a los productos alimenticios (Texto pertinente a efectos del EEE), vol. 48. 2005, pp. 1–33.spa
dc.relation.references[29] INVIMA, “Portafolio de servicios,” 2015.spa
dc.relation.references[30] W. H. Organization, “Estimaciones de la OMS sobre la carga mundial de enfermedades de transmisión alimentaria,” World Heal. Organ., vol. 14, p. 2, 2015.spa
dc.relation.references[31] Jaime Alberto Guerrero, “Enfermedades Transmitidas por alimentos. PROTOCOLO DE VIGILANCIA EN SALUD PUBLICA,” Inst. Nac. Salud, pp. 3–4, 2016.spa
dc.relation.references[32] Instituto Nacional de Salud (INS), BES Semana epidemiológica 52 23 al 29 de Diciembre de 2018. 2018.spa
dc.relation.references[33] Organización Mundial de la Salud (OMS), “Riesgos microbiológicos.” [Online]. Available: https://www.who.int/foodsafety/areas_work/microbiological-risks/es/. [Accessed: 13-Jan-2020].spa
dc.relation.references[34] A. H. Havelaar et al., “World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010.”spa
dc.relation.references[35] J. B. Kaper, J. P. Nataro, and H. L. T. Mobley, “Pathogenic Escherichia coli,” Nat. Rev. Microbiol., vol. 2, no. 2, pp. 123–140, 2004.spa
dc.relation.references[36] FAO, “Escherichia coli,” Bol. enfermedades Transfront. los Anim., p. 39, 2011.spa
dc.relation.references[37] Foodborne disease burden epidemiology reference group, WHO estimates of the Global Burden of Foodborne Disease. 2015.spa
dc.relation.references[38] Y. Puig Peña, V. Leyva Castillo, N. Apórtela López, N. Campos González, Y. Frerer Marquez, and P. Soto Rodriguez, “Serogrupos y resistencia antimicrobiana de cepas de escherichia coli aisladas en alimentos procedentes de brotes de enfermedades diarreicas,” Rev. Cuba. Aliment. y Nutr., vol. 2, pp. 161–172, 2014.spa
dc.relation.references[39] F. Molina, E. López-acedo, R. Tabla, I. Roa, A. Gómez, and J. E. Rebollo, “Improved detection of Escherichia coli and coliform bacteria by multiplex PCR,” ???, pp. 1–9, 2015.spa
dc.relation.references[40] J. Y. L. J. W. Y. and C. J. Hovde, “A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157,” J Microbiol Biotechnol., vol. 20, no. 1, pp. 5–14, 2013.spa
dc.relation.references[41] C. Farrokh et al., “Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production,” Int. J. Food Microbiol., vol. 162, no. 2, pp. 190–212, 2013.spa
dc.relation.references[42] ISO, ISO 16649 Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of b-glucuronidase-positive Escherichia coli. 2001.spa
dc.relation.references[43] ISO, “ISO 16649-2 Horizontal method for the enumeration of b-glucuronidase-positive Escherichia coli Part 2,” 2001.spa
dc.relation.references[44] A. Camacho, M. Giles, A. Ortegón, M. Palao, B. Serrano, and O. Velázquez, “Preparación y dilución de muestras de alimentos para su análisis microbiológico,” p. 9, 2009spa
dc.relation.references[45] N. Da Silva, M. H. Taniwaki, V. C. Junqueira, N. Silveira, M. da Silda do Nascimento, and R. Romeiro Gomes, Microbiological examination methods of food and water : a laboratory manual. 2013.spa
dc.relation.references[46] ISO, ISO 16654:2001. Microbiology of food and animal feeding stuffs — Horizontal method for the detection of Escherichia coli 0157, no. 1. 2001.spa
dc.relation.references[47] International Organization for Standardization (ISO), “ISO 13136:2012 - Microbiology of food and animal feed — Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens — Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determi.” [Online]. Available: https://www.iso.org/standard/53328.html. [Accessed: 13-Jan-2020].spa
dc.relation.references[48] C. A. Baker, P. M. Rubinelli, S. H. Park, F. Carbonero, and S. C. Ricke, “Shiga toxin-producing Escherichia coli in food: Incidence, ecology, and detection strategies,” Food Control, vol. 59. p. 12, 2016.spa
dc.relation.references[49] S. Henson and R. Loader, “Barriers to agricultural exports from developing countries: The role of sanitary and phytosanitary requirements,” World Dev., vol. 29, no. 1, pp. 85–102, 2001.spa
dc.relation.references[50] European Comission, “RASFF - Food and Feed Safety Alerts - European Commission.” [Online]. Available: http://ec.europa.eu/food/safety/rasff_en. [Accessed: 25-Apr-2017].spa
dc.relation.references[51] L. E. Forero, “Regulación SPS de Alimentos para exportación a los Estados Unidos,” 2013.spa
dc.relation.references[52] European comissión, “RASFF Portal,” 2020. [Online]. Available: https://webgate.ec.europa.eu/rasff-window/portal/?event=searchResultList. [Accessed: 13-Jan-2020].spa
dc.relation.references[53] Ministerio de Salud y protección Social, “Resolucion 3929 de 2013 Requerimientos microbiológicos jugos.” 2013.spa
