Caracterización del microbioma, los endosimbiontes, las fuentes de ingesta sanguínea y Leishmania sp. en flebotomíneos presentes en áreas de transmisión histórica para Leishmaniasis en Amazonas y Caquetá
| dc.contributor.advisor | Moreno Herrera, Claudia Ximena | |
| dc.contributor.advisor | Vivero Gómez, Rafael José | |
| dc.contributor.advisor | Cadavid Restrepo, Gloria Estér | |
| dc.contributor.author | Caviedes-Triana, Katerine | |
| dc.contributor.cvlac | Katerine Caviedes Triana | |
| dc.contributor.orcid | Caviedes-Triana, Katerine {0009000558383782] | |
| dc.contributor.orcid | Moreno Herrera, Claudia Ximena [0000000281325223] | |
| dc.contributor.researchgroup | Microbiodiversidad y Bioprospección | |
| dc.date.accessioned | 2025-12-10T16:49:24Z | |
| dc.date.available | 2025-12-10T16:49:24Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | La integración de enfoques taxonómicos y moleculares, junto con el análisis de fuentes sanguíneas y la diversidad bacteriana y patogénica asociada con los flebotomíneos, es relevante para diseñar estrategias que mitiguen la transmisión patógenos, principalmente en regiones poco exploradas como la Amazonía colombiana. Este estudio tuvo como objetivos identificar las especies de flebotomíneos en áreas de Amazonas y Caquetá mediante taxonomía integrativa; detectar las fuentes sanguíneas mediante los marcadores Cytb y 12S; y el ADN de Leishmania con el marcador HSP-70, y caracterizar el microbioma mediante secuenciación de próxima generación. Se recolectaron 1104 flebotomíneos, agrupados en 30 especies, 11 de relevancia epidemiológica. El enfoque integrativo confirmó 12 nuevos registros a nivel departamental, incluyendo Sciopemyia fluviatilis documentado por primera vez en Colombia. Homo sapiens y Sus scrofa representaron las principales fuentes sanguíneas, mientras que Leishmania predominó en Nyssomyia y Trichophoromyia. La comunidad central del microbioma estuvo representada por 18 géneros, siendo Novosphingobium, Cutibacterium, Methylobacterium y Staphylococcus los de mayor prevalencia. Se identificaron géneros como Delftia, Haemophillus y Serratia con potencial para inhibir el desarrollo de patógenos. Y se detectaron los endosimbiontes Arsenophonus, Spiroplasma, Wolbachia y Cardinium, junto con Bartonella y Rickettsia. Los resultados destacan la importancia de mantener actualizado el conocimiento de las especies de flebotomíneos en zonas endémicas, desde una perspectiva taxonómica, molecular y ecológica, motiva a futuros estudios que permitan comprender el posible impacto de los endosimbiontes sobre el comportamiento vectorial y a profundizar sobre su posible participación en la transmisión de otros patógenos de interés en salud pública. (Tomado de la fuente) | spa |
| dc.description.abstract | The integration of taxonomic and molecular approaches, together with the analysis of blood sources and bacterial and pathogenic diversity associated with phlebotomine sand flies, is relevant to design strategies to mitigate pathogen transmission, mainly in poorly explored regions such as the Colombian Amazon. The objectives of this study were to identify phlebotomine sandfly species in Amazonas and Caquetá by integrative taxonomy; to identify blood sources by Cytb and 12S markers; to detect Leishmania DNA with the HSP-70 marker; and to characterize the microbiome by next-generation sequencing. A total of 1104 phlebotomine sand flies were collected, grouped into 30 species, 11 of epidemiological relevance. The integrative approach confirmed 12 new records at departmental level, including Sciopemyia fluviatilis documented for the first time in Colombia. Homo sapiens and Sus scrofa represented the main blood sources, while Leishmania predominated in Nyssomyia and Trichophoromyia. The core microbiome community was represented by 18 genera, with Novosphingobium, Cutibacterium, Methylobacterium and Staphylococcus being the most prevalent. Genera such as Delftia, Haemophillus and Serratia were identified as having the potential to inhibit pathogen development. And the endosymbionts Arsenophonus, Spiroplasma, Wolbachia and Cardinium were detected, together with Bartonella and Rickettsia. The results highlight the importance of keeping the knowledge of phlebotomine sandfly species in endemic areas up to date, from a taxonomic, molecular and ecological perspective, and motivate future studies to understand the possible impact of endosymbionts on vector behavior and to deepen their possible participation in the transmission of other pathogens of public health interest. | eng |