dc.relation.references[54] M. Mangal, S. Bansal, S. K. Sharma, and R. K. Gupta, “Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety,” Crit. Rev. Food Sci. Nutr., vol. 56, no. 9, pp. 1568–1584, Jul. 2016.spa
dc.relation.references[55] T. Kuchta et al., “A decade with nucleic acid-based microbiological methods in safety control of foods,” Lett. Appl. Microbiol., vol. 59, no. 3, pp. 263–271, 2014.spa
dc.relation.references[56] ISO, “ISO 4833-1 Horizontal method for the enumeration of microorganism,” vol. 44, no. 0, 2013.spa
dc.relation.references[57] P. K. Mandal, A. K. Biswas, K. Choi, and U. K. Pal, “Methods for Rapid Detection of Foodborne Pathogens: An Overview,” American Journal of Food Technology, vol. 6, no. 2. pp. 87–102, 2011.spa
dc.relation.references[58] G. Bou, A. Fernández-Olmos, C. García, J. A. Sáez-Nieto, and S. Valdezate, “Métodos de identificación bacteriana en el laboratorio de microbiología,” Enferm. Infecc. Microbiol. Clin., vol. 29, no. 8, pp. 601–608, 2011.spa
dc.relation.references[59] G. López-Campos, J. V. Martínez-Suárez, M. Aguado-Urda, and V. López-Alonso, “Microarray Detection and Characterization of Bacterial Foodborne Pathogens,” Food, Heal. Nutr., pp. 13–33, 2012.spa
dc.relation.references[60] J. W.-F. Law, N.-S. Ab Mutalib, K.-G. Chan, and L.-H. Lee, “Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations.,” Front. Microbiol., vol. 5, no. January, p. 770, 2015.spa
dc.relation.references[61] R. L. Bell, K. G. Jarvis, A. R. Ottesen, M. A. Mcfarland, and E. W. Brown, “Recent and emerging innovations in Salmonella detection: A food and environmental perspective,” Microb. Biotechnol., vol. 9, no. 3, pp. 279–292, 2016.spa
dc.relation.references[62] S. Bonetta et al., “Detection of pathogenic Campylobacter, E. coli O157:H7 and Salmonella spp. in wastewater by PCR assay,” Environ. Sci. Pollut. Res., vol. 23, no. 15, pp. 15302–15309, 2016.spa
dc.relation.references[63] N. González-Escalona, E. W. Brown, and G. Zhang, “Development and evaluation of a multiplex real-time PCR (qPCR) assay targeting ttrRSBCA locus and invA gene for accurate detection of Salmonella spp. in fresh produce and eggs,” Food Res. Int., vol. 48, no. 1, pp. 202–208, 2012.spa
dc.relation.references[64] A. Rohde et al., “Overview of validated alternative methods for the detection of foodborne bacterial pathogens,” Trends Food Sci. Technol., vol. 62, pp. 113–118, 2017.spa
dc.relation.references[65] Z. P. Guan, Y. Jiang, F. Gao, L. Zhang, G. H. Zhou, and Z. J. Guan, “Rapid and simultaneous analysis of five foodborne pathogenic bacteria using multiplex PCR,” Eur. Food Res. Technol., vol. 237, no. 4, pp. 627–637, 2013.spa
dc.relation.references[66] M. Varshney, L. Yang, X.-L. Su, and Y. Li, “Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef.,” J. Food Prot., vol. 68, no. 9, pp. 1804–11, 2005.spa
dc.relation.references[67] V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, and C. Adley, “An overview of foodborne pathogen detection: In the perspective of biosensors,” Biotechnol. Adv., vol. 28, no. 2, pp. 232–254, 2010.spa
dc.relation.references[68] M. Pohanka, P. Skládal, and O. Pavliš, “Label‐Free Piezoelectric Immunosensor for Rapid Assay of Escherichia coli,” J. Immunoass. Immunochem., vol. 29, no. 1, pp. 70–79, 2007.spa
dc.relation.references[69] M. Vaz-Velho, G. Duarte, and P. Gibbs, “Evaluation of mini-VIDAS rapid test for detection of Listeria monocytogenes from production lines of fresh to cold-smoked fish,” J. Microbiol. Methods, vol. 40, no. 2, pp. 147–151, 2000.spa
dc.relation.references[70] D. Emerson, L. Agulto, H. Liu, and L. Liu, “Identifying and Characterizing Bacteria in an Era of Genomics and Proteomics,” Bioscience, vol. 58, no. 10, p. 925, 2008.spa
dc.relation.references[71] T. C. Chiu, “Recent advances in bacteria identification by matrix-assisted laser desorption/ionization mass spectrometry using nanomaterials as affinity probes,” Int. J. Mol. Sci., vol. 15, no. 5, pp. 7266–7280, 2014.spa
dc.relation.references[72] P.-E. Fournier, M. Drancourt, P. Colson, J.-M. Rolain, B. La Scola, and D. Raoult, “Modern clinical microbiology: new challenges and solutions,” Nat. Rev. Microbiol., vol. 11, no. 8, pp. 574–585, 2013.spa
dc.relation.references[73] N. T. Salihah, M. M. Hossain, H. Lubis, and M. U. Ahmed, “Trends and advances in food analysis by real-time polymerase chain reaction,” J. Food Sci. Technol., vol. 53, no. 5, pp. 2196–2209, 2016.spa
dc.relation.references[74] INVIMA, “Portafolio de servicios INVIMA,” pp. 1–7, 2018.spa
dc.relation.references[75] T. González Flores and R. A. Rojas Herrera, “Enfermedades transmitidas por alimentos y PCR: Prevención y diagnóstico,” Salud Publica Mex., vol. 47, no. 5, pp. 388–390, 2005.spa
dc.relation.references[76] M. T. Rahman, M. S. Uddin, R. Sultana, A. Moue, and M. Setu, “Polymerase Chain Reaction (PCR): A Short Review,” Anwer Khan Mod. Med. Coll. J., vol. 4, no. 1, pp. 30–36, 2013.spa
dc.relation.references[77] H. Ringuet et al., “hsp65 Sequencing for identification of rapidly growing mycobacteria,” J. Clin. Microbiol., vol. 37, no. 3, pp. 852–857, 1999.spa
dc.relation.references[78] G. W. Payne, P. Vandamme, S. H. Morgan, J. J. Lipuma, and T. Coenye, “Development of a recA gene-based identification approach for the entire Burkholderia genus,” Appl. Environ. Microbiol., vol. 71, no. 7, pp. 3917–3927, 2005.spa
dc.relation.references[79] L. Dong, Y. Meng, Z. Sui, J. Wang, L. Wu, and B. Fu, “Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material.,” Sci. Rep., vol. 5, 2015.spa
dc.relation.references[80] S. Dhanasekaran, T. M. Doherty, and J. Kenneth, “Comparison of different standards for real-time PCR-based absolute quantification,” J. Immunol. Methods, vol. 354, no. 1–2, pp. 34–39, 2010.spa
dc.relation.references[81] S. Bhat and K. R. Emslie, “Digital polymerase chain reaction for characterization of DNA reference materials,” Biomol. Detect. Quantif., pp. 3–5, 2016.spa
dc.relation.references[82] L. Tamay de Dios, C. Ibarra, and C. Velasquillo, “Fundamentos de la reacción en cadena de la polimerasa (PCR) y de la PCR en tiempo real,” Learn. Discip. ICLS 2010 Conf. Proc. - 9th Int. Conf. Learn. Sci., vol. 12, pp. 70–78, 2013.spa
dc.relation.references[83] M. Arya, I. S. Shergill, M. Williamson, L. Gommersall, N. Arya, and H. R. H. Patel, “Basic principles of real-time quantitative PCR,” Expert Rev. Mol. Diagn., vol. 5, no. 2, pp. 209–219, 2005.spa
dc.relation.references[84] Y. Li, X. Zhou, and D. Ye, “Molecular beacons: An optimal multifunctional biological probe,” Biochem. Biophys. Res. Commun., vol. 373, no. 4, pp. 457–461, 2008.spa
dc.relation.references[85] E. Omiccioli, G. Amagliani, G. Brandi, and M. Magnani, “A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk,” Food Microbiol., vol. 26, no. 6, pp. 615–622, 2009.spa
dc.relation.references[86] S. H. Liming and A. A. Bhagwat, “Application of a molecular beacon - Real-time PCR technology to detect Salmonella species contaminating fruits and vegetables,” Int. J. Food Microbiol., vol. 95, no. 2, pp. 177–187, 2004.spa
dc.relation.references[87] S. Perelle, F. Dilasser, J. Grout, and P. Fach, “Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases,” Mol. Cell. Probes, vol. 18, no. 3, pp. 185–192, 2004.spa
dc.relation.references[88] L. W. Noll et al., “A Four-Plex Real-Time PCR Assay, Based on rfb E, stx 1, stx 2, and eae Genes, for the Detection and Quantification of Shiga Toxin–Producing Escherichia coli O157 in Cattle Feces,” Foodborne Pathog. Dis., vol. 12, no. 9, pp. 787–794, 2015.spa
dc.relation.references[89] G. A. Leotta et al., “Validación de una técnica de PCR múltiple para la detección de Escherichia coli productor de toxina Shiga,” Rev. Argent. Microbiol., vol. 37, no. 1, pp. 1–10, 2005.spa
dc.relation.references[90] B. Vogelstein and K. W. Kinzler, “Digital PCR,” Genetics, vol. 96, no. August, p. 92369241, 1999.spa
dc.relation.references[91] A. A. Morley, “Digital PCR: A brief history,” Biomol. Detect. Quantif., vol. 1, no. 1, pp. 1–2, 2014.spa
dc.relation.references[92] J. F. Huggett, J. A. Garson, and A. S. Whale, “Digital PCR and Its Potential Application to Microbiology,” Mol. Microbiol. Diagnostic Princ. ans Pract., pp. 49–57, 2016.spa
dc.relation.references[93] M. Wang et al., “Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk,” Int. J. Food Microbiol., vol. 266, 2018.spa
dc.relation.references[94] J. F. Huggett, S. Cowen, and C. A. Foy, “Considerations for Digital PCR as an Accurate Molecular Diagnostic Tool,” vol. 1, no. 61, pp. 79–88, 2015.spa
dc.relation.references[95] B. Verhaegen, K. De Reu, L. De Zutter, K. Verstraete, M. Heyndrickx, and E. Van Coillie, “Comparison of droplet digital PCR and qPCR for the quantification of shiga toxin-producing Escherichia coli in bovine feces,” Toxins (Basel)., vol. 8, no. 5, pp. 1–11, 2016.spa
dc.relation.references[96] R. Sanders, D. J. Mason, C. A. Foy, and J. F. Huggett, “Evaluation of Digital PCR for Absolute RNA Quantification,” PLoS One, vol. 8, no. 9, pp. 1–9, 2013.spa
dc.relation.references[97] D. G. Burke et al., “Digital polymerase chain reaction measured pUC19 marker as calibrant for HPLC measurement of DNA quantity,” Anal. Chem., vol. 85, no. 3, pp. 1657–1664, 2013.spa