| dc.description.curriculararea | Biotecnología.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias Biotecnología | |
| dc.description.notes | N/A | |
| dc.description.researcharea | Biotecnología ambiental | |
| dc.description.sponsorship | Esta investigación fue financiada por la Universidad Nacional de Colombia, proyecto Hermes número 57545 «Alianza estratégica interdisciplinaria Leticia, Medellín y La Paz para el estudio del microbioma de insectos vectores de enfermedades tropicales y su relación con el cambio climático y la sociedad», así como por el Programa de Becas MinCiencias SGR, Convocatoria 15, para el Desarrollo de Capital Humano en el contexto del Bicentenario y el Plan Bienal 2021-2022 (FCTeI). | |
| dc.description.technicalinfo | N/A | |
| dc.format.extent | 1 recurso en línea (183 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89195 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia, Sede Medellín | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
| dc.relation.references | Agencia UNAL. (2025). Registran jejenes vectores de leishmaniasis que circulan en la Amazonia. https://agenciadenoticias.unal.edu.co/detalle/registran-jejenes-vectores-de-leishmaniasis-que-circulan-en-la-amazonia | |
| dc.relation.references | Aguiar Martins, K., Meirelles, M. H. de A., Mota, T. F., Abbasi, I., de Queiroz, A. T. L., Brodskyn, C. I., Veras, P. S. T., Mothé Fraga, D. B., & Warburg, A. (2021). Effects of larval rearing substrates on some life-table parameters of Lutzomyia longipalpis sand flies. PLOS Neglected Tropical Diseases, 15(1), e0009034. https://doi.org/10.1371/journal.pntd.0009034 | |
| dc.relation.references | Alexander, B., Ferro, C., Young, D. G., Morales, A., & Tesh, R. B. (1992). Ecology of phlebotomine sand flies (Diptera: Psychodidae) in a focus of Leishmania (Viannia) braziliensis in northeastern Colombia. Memórias Do Instituto Oswaldo Cruz, 87(3), 387–395. https://doi.org/10.1590/S0074-02761992000300009 | |
| dc.relation.references | Alexander, J., Takaoka, H., Eshita, Y., Gomez, E., & Hashiguchi, Y. (1992). New records of phlebotomine sand flies (Diptera: Psychodidae) from Ecuador. Memorias Do Instituto Oswaldo Cruz, 81(1), 123–130. | |
| dc.relation.references | Amni, F., Maleki-Ravasan, N., Nateghi-Rostami, M., Hadighi, R., Karimian, F., Meamar, A. R., Badirzadeh, A., & Parvizi, P. (2023). Co-infection of Phlebotomus papatasi (Diptera: Psychodidae) gut bacteria with Leishmania major exacerbates the pathological responses of BALB/c mice. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1115542 | |
| dc.relation.references | Araujo-Pereira, T., Pita-Pereira, D., Baia-Gomes, S. M., Boité, M., Silva, F., Pinto, I. S., de Sousa, R. L. T., Fuzari, A., de Souza, C., Brazil, R., & Britto, C. (2020). An overview of the sandfly fauna (Diptera: Psychodidae) followed by the detection of Leishmania DNA and blood meal identification in the state of Acre, Amazonian Brazil. Memórias Do Instituto Oswaldo Cruz, 115. https://doi.org/10.1590/0074-02760200157 | |
| dc.relation.references | Azpurua, J., De La Cruz, D., Valderama, A., & Windsor, D. (2010). Lutzomyia Sand Fly Diversity and Rates of Infection by Wolbachia and an Exotic Leishmania Species on Barro Colorado Island, Panama. PLoS Neglected Tropical Diseases, 4(3), 1–9. https://doi.org/10.1371/journal.pntd.0000627 | |
| dc.relation.references | Barreto, M., Burbano, M. E., & Barreto, P. (2000). Lutzomyia sand flies (Diptera: Psychodidae) from middle and lower Putumayo department, Colombia, with new records to the country. Memórias Do Instituto Oswaldo Cruz, 95(5), 633–637. https://doi.org/10.1590/S0074-02762000000500009 | |
| dc.relation.references | Battisti, J. M., Lawyer, P. G., & Minnick, M. F. (2015). Colonization of Lutzomyia verrucarum and Lutzomyia longipalpis Sand Flies (Diptera: Psychodidae) by Bartonella bacilliformis, the Etiologic Agent of Carrión’s Disease. PLOS Neglected Tropical Diseases, 9(10), e0004128. https://doi.org/10.1371/journal.pntd.0004128 | |