dc.relation.references[98] R. Sanders, J. F. Huggett, C. A. Bushell, S. Cowen, D. J. Scott, and C. A. Foy, “Evaluation of digital PCR for absolute DNA quantification,” Anal. Chem., vol. 83, no. 17, pp. 6474–6484, 2011.spa
dc.relation.references[99] S. Bhat, N. Curach, T. Mostyn, G. S. Bains, K. R. Griffiths, and K. R. Emslie, “Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units,” Anal. Chem., vol. 82, no. 17, pp. 7185–7192, 2010.spa
dc.relation.references[100] Biomerieux, “Métodos Rápidos para el Métodos Rápidos para el control Microbiológico de Alimentos,” pp. 1–54, 2011.spa
dc.relation.references[101] G. Pohl and M. Shih Ie, “Principle and applications of digital PCR,” Expert Rev Mol Diagn, vol. 4, no. 1, pp. 41–47, 2004.spa
dc.relation.references[102] M. Boyer and J. Combrisson, “Analytical opportunities of quantitative polymerase chain reaction in dairy microbiology,” Int. Dairy J., vol. 30, no. 1, pp. 45–52, 2013.spa
dc.relation.references[103] G. Agustí, M. Fittipaldi, and F. Codony, “Optimization of a Viability PCR Method for the Detection of Listeria monocytogenes in Food Samples,” Curr. Microbiol., vol. 75, no. 6, pp. 779–785, 2018.spa
dc.relation.references[104] S. Broeders et al., “Guidelines for validation of qualitative real-time PCR methods,” Trends Food Sci. Technol., vol. 37, no. 2, pp. 115–126, 2014.spa
dc.relation.references[105] J. F. Huggett, S. Cowen, and C. A. Foy, “Considerations for digital PCR as an accurate molecular diagnostic tool,” Clin. Chem., vol. 61, no. 1, pp. 79–88, 2015.spa
dc.relation.references[106] P. Truchado, M. I. Gil, T. Kostic, and A. Allende, “Optimization and validation of a PMA qPCR method for Escherichia coli quantification in primary production,” Food Control, vol. 62, pp. 150–156, 2016.spa
dc.relation.references[107] E. T. Gensberg, M. Polt, M. Konrad-k, P. Kinner, A. Sessitsch, and T. Kostic, “Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality,” Water Res., vol. 67, no. 0, pp. 367–376, 2014.spa
dc.relation.references[108] B. Li, Z. Hu, and C. a Elkins, “Detection of live Escherichia coli O157:H7 cells by PMA-qPCR.,” J. Vis. Exp., no. 84, p. e50967, 2014.spa
dc.relation.references[109] M. Chapela, A. Garrido-Maestu, and A. G. Cabado, “Detection of foodborne pathogens by qPCR : A practical approach for food industry applications,” Cogent Food Agric., vol. 1, no. 1, pp. 1–19, 2015.spa
dc.relation.references[110] J. Pavšič et al., “Inter-laboratory assessment of different digital PCR platforms for quantification of human cytomegalovirus DNA,” Anal. Bioanal. Chem., 2017.spa
dc.relation.references[111] H. J. He, J. L. Almeida, S. P. Lund, C. R. Steffen, S. Choquette, and K. D. Cole, “Development of NIST standard reference material 2373: Genomic DNA standards for HER2 measurements,” Biomol. Detect. Quantif., vol. 8, pp. 1–8, 2016.spa
dc.relation.references[112] C. Floren, I. Wiedemann, B. Brenig, E. Schütz, and J. Beck, “Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR),” Food Chem., vol. 173, pp. 1054–1058, 2015.spa
dc.relation.references[113] M. Milavec, K. Gruden, and Z. Jana, “Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR,” PLoS One, vol. 8, no. 5, 2013.spa
dc.relation.references[114] H. White et al., “A certified plasmid reference material for the standardisation of BCR-ABL1 mRNA quantification by real-time quantitative PCR,” Leukemia, vol. 29, no. 2, pp. 369–376, 2015.spa
dc.relation.references[115] C. M. Hindson et al., “Absolute quantification by droplet digital PCR versus analog real-time PCR,” Nat. Methods, vol. 10, no. 10, pp. 1003–1005, 2013.spa
dc.relation.references[116] M. C. Kline, E. L. Romsos, and D. L. Duewer, “Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets,” Anal. Chem., p. acs.analchem.5b03692, 2016.spa
dc.relation.references[117] J. Pavšič, J. Žel, and M. Milavec, “Digital PCR for direct quantification of viruses without DNA extraction,” Anal. Bioanal. Chem., vol. 408, no. 1, pp. 67–75, 2016.spa
dc.relation.references[118] L. Gerdes, A. Iwobi, U. Busch, and S. Pecoraro, “Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms,” Biomol. Detect. Quantif., vol. 7, pp. 9–20, 2016.spa
dc.relation.references[119] M. Sivaganesan, M. Varma, S. Siefring, and R. Haugland, “Quantification of plasmid DNA standards for U.S. EPA fecal indicator bacteria qPCR methods by droplet digital PCR analysis,” J. Microbiol. Methods, vol. 152, pp. 135–142, Sep. 2018.spa
dc.relation.references[120] D. L. Duewer, M. C. Kline, E. L. Romsos, and B. Toman, “Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter,” Anal. Bioanal. Chem., vol. 410, no. 12, 2018.spa
dc.relation.references[121] J. F. Huggett et al., “The digital MIQE guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments.,” Clin. Chem., vol. 59, no. 6, pp. 892–902, Jun. 2013.spa
dc.relation.references[122] T. Soejima, J. I. Minami, T. Yaeshima, and K. Iwatsuki, “An advanced PCR method for the specific detection of viable total coliform bacteria in pasteurized milk,” Appl. Microbiol. Biotechnol., vol. 95, no. 2, pp. 485–497, 2012.spa
dc.relation.references[123] A. Rompré, P. Servais, J. Baudart, M. R. De-Roubin, and P. Laurent, “Detection and enumeration of coliforms in drinking water: Current methods and emerging approaches,” J. Microbiol. Methods, vol. 49, no. 1, pp. 31–54, 2002.spa
dc.relation.references[124] Adria Developpement, “Validation of alternative analytical methods Application in food microbiology Summary report EN ISO 16140 validation study of the DuPont TM BAX  detection of Salmonella spp in meat products , egg,” 2015.spa
dc.relation.references[125] M. L. Camaró-Sala, R. Martínez-García, P. Olmos-Martínez, V. Catalá-Cuenca, M. D. Ocete-Mochón, and C. Gimeno-Cardona, “Validación y verificación analítica de los métodos microbiológicos,” Enfermedades Infecc. y Microbiol. Clin. Monogr., vol. 33, no. 7, pp. e31–e36, 2015.spa
dc.relation.references[126] AFNOR, “E.coli O157 methods.” [Online]. Available: https://nf-validation.afnor.org/en/food-industry/e-coli-o157/. [Accessed: 14-Jan-2020].spa
dc.relation.references[127] AOAC, “Official Methods of Analysis.” [Online]. Available: http://www.eoma.aoac.org/. [Accessed: 14-Jan-2020].spa
dc.relation.references[128] AFNOR, “Validation of alternative analytical methods Application in food microbiology Molecular Detection Assay E. coli O157 (including H7) for the detection of Escherichia coli O157 (including H7) in raw beef meat, raw dairy products, raw fruits & vegetables,” 2016.spa
dc.relation.references[129] ISHA, “NF VALIDATION 16140 TM AFNOR CERTIFICATION VALIDATION OF THE METHOD ADIAFOOD Escherichia coli O157 : H7 method ( single well ) For the detection of Escherichia coli O157 : H7 SUMMARY REPORT ‐ SEPTEMBER 2015 – V1 Expert laboratory : ISHA 25 avenue de la Ré,” 2015.spa
dc.relation.references[130] Adria Developpement, “Rapport de synthèse Reconduction de la validation EN ISO 16140 de la méthode Bax® E. coli O157:H7 MP,” 2012.spa
dc.relation.references[131] Adria Developpement, “Validation study according to the EN ISO 16140 standard Summary report EN ISO 16140 validation of the DuPont TM BAX ® Real-Time PCR Assay for E . coli O157 : H7 method in raw beef meats and raw vegetables,” 2014.spa
dc.relation.references[132] AFNOR, “Validation of alternative analytical methods Application in food microbiology validation study of the GeneDisc® method for the simultaneous detection of Salmonella spp. and Escherichia coli O157:H7-Detection of Escherichia coli O157:H7,” 2017.spa
dc.relation.references[133] Adria Developpement, “Rapport de synthèse Validation EN ISO 16140 de la méthode Méthode iQ-Check Eschericia coli O157:H7,” 2012.spa
dc.relation.references[134] Adria Developpement, “Summary report EN ISO 16140 validation study of the MicroSEQ ® Escherichia coli O157 : H7 method for the detection of Escherichia coli O157 : H7 in raw beef meats and raw vegetables,” 2015.spa
dc.relation.references[135] S. Pillet et al., “Comparative Evaluation of Six Commercialized Multiplex PCR Kits for the Diagnosis of Respiratory Infections,” PLoS One, vol. 8, no. 8, 2013.spa
dc.relation.references[136] P.-Y. Cheung, C. W. Chan, W. Wong, T. L. Cheung, and K. M. Kam, “Evaluation of two real-time polymerase chain reaction pathogen detection kits for Salmonella spp. in food,” Lett. Appl. Microbiol., vol. 39, no. 6, pp. 509–515, Dec. 2004.spa
dc.relation.references[137] EURACHEM, “La Adecuación al Uso de los Métodos Analíticos.” 2016, p. 66, 2016.spa
dc.relation.references[138] JCGM (Comité Conjunto para las Guías en Metrología), Vocabulario Internacional de Metrología. 2008.spa
dc.relation.references[139] International Organization for Standardization, ISO 17511 INvitro diagnostic medical devices-Measurement of quantities in biological samples - Metrological traceability of values assigned to calibrators and control materials, vol. 2005. 2006.spa
dc.relation.references[140] M. Thompson, S. L. R. Ellison, and R. Wood, “Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report),” Int. Union Pure Appl. Chem., vol. 74, no. 5, pp. 835–855, 2002.spa
dc.relation.references[141] S. L. R. Ellison, M. Rosslein, A. Williams, L. A. Konopelko, and A. V. Garmash, “EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement,” Journal of Analytical Chemistry, vol. 58, no. 2. European Federation of National Associations of Analytical Laboratories, p. 191, 2003.spa