| dc.relation.references | Beebe, N. W., Pagendam, D., Trewin, B. J., Boomer, A., Bradford, M., Ford, A., Liddington, C., Bondarenco, A., De Barro, P. J., Gilchrist, J., Paton, C., Staunton, K. M., Johnson, B., Maynard, A. J., Devine, G. J., Hugo, L. E., Rasic, G., Cook, H., Massaro, P., … Ritchie, S. A. (2021). Releasing incompatible males drives strong suppression across populations of wild and Wolbachia carrying Aedes aegypti in Australia. Proceedings of the National Academy of Sciences, 118(41). https://doi.org/10.1073/pnas.2106828118 | |
| dc.relation.references | Bejarano, E., & Estrada, L. (2016). Family Psychodidae. Zootaxa, 4122(1), 1–53. https://doi.org/10.11646/zootaxa.4122.1.20 | |
| dc.relation.references | Blacksell, S. D., Le, K. K., Rungrojn, A., Wongsantichon, J., Stenos, J., Graves, S. R., & Day, N. P. J. (2024). Gaps and inconsistencies in the current knowledge and implementation of biosafety and biosecurity practices for rickettsial pathogens. BMC Infectious Diseases, 24(1), 268. https://doi.org/10.1186/s12879-024-09151-0 | |
| dc.relation.references | Bogale, H. N., Cannon, M. V., Keita, K., Camara, D., Barry, Y., Keita, M., Coulibaly, D., Kone, A. K., Doumbo, O. K., Thera, M. A., Plowe, C. V., Travassos, M., Irish, S., & Serre, D. (2020). Relative contributions of various endogenous and exogenous factors to the mosquito microbiota. Parasites & Vectors, 13(1), 619. https://doi.org/10.1186/s13071-020-04491-7 | |
| dc.relation.references | Bohacsova, M., Mediannikov, O., Kazimirova, M., Raoult, D., & Sekeyova, Z. (2016). Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri. PLOS ONE, 11(2), e0149950. https://doi.org/10.1371/journal.pone.0149950 | |
| dc.relation.references | Braga, R. R., Lainson, R., Ishikawa, E. A. Y., & Shaw, J. J. (2003). Leishmania (Viannia) utingensis n . sp., a parasite from the sandfly Lutzomyia (Viannamyia) tuberculata in Amazonian Brazil. Parasite, 10(2), 111–118. https://doi.org/10.1051/parasite/2003102111 | |
| dc.relation.references | Braig, H. R., Zhou, W., Dobson, S. L., & O’Neill, S. L. (1998). Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis. Journal of Bacteriology, 180(9), 2373–2378. https://doi.org/10.1128/JB.180.9.2373-2378.1998 | |
| dc.relation.references | Brilhante, A. F., Lima, L., de Ávila, M. M., Medeiros-Sousa, A. R., de Souza, J. F., dos Santos, N. P., de Paula, M. B., Godoy, R. E., Sábio, P. B., Cardoso, C. de O., Nunes, V. L. B., Teixeira, M. M. G., & Galati, E. (2021). Remarkable diversity, new records and Leishmania detection in the sand fly fauna of an area of high endemicity for cutaneous leishmaniasis in Acre state, Brazilian Amazonian Forest. Acta Tropica, 223, 106103. https://doi.org/10.1016/j.actatropica.2021.106103 | |
| dc.relation.references | Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J., & Bordenstein, S. R. (2016). Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLOS Biology, 14(11), e2000225. https://doi.org/10.1371/journal.pbio.2000225 | |
| dc.relation.references | Cabrera, M., Capparelli, M. V., Ñacato-Ch, C., Moulatlet, G. M., López-Heras, I., Díaz González, M., Alvear-S, D., & Rico, A. (2023). Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere, 337, 139286. https://doi.org/10.1016/j.chemosphere.2023.139286 | |
| dc.relation.references | Cabrera, O. L., Mosquera, L., & Santamaría, E. (2009). Flebótomos (Diptera: Psychodidae) del departamento de Guaviare, Colombia, con nuevos registros para el país. Biomédica, 29(1), 73. https://doi.org/10.7705/biomedica.v29i1.43 | |
| dc.relation.references | Cai, T., Nadal-Jimenez, P., Gao, Y., Arai, H., Li, C., Su, C., King, K. C., He, S., Li, J., Hurst, G. D. D., & Wan, H. (2024). Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus. The ISME Journal, 18(1). https://doi.org/10.1093/ismejo/wrae194 | |
| dc.relation.references | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 | |
| dc.relation.references | Campolina, T. B., Villegas, L. E. M., Monteiro, C. C., Pimenta, P. F. P., & Secundino, N. F. C. (2020). Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLOS Neglected Tropical Diseases, 14(10), e0008666. https://doi.org/10.1371/journal.pntd.0008666 | |
| dc.relation.references | Cantanhêde, L. M., & Cupolillo, E. (2023). Leishmania (Viannia) naiffi Lainson & Shaw 1989. Parasites & Vectors, 16(1), 194. https://doi.org/10.1186/s13071-023-05814-0 | |
| dc.relation.references | Caragata, E. P., & Short, S. M. (2022). Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. Current Opinion in Insect Science, 50, 100875. https://doi.org/10.1016/j.cois.2022.100875 | |
| dc.relation.references | Carneiro, A., de Souza, E., Barroso, E., de Ávila, M., Melchior, L., Rocha, R., Shimabukuro, P., Galati, E., & Brilhante, A. (2023). Phlebotomine Fauna (Diptera: Psychodidae) and Infection by Leishmania spp. in Forest Fragments of a University Campus, Western Amazon. Journal of Medical Entomology, 60(1), 218–223. https://doi.org/10.1093/jme/tjac162 | |
| dc.relation.references | Casagrande, G. C. R., Dambros, J., de Andrade, E. A., Martello, F., Sobral-Souza, T., Moreno, M. I. C., Battirola, L. D., & de Andrade, R. L. T. (2023). Atmospheric mercury in forests: accumulation analysis in a gold mining area in the southern Amazon, Brazil. Environmental Monitoring and Assessment, 195(4), 477. https://doi.org/10.1007/s10661-023-11063-6 | |
| dc.relation.references | Castañeda-Espinosa, A., Duque-Granda, D., Cadavid-Restrepo, G., Murcia, L. M., Junca, H., Moreno-Herrera, C. X., & Vivero-Gómez, R. J. (2025). Study of Bacterial Communities in Water and Different Developmental Stages of Aedes aegypti from Aquatic Breeding Sites in Leticia City, Colombian Amazon Biome. Insects, 16(2), 195. https://doi.org/10.3390/insects16020195 | |
| dc.relation.references | Cera-Vallejo, Y., Ardila MM, Herrera, L., Martínez, L., & Pérez-Doria, A. (2024). Phlebotomine (Diptera: Psychodidae) species and their blood meal sources in a new leishmaniasis focus in Los Montes de María, Bolívar, in northern Colombia. Biomédica, 44(2), 248–257. https://doi.org/10.7705/biomedica.6876 | |
| dc.relation.references | Chalita, M., Kim, Y. O., Park, S., Oh, H.-S., Cho, J. H., Moon, J., Baek, N., Moon, C., Lee, K., Yang, J., Nam, G. G., Jung, Y., Na, S.-I., Bailey, M. J., & Chun, J. (2024). EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology, 74(6). https://doi.org/10.1099/ijsem.0.006421 | |
| dc.relation.references | Chang, C., Sun, X., Tian, P., Miao, N., Zhang, Y., & Liu, X. (2022). Plant secondary metabolite and temperature determine the prevalence of Arsenophonus endosymbionts in aphid populations. Environmental Microbiology, 24(8), 3764–3776. https://doi.org/10.1111/1462-2920.15929 | |
| dc.relation.references | Chiel, E., Inbar, M., Mozes-Daube, N., White, J. A., Hunter, M. S., & Zchori-Fein, E. (2009). Assessments of Fitness Effects by the Facultative Symbiont Rickettsia in the Sweetpotato Whitefly (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America, 102(3), 413–418. https://doi.org/10.1603/008.102.0309 | |
| dc.relation.references | Chudzik, A., Bromke, M. A., Gamian, A., & Paściak, M. (2024). Comprehensive lipidomic analysis of the genus Cutibacterium. MSphere, 9(5). https://doi.org/10.1128/msphere.00054-24 | |
| dc.relation.references | Coleman, S. A., & Minnick, M. F. (2003). Differential expression of the invasion-associated locus B (ialB) gene of Bartonella bacilliformis in response to environmental cues. Microbial Pathogenesis, 34(4), 179–186. https://doi.org/10.1016/S0882-4010(03)00005-6 | |
| dc.relation.references | Contreras-Gutiérrez, M. A., Vélez, I. D., Porter, C., & Uribe, S. I. (2014). Lista actualizada de flebotomíneos (Diptera: Psychodidae: Phlebotominae) de la región cafetera colombiana. Biomédica, 34(3). https://doi.org/10.7705/biomedica.v34i3.2121 | |
| dc.relation.references | Contreras-Gutiérrez, M. A., Vivero RJ, Vélez ID, Porter CH, & Uribe, S. (2014). DNA Barcoding for the Identification of Sand Fly Species (Diptera, Psychodidae, Phlebotominae) in Colombia. PLoS ONE, 9(1), 1–9. https://doi.org/10.1371/journal.pone.0085496 | |
| dc.relation.references | CORPOAMAZONIA. (2008). Agenda ambiental departamento del Amazonas. https://www.corpoamazonia.gov.co/files/Ordenamiento/agendas/01_DMarco_Agenda_Amazonas.pdf | |
| dc.relation.references | Cortés, L. A. (2012). Foco de leishmaniasis en El Hobo, municipio de El Carmen de Bolívar, Bolívar, Colombia. Biomédica, 26(1), 236. https://doi.org/10.7705/biomedica.v26i1.1518 | |
| dc.relation.references | Costa, G. D. S., Júnior, A. M. P., Castro, T. S., de Paulo, P. F. M., Ferreira, G. E. M., & Medeiros, J. F. (2021). Sand fly fauna and molecular detection of Leishmania species and blood meal sources in different rural environments in western Amazon. Acta Tropica, 224, 106150. https://doi.org/10.1016/j.actatropica.2021.106150 | |