dc.relation.references[142] BIPM, International vocabulary of metrology - Basic and general concepts and associated terms (VIM). 2012.spa
dc.relation.references[143] EURACHEM and B. King, “The selection and use of reference materials,” 2002.spa
dc.relation.references[144] “ISO/Guide 33:2015(en), Reference materials — Good practice in using reference materials.” [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:guide:33:ed-3:v1:en. [Accessed: 14-Jan-2020].spa
dc.relation.references[145] W. R. Wolf, “History of reference materials for food and nutrition metrology: As represented in the series of BERM symposia,” Anal. Bioanal. Chem., vol. 397, no. 2, pp. 413–421, 2010.spa
dc.relation.references[146] Societa Italiana di Fisica, Metrology: from Physics Fundamentals to Quality of Life. 2017.spa
dc.relation.references[147] NIST, “Standard Reference Materials.” [Online]. Available: https://www.nist.gov/srm. [Accessed: 14-Jan-2020].spa
dc.relation.references[148] “Certified Reference Materials catalogue of the JRC.” [Online]. Available: https://crm.jrc.ec.europa.eu/. [Accessed: 14-Jan-2020].spa
dc.relation.references[149] WHO (World Health Organization), “WHO | International reference materials.” [Online]. Available: https://www.who.int/bloodproducts/ref_materials/en/. [Accessed: 14-Jan-2020].spa
dc.relation.references[150] BIPM, “Database of higher-order reference materials, measurement methods/procedures and services.” [Online]. Available: https://www.bipm.org/jctlm/. [Accessed: 13-Jan-2020].spa
dc.relation.references[151] L. Deprez et al., “Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material,” Biomol. Detect. Quantif., vol. 9, pp. 29–39, 2016.spa
dc.relation.references[152] P. Van Iwaarden et al., “Certification of a Reference Material of Purified Genomic DNA from Escherichia Coli O157 Certified Reference Material IRMM-449,” vol. 157, no. Edl 933.spa
dc.relation.references[153] J. R. C. JRC, Certification of Reference Materials of Maize Seed Powder containing Genetically Modified MON 810 Maize Certified Reference Materials ERM ® -BF413k. .spa
dc.relation.references[154] P. Corbisier, “CERTIFICATION REPORT A set of three plasmid DNA calibration solutions bearing a porcine- specific DNA fragment A set of three plasmid DNA calibration solutions bearing a porcine-specific DNA fragment,” 2015.spa
dc.relation.references[155] P. Corbisier et al., “DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials,” Anal. Bioanal. Chem., vol. 407, no. 7, pp. 1831–1840, 2015.spa
dc.relation.references[156] Zeptometrix Corporation, “Escherichia coli O157:H7; EDL933, Genomic DNA,” 2014, p. 801622.spa
dc.relation.references[157] International Organization for Standardization (ISO), “ISO/Guide 30:2015(en), Reference materials — Selected terms and definitions.” [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:guide:30:ed-3:v1:en. [Accessed: 14-Jan-2020].spa
dc.relation.references[158] W. A. Schmid and R. J. Lazos Martínez, “Guide to estimate the measurement uncertainty,” Natl. Cent. Metrol. Mex., p. 27, 2000.spa
dc.relation.references[159] T. P. J. Linsinger, J. Pauwels, A. Lamberty, H. G. Schimmel, A. M. H. Van Der Veen, and L. Siekmann, “Estimating the uncertainty of stability for matrix CRMs,” Anal. Bioanal. Chem., vol. 370, no. 2–3, pp. 183–188, 2001.spa
dc.relation.references[160] A. M. H. Van Der Veen, T. P. J. Linsinger, H. Schimmel, A. Lamberty, and J. Pauwels, “Uncertainty calculations in the certification of reference materials 4. Characterisation and certification,” Accredit. Qual. Assur., vol. 6, no. 7, pp. 290–294, 2001.spa
dc.relation.references[161] I. O. for S. ISO, “ISO 17034:2016(es), Requisitos generales para la competencia de los productores de materiales de referencia.” [Online]. Available: https://www.iso.org/obp/ui#iso:std:iso:17034:ed-1:v1:es. [Accessed: 14-Jan-2020].spa
dc.relation.references[162] World Health Organization, “Recommendations for the preparation, characterization and establishment of international and other biological reference standards,” WHO Tech. Rep. Ser. 932, vol. 2, no. 932, pp. 73–131, 2006.spa
dc.relation.references[163] International Organization for Standardization (ISO), “ISO - ISO Guide 35:2017 - Reference materials — Guidance for characterization and assessment of homogeneity and stability.” [Online]. Available: https://www.iso.org/standard/60281.html. [Accessed: 13-Jan-2020].spa
dc.relation.references[164] E. D. F. Guimarães, E. C. P. Do Rego, H. C. M. Cunha, J. M. Rodrigues, J. D. F. Villar, and V. S. Da Cunha, “Homogeneity study for certification of a candidate reference material for polycyclic aromatic hydrocarbons,” 19th IMEKO World Congr. 2009, vol. 4, pp. 2377–2381, 2009.spa