| dc.relation.references | Costa, J. C. R., Marchi, G. H., Santos, C. S., Andrade, M. C. M., Chaves Junior, S. P., Silva, M. A. N., Melo, M. N., & Andrade, A. J. (2021). First molecular evidence of frogs as a food source for sand flies (Diptera: Phlebotominae) in Brazilian caves. Parasitology Research, 120(5), 1571–1582. https://doi.org/10.1007/s00436-021-07154- | |
| dc.relation.references | Cruz, L. N. P. D., Carvalho-Costa, L. F., & Rebêlo, J. M. M. (2021). Molecular Evidence Suggests That Wolbachia pipientis (Rickettsiales: Anaplasmataceae) is Widely Associated With South American Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 58(6), 2186–2195. https://doi.org/10.1093/jme/tjab130 | |
| dc.relation.references | da Silva, M. S., Júnior, A. M. P., Costa, N. V. C., Costa, G. D. S., Rodrigues, M. M. S., & Medeiros, J. F. (2022). Use of light emitting diodes (LEDs) are effective and useful for sand fly ecoepidemiology studies in an Amazonian environment. Acta Tropica, 233, 1–7. https://doi.org/10.1016/j.actatropica.2022.106550 | |
| dc.relation.references | da Silva MS, Picelli, A. M., Pereira de França, K., Galati, E., Andrade, F. J., Julião, G., Dutra-Rêgo, F., & Medeiros, J. (2024). Entomological inferences highlight the risk of Leishmania transmission in the urban area of Porto Velho, Rondônia, Brazil. PLOS ONE, 19(8), e0309168. https://doi.org/10.1371/journal.pone.0309168 | |
| dc.relation.references | Da Silva, Y. Y., Sales, K. G. D. S., Miranda, D. E. D. O., Figueredo, L. A., Brandão-Filho, S. P., & Dantas-Torres, F. (2020). Detection of Leishmania DNA in Sand Flies (Diptera: Psychodidae) From a Cutaneous Leishmaniasis Outbreak Area in Northeastern Brazil. Journal of Medical Entomology, 57 (2), 229–233. https://doi.org/10.1093/jme/tjz189 | |
| dc.relation.references | Dantas da Silva, M., Nakaghi, A. C. H., Galvis-Ovallos, F., Leonel, J. A. F., Vioti, G., Galati, E. A. B., Fazolato, N. C. de O., Martins, J. P., & Oliveira, T. M. F. de S. (2025). Infectiousness to sand flies of a cat naturally infected with Leishmania infantum at the moment of diagnosis and after three different courses of treatment. Revista Brasileira de Parasitologia Veterinária, 34(1). https://doi.org/10.1590/s1984-29612025006 | |
| dc.relation.references | de Ávila, M. M., Brilhante A.F, de Souza C.F, Bevilacqua P.D, Galati EAB, & Brazil, R. P. (2018). Ecology, feeding and natural infection by Leishmania spp. of phlebotomine sand flies in an area of high incidence of American tegumentary leishmaniasis in the municipality of Rio Branco, Acre, Brazil. Parasites & Vectors, 11(1), 64. https://doi.org/10.1186/s13071-018-2641-y | |
| dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2024). Página para la descarga de datos geoestadísticos: Versión MGN2024-Nivel Departamento. Geoportal DANE. https://geoportal.dane.gov.co/servicios/descarga-y-metadatos/datos-geoestadisticos/ | |
| dc.relation.references | Di Muccio, T., Marinucci, M., Frusteri, L., Maroli, M., Pesson, B., & Gramiccia, M. (2000). Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larroussius (Diptera, Psychodidae) by ITS2 rDNA sequences. Insect Biochemistry and Molecular Biology, 30(5), 387–393. https://doi.org/10.1016/S0965-1748(00)00012-6 | |
| dc.relation.references | do Socorro, C. M. C., Costa de Souza, B., Carvalho, G. M. F. T., de Sousa, A., Cibelle da Silva Peixoto, M., Carvalho Garcia Miranda Filgueiras, T., Carvalho Miranda, F., Luiz Althoff, S., Gladson Corrêa Carvalho, R., & Veiga Gonçalves, N. (2022). Visceral Leishmaniasis and Land Use and Cover in the Carajás Integration Region, Eastern Amazon, Brazil. Tropical Medicine and Infectious Disease, 7(10), 255. https://doi.org/10.3390/tropicalmed7100255 | |
| dc.relation.references | Dong, Y., Manfredini, F., & Dimopoulos, G. (2009). Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites. PLoS Pathogens, 5(5), e1000423. https://doi.org/10.1371/journal.ppat.1000423 | |
| dc.relation.references | Doremus, M. R., Stouthamer, C. M., Kelly, S. E., Schmitz-Esser, S., & Hunter, M. S. (2022). Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity, 128(3), 187–195. https://doi.org/10.1038/s41437-022-00507-3 | |
| dc.relation.references | Dupuis, J. R., Roe, A. D., & Sperling, F. A. (2012). Multi‐locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology, 21(18), 4422–4436. https://doi.org/10.1111/j.1365-294X.2012.05642.x | |
| dc.relation.references | Duque-Granda, D., Moreno-Herrera, C. X., Cadavid-Restrepo, G., & Vivero-Gómez, R. (2023). Molecular detection and phylogenetic analyses of Arsenophonus endosymbiont in wild specimens of phlebotomine sand flies from Colombia. Journal of Asia-Pacific Entomology, 26(1), 102023. https://doi.org/10.1016/j.aspen.2022.102023 | |
| dc.relation.references | Duque-Granda, D., Vivero-Gómez, R. J., Junca, H., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2024). Interaction and effects of temperature preference under a controlled environment on the diversity and abundance of the microbiome in Lutzomyia longipalpis (Diptera: Psychodidae). Biotechnology Reports, 44, e00857. https://doi.org/10.1016/j.btre.2024.e00857 | |
| dc.relation.references | Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstädter, J., & Hurst, G. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27. https://doi.org/10.1186/1741-7007-6-27 | |
| dc.relation.references | Dutra-Rêgo, F., Binder, C., Capucci, D. C., Vaz, T. P., Andrade Filho, J. D., Fontes, G., & Gontijo, C. M. F. (2024). Diversity, Leishmania detection, and blood meal sources of sand flies from Iguatama, Minas Gerais, Brazil. PLOS ONE, 19(5), e0302567. https://doi.org/10.1371/journal.pone.0302567 | |
| dc.relation.references | Echeverri-Rubiano, C., Pérez, J. D., Ramírez, G., Cardozo, M. del M., Torres, D., & Giraldo, C. G. (2024). Memorias Congreso Sociedad Colombiana de Entomología. 51 Congreso SOCOLEN. Sociedad Colombiana de Entomología. http://www.socolen.org.co | |
| dc.relation.references | Egyirifa, R. K., & Akorli, J. (2024). Two promising candidates for paratransgenesis, Elizabethkingia and Asaia, increase in both sexes of Anopheles gambiae mosquitoes after feeding. Malaria Journal, 23(1), 45. https://doi.org/10.1186/s12936-024-04870-w | |
| dc.relation.references | El Espectador. (2025). Identifican ocho especies de insectos vectores de leishmaniasis en la Amazonia colombiana. https://www.elespectador.com/ambiente/amazonas/identifican-ocho-especies-de-insectos-vectores-de-leishmaniasis-en-la-amazonia-colombiana/ | |
| dc.relation.references | Ellwanger, J. H., Kulmann-Leal, B., Kaminski, V. L., Valverde-Villegas, J. M., Da Veiga, A. B., Spilki, F. R., Fearnside, P. M., Caesar, L., Giatti, L. L., Wallau, G. L., Almeida, S. E., Borba, M. R., Hora, V. P., & Chies, J. A. (2020). Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais Da Academia Brasileira de Ciências, 92(1). https://doi.org/10.1590/0001-3765202020191375 | |
| dc.relation.references | Espejo, R. T., Feijóo, C. G., Romero, J., & Vásquez, M. (1998). PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity. Microbiology, 144(6), 1611–1617. https://doi.org/10.1099/00221287-144-6-1611 | |
| dc.relation.references | Espinoza, J.-C., Jimenez, J. C., Marengo, J. A., Schongart, J., Ronchail, J., Lavado-Casimiro, W., & Ribeiro, J. V. M. (2024). The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Scientific Reports, 14(1), 8107. https://doi.org/10.1038/s41598-024-58782-5 | |
| dc.relation.references | Fernandez, R., Lopez, V., Cardenas, R., & Requena, E. (2015). Description of Lutzomyia (Trichophoromyia) nautaensis n. sp. (Diptera: Psychodidae) from the Peruvian Amazon. Journal of Medical Entomology, 52(4), 622–625. https://doi.org/10.1093/jme/tjv057 | |
| dc.relation.references | Ferro, C., Marín, D., Góngora, R., Carrasquilla, M. C., Trujillo, J. E., Rueda NK., Marín, J., Valderrama-Ardila, C., Alexander, N., Pérez, M., Munstermann LE, & Ocampo CB. (2011). Phlebotomine Vector Ecology in the Domestic Transmission of American Cutaneous Leishmaniasis in Chaparral, Colombia. The American Society of Tropical Medicine and Hygiene, 85(5), 847–856. https://doi.org/10.4269/ajtmh.2011.10-0560 | |
| dc.relation.references | Flores, B. M., Montoya, E., Sakschewski, B., Nascimento, N., Staal, A., Betts, R. A., Levis, C., Lapola, D. M., Esquível-Muelbert, A., Jakovac, C., Nobre, C. A., Oliveira, R. S., Borma, L. S., Nian, D., Boers, N., Hecht, S. B., ter Steege, H., Arieira, J., Lucas, I. L., … Hirota, M. (2024). Critical transitions in the Amazon forest system. Nature, 626(7999), 555–564. https://doi.org/10.1038/s41586-023-06970-0 | |