dc.relation.references[165] T. P. J. Linsinger, J. Pauwels, A. M. H. Van Der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, Jan. 2001.spa
dc.relation.references[166] T. P. J. Linsinger, J. Pauwels, A. M. H. Van Der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, 2001.spa
dc.relation.references[167] A. Lamberty, H. Schimmel, and J. Pauwels, “The study of the stability of reference materials by isochronous measurements,” in Fresenius’ Journal of Analytical Chemistry, 1998, vol. 360, no. 3–4, pp. 359–361.spa
dc.relation.references[168] ISO Guide 35, “Reference materials -- General and statistical principles for certification.” International Organization for Standardization. Geneva, Suiza, 2006.spa
dc.relation.references[169] A. B. Košir et al., “Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR,” Anal. Bioanal. Chem., vol. 409, no. 28, pp. 6689–6697, 2017.spa
dc.relation.references[170] J. F. Huggett et al., “The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments,” Clin. Chem., vol. 59, no. 6, pp. 892–902, 2013.spa
dc.relation.references[171] K. Andersen and J. Merry, “Reference Materials,” vol. 18, no. 6, pp. 376–383, 1999.spa
dc.relation.references[172] E. Theres, M. Polt, M. Konrad-k, P. Kinner, A. Sessitsch, and T. Kosti, “Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality,” vol. 7, no. 0, pp. 367–376, 2014.spa
dc.relation.references[173] E. M. Nielsen and M. T. Andersen, “Detection and Characterization of Verocytotoxin-Producing Escherichia coli by Automated 5 ′ Nuclease PCR Assay Detection and Characterization of Verocytotoxin-Producing Escherichia coli by Automated 5Ј Nuclease PCR Assay,” J. Clin. Microbiol., vol. 41, no. 7, pp. 2884–2893, 2003.spa
dc.relation.references[174] I. O. for S. ISO, “ISO/TS 13136:2012 - Microbiology of food and animal feed -- Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens -- Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups,” 2012. [Online]. Available: https://www.iso.org/standard/53328.html. [Accessed: 21-Mar-2019].spa
dc.relation.references[175] Integrated DNA technologies, “How do I use the OligoAnalyzer tool to analyze possible hairpins and dimers formed by my oligo?” [Online]. Available: https://www.idtdna.com/pages/support/faqs/how-do-i-use-the-oligoanalyzer-tool-to-analyze-possible-hairpins-and-dimers-formed-by-my-oligo. [Accessed: 24-Sep-2019].spa
dc.relation.references[176] S. Das Mitrai et al., “Duplex PCR for specific detection of Escherichia coli and its differentiation from other Enterobacteriaceae,” Indian J. Anim. Sci., vol. 85, no. 8, pp. 16–19, 2015.spa
dc.relation.references[177] K. Horakova, H. Mlejnkova, and P. Mlejnek, “Specific detection of Escherichia coli isolated from water samples using polymerase chain reaction targeting four genes: Cytochrome bd complex, lactose permease, ??-d-glucuronidase, and ??-d-galactosidase,” J. Appl. Microbiol., vol. 105, no. 4, pp. 970–976, 2008.spa
dc.relation.references[178] B. Li and J. Chen, “Real-Time PCR Methodology for Selective Detection of Viable Escherichia coli O157 : H7 Cells by Targeting Z3276 as a Genetic,” vol. 78, no. 15, pp. 5297–5304, 2012.spa
dc.relation.references[179] E. M. Nielsen and M. T. Andersen, “Detection and Characterization of Verocytotoxin-Producing Escherichia coli by Automated 5 ′ Nuclease PCR Assay Detection and Characterization of Verocytotoxin-Producing Escherichia coli by Automated 5Ј Nuclease PCR Assay,” J. Clin. Microbiol., vol. 41, no. 7, pp. 2884–2893, 2003.spa
dc.relation.references[180] E. Barbau-Piednoir, S. Bertrand, J. Mahillon, N. H. Roosens, and N. Botteldoorn, “SYBR®Green qPCR Salmonella detection system allowing discrimination at the genus, species and subspecies levels,” Appl. Microbiol. Biotechnol., vol. 97, no. 22, pp. 9811–9824, 2013.spa
dc.relation.references[181] BIORAD, “Real-time PCR: Applications Guide,” Bio-Rad Lab., pp. 2–84, 2006.spa
dc.relation.references[182] V. K. Singh, R. Govindarajan, S. Naik, and A. Kumar, “The effect of hairpin structure on PCR amplification efficiency.,” Mol Biol Today, vol. 1, no. 3, pp. 67–9, 2000.spa
dc.relation.references[183] A. Ud-Din and S. Wahid, “Relationship among Shigella spp. And enteroinvasive Escherichia coli (EIEC) and their differentiation,” Brazilian J. Microbiol., vol. 45, no. 4, pp. 1131–1138, 2014.spa
dc.relation.references[184] Bio-Rad, “Droplet Digital TM PCR Applications guide.”spa
dc.relation.references[185] Promega, “Assembly of Restriction Enzyme Digestions,” 2007.spa