| dc.relation.references | Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299, 1–6. | |
| dc.relation.references | Fonteles, R. S., Pereira Filho, A. A., Moraes, J. L. P., Pereira, S. R. F., Rodrigues, B. L., & Rebêlo, J. M. M. (2018). Detection of Leishmania DNA and Blood Meal Identification in Sand Flies (Diptera: Psychodidae) From Lençois Maranhenses National Park Region, Brazil. Journal of Medical Entomology, 55(2), 445–451. https://doi.org/10.1093/jme/tjx230 | |
| dc.relation.references | Foo, I. J.-H., Hoffmann, A. A., & Ross, P. A. (2019). Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density in Aedes aegypti Mosquitoes. Tropical Medicine and Infectious Disease, 4(1), 13. https://doi.org/10.3390/tropicalmed4010013 | |
| dc.relation.references | Galati, E. (2024). Morfologia e terminologia de Phlebotominae (Diptera: Psychodidae). Classificação e identificação de táxons das Américas. Vol I. Apostila da Disciplina Bioecologia e Identificação de Phlebotominae do Programa de Pós-Graduação em Saúde Pública. http://www.fsp.usp.br/egalati | |
| dc.relation.references | García-Leal, J., Carrero-Sarmiento, D., & Hoyos-López, R. (2021). Diversity of the genus Lutzomyia (Diptera: Psychodidae) in municipalities of the department of Córdoba – Colombia. Acta Biológica Colombiana, 27(3), 394–402. https://doi.org/10.15446/abc.v27n3.90684 | |
| dc.relation.references | Garcia-Quintanilla, M., Dichter, A. A., Guerra, H., & Kempf, V. A. J. (2019). Carrion’s disease: more than a neglected disease. Parasites & Vectors, 12(1), 141. https://doi.org/10.1186/s13071-019-3390-2 | |
| dc.relation.references | Ghosh, S., Bouvaine, S., & Maruthi, M. (2015). Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiology, 15(1), 93. https://doi.org/10.1186/s12866-015-0425-5 | |
| dc.relation.references | Giorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., & Gebiola, M. (2010). Rickettsia Symbionts Cause Parthenogenetic Reproduction in the Parasitoid Wasp Pnigalio soemius (Hymenoptera: Eulophidae). Applied and Environmental Microbiology, 76(8), 2589–2599. https://doi.org/10.1128/AEM.03154-09 | |
| dc.relation.references | Gobernación del Caquetá. (2020). Plan de Desarrollo Departamental 2020 - 2023. https://www.caqueta.gov.co/noticias/p-lan-de-desarrollo-departamental-2020--2023 | |
| dc.relation.references | González, C., León, C., Paz, A., López, M., Molina, G., Toro, D., Ortiz, M., Cordovez, J. M., Atencia, M. C., Aguilera, G., & Tovar, C. (2018). Diversity patterns, Leishmania DNA detection, and bloodmeal identification of Phlebotominae sand flies in villages in northern Colombia. PLOS ONE, 13(1), e0190686. https://doi.org/10.1371/journal.pone.0190686 | |
| dc.relation.references | Guimarães-e-Silva, A. S., Silva, S. de O., Ribeiro da Silva, R. C., Pinheiro, V. C. S., Rebêlo, J. M. M., & Melo, M. N. (2017). Leishmania infection and blood food sources of phlebotomines in an area of Brazil endemic for visceral and tegumentary leishmaniasis. PLOS ONE, 12(8), e0179052. https://doi.org/10.1371/journal.pone.0179052 | |
| dc.relation.references | Gutierrez, M., Lopez, R., Ramos, A., Vélez, I., Gomez, R., Arrivillaga-Henríquez, J., & Uribe, S. (2021). DNA barcoding of Lutzomyia longipalpis species complex (Diptera: Psychodidae), suggests the existence of 8 candidate species. Acta Tropica, 221, 1–9. https://doi.org/10.1016/j.actatropica.2021.105983 | |
| dc.relation.references | Hebert, P. D., Ratnasingham, S., & deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1). https://doi.org/10.1098/rsbl.2003.0025 | |
| dc.relation.references | Herren, J. K., Mbaisi, L., Mararo, E., Makhulu, E. E., Mobegi, V. A., Butungi, H., Mancini, M. V., Oundo, J. W., Teal, E. T., Pinaud, S., Lawniczak, M. K. N., Jabara, J., Nattoh, G., & Sinkins, S. P. (2020). A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nature Communications, 11(1), 2187. https://doi.org/10.1038/s41467-020-16121-y | |
| dc.relation.references | Hery, L., Guidez, A., Durand, A.-A., Delannay, C., Normandeau-Guimond, J., Reynaud, Y., Issaly, J., Goindin, D., Legrave, G., Gustave, J., Raffestin, S., Breurec, S., Constant, P., Dusfour, I., Guertin, C., & Vega-Rúa, A. (2021). Natural Variation in Physicochemical Profiles and Bacterial Communities Associated with Aedes aegypti Breeding Sites and Larvae on Guadeloupe and French Guiana. Microbial Ecology, 81(1), 93–109. https://doi.org/10.1007/s00248-020-01544-3 | |
| dc.relation.references | Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281 | |
| dc.relation.references | Holdridge, L. R. (1967). Life zone ecology. Tropical Science Center, 10–149 | |
| dc.relation.references | Hoyos, L. R., Uribe, Sandra. S., & Vélez, I. (2002). Tipificación de especímenes colombianos de Lutzomyia longipalpis (Diptera: Psychodidae) mediante “Código de Barras.” Revista Colombiana de Entomología, 38-N1(0120–0488), 1–7. | |
| dc.relation.references | Hrdina, A., Serra Canales, M., Arias-Rojas, A., Frahm, D., & Iatsenko, I. (2024). The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization. MBio, 15(8). https://doi.org/10.1128/mbio.00936-24 | |
| dc.relation.references | Huang, W., Rodrigues, J., Bilgo, E., Tormo, J. R., Challenger, J. D., De Cozar-Gallardo, C., Pérez-Victoria, I., Reyes, F., Castañeda-Casado, P., Gnambani, E. J., Hien, D. F. de S., Konkobo, M., Urones, B., Coppens, I., Mendoza-Losana, A., Ballell, L., Diabate, A., Churcher, T. S., & Jacobs-Lorena, M. (2023). Delftia tsuruhatensis TC1 symbiont suppresses malaria transmission by anopheline mosquitoes. Science, 381(6657), 533–540. https://doi.org/10.1126/science.adf8141 | |
| dc.relation.references | Hugo, L. E., Rašić, G., Maynard, A. J., Ambrose, L., Liddington, C., Thomas, C. J. E., Nath, N. S., Graham, M., Winterford, C., Wimalasiri-Yapa, B. M. C. R., Xi, Z., Beebe, N. W., & Devine, G. J. (2022). Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background. PLOS Neglected Tropical Diseases, 16(10), e0010786. https://doi.org/10.1371/journal.pntd.0010786 | |
| dc.relation.references | Hunter, M. S., Perlman, S. J., & Kelly, S. E. (2003). A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1529), 2185–2190. https://doi.org/10.1098/rspb.2003.2475 | |
| dc.relation.references | I Hassan, M. (2014). A Recent Evaluation of the Sandfly, Phlepotomus Papatasi Midgut Symbiotic Bacteria Effect on the Survivorship of Leshmania Major. Journal of Ancient Diseases & Preventive Remedies, 02(01). https://doi.org/10.4172/2329-8731.1000110 | |
| dc.relation.references | INDEPAZ, I. for D. and P. S. (2024). Livestock farming and deforestation in the Amazon. https://indepaz.org.co/ganaderia-y-deforestacion-en-la-amazonia/ | |
| dc.relation.references | Instituto Nacional de Salud (INS). (2023). Public health surveillance protocol: Leishmaniasis. Version 6. https://doi.org/doi.org/10.33610/IMYH4569 | |
| dc.relation.references | Instituto Nacional de Salud (INS). (2024). Weekly epidemiological report. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx | |
| dc.relation.references | IX Reunión Colombiana Leishmaniasis y enfermedad de Chagas, S. 1, 2024. (2024). Memorias: IX Reunión Colombiana Leishmaniasis y Enfermedad de Chagas. Actualidades Biológicas, 46(2145–7166), 100. https://revistas.udea.edu.co/index.php/actbio/article/view/358101 | |
| dc.relation.references | Jaffar, S., Ahmad, S., & Lu, Y. (2022). Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.979383 | |
| dc.relation.references | Jaimes-Dueñez, J., Castillo-Castañeda, A., Jiménez-Leaño, Á., Duque JE, Cantillo-Barraza, O., Cáceres-Rivera DI, Granada, Y., Triana-Chávez, O., & Ramírez JD. (2023). Epidemiological features of Leishmania infantum in dogs (Canis lupus familiaris) suggest a latent risk of visceral leishmaniasis in the metropolitan area of Bucaramanga, Santander, Eastern Colombia. Preventive Veterinary Medicine, 219(106021), 1–8. https://doi.org/10.1016/j.prevetmed.2023.106021 | |
| dc.relation.references | Jakovac, C. C., Junqueira, A. B., Crouzeilles, Renato., Peña‐Claros, Marielos., Mesquita, R. C. G., & Bongers, Frans. (2021). The role of land‐use history in driving successional pathways and its implications for the restoration of tropical forests. Biological Reviews, 96(4), 1114–1134. https://doi.org/10.1111/brv.12694 | |
| dc.relation.references | Jancarova, M., Polanska, N., Volf, P., & Dvorak, V. (2023). The role of sand flies as vectors of viruses other than phleboviruses. Journal of General Virology, 104(4). https://doi.org/10.1099/jgv.0.001837 | |
| dc.relation.references | Jiménez, A. D., Cárdenas Carrillo, C. A., Ariza Tello, A., Echeverri, J. A., González, A. D., Gutiérrez, H. R., Matta, N. E