dc.relation.references[186] W. Liang et al., “Quantification of plasmid DNA reference materials for Shiga toxin-producing Escherichia coli based on UV, HR-ICP-MS and digital PCR,” Chem. Cent. J., vol. 10, no. 1, p. 55, 2016.spa
dc.relation.references[187] R. T. Hayden et al., “Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus,” J. Clin. Microbiol., vol. 51, no. 2, pp. 540–546, 2013.spa
dc.relation.references[188] M. E. Hunter, R. M. Dorazio, J. S. S. Butterfield, G. Meigs-Friend, L. G. Nico, and J. A. Ferrante, “Detection limits of quantitative and digital PCR assays and their influence in presence???absence surveys of environmental DNA,” Mol. Ecol. Resour., vol. 17, no. 2, pp. 221–229, 2017.spa
dc.relation.references[189] Thermo Scientific, “T042-TECHNICAL BULLETIN NanoDrop Spectrophotometers.”spa
dc.relation.references[190] C. Villamil, “Desarrollo de herramientas de aseguramiento metrológico para la identificación y cuantificación de Salmonella spp. por métodos basados en PCR,” Universidad Nacional de Colombia, 2019.spa
dc.relation.references[191] “ISO/Guide 31:2015(en), Reference materials — Contents of certificates, labels and accompanying documentation.” [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:guide:31:ed-3:v1:en. [Accessed: 14-Jan-2020].spa
dc.relation.references[192] G. M.M., E. P., L. V., L. M. M., S. L. L., and A. M. L., “[Detection of diarrheagenic Escherichia coli in children from poor neighborhoods in Corrientes, Argentina],” Rev. Cubana Med. Trop., vol. 62, no. 1, pp. 42–47, 2010.spa
dc.relation.references[193] A. Paton and J. Paton, “Detection and Characterization of Shiga Toxigenic Escherichia coli by Using Multiplex Enterohemorrhagic E . coli hlyA , rfb O111 , and Detection and Characterization of Shiga Toxigenic Escherichia coli by Using Multiplex PCR Assays for stx 1 , stx 2 , eae,” J. Clin. Microbiol., vol. 36, no. 2, pp. 598–602, 1998.spa
dc.relation.references[194] B. China, V. Pirson, and J. Mainil, “Typing of bovine attaching and effacing Escherichia coli by multiplex in vitro amplification of virulence-associated genes,” Appl. Environ. Microbiol., vol. 62, no. 9, pp. 3462–3465, 1996.spa
dc.relation.references[195] W. Liang et al., “Quantification of plasmid DNA reference materials for Shiga toxin ‑ producing Escherichia coli based on UV , HR ‑ ICP ‑ MS and digital PCR,” pp. 1–10, 2016.spa
dc.relation.references[196] D. R. Pollard, W. M. Johnson, H. Lior, S. D. Tyler, and K. R. Rozee, “Erratum: Rapid and specific detection of verotoxin genes in Escherichia coli by the polymerase chain reaction (J. Clin. Microbiol., Volume 28, No. 3, P. 542),” J. Clin. Microbiol., vol. 28, no. 6, p. 1491, 1990.spa
dc.relation.references[197] Y. Hu, Q. Zhang, and J. C. Meitzler, “Rapid and sensitive detection of Escherichia coli O157 : H7 in bovine faeces by a multiplex PCR,” J. Appl. Microbiol., vol. 87, pp. 867–876, 1999.spa
dc.relation.references[198] V. Brusa, L. Galli, L. H. Linares, E. E. Ortega, J. P. Lirón, and G. A. Leotta, “Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat,” J. Microbiol. Methods, vol. 119, pp. 10–17, 2015.spa
dc.relation.references[199] K. A. Ziebell, S. C. Read, R. P. Johnson, and C. L. Gyles, “Evaluation of PCR and PCR-RFLP protocols for identifying Shiga toxins,” Res. Microbiol., vol. 153, no. 5, pp. 289–300, 2002.spa
dc.relation.references[200] R. Gordillo, A. Rodríguez, M. L. Werning, E. Bermúdez, and M. Rodríguez, “Quantification of viable Escherichia coli O157:H7 in meat products by duplex real-time PCR assays.,” Meat Sci., vol. 96, no. 2, pp. 964–970, 2014.spa
dc.relation.references[201] E. C. Chern, S. Siefring, J. Paar, M. Doolittle, and R. A. Haugland, “Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes,” Lett. Appl. Microbiol., vol. 52, no. 3, pp. 298–306, 2011.spa
dc.relation.references[202] E. Frahm and U. Obst, “Application of the fluorogenic probe technique ( TaqMan PCR ) to the detection of Enterococcus spp . and Escherichia coli in water samples,” vol. 52, pp. 123–131, 2003.spa
dc.relation.references[203] J. N. Miller and J. C. Miller, Estadística y Quimiometría para Química Analítica, 4a edición. 2002.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc664 - Tecnología de alimentosspa
dc.subject.ddc628 - Ingeniería sanitariaspa
dc.subject.proposalE. coli O157: H7eng
dc.subject.proposalPCR digitalspa
dc.subject.proposalReference materialeng
dc.subject.proposalMethod validationeng
dc.subject.proposalDigital PCReng
dc.titleDesarrollo de un candidato a material de referencia para la detección y cuantificación de Escherichia coli O157 H7 por PCRspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020752137_2020.pdf
Tamaño:
3.54 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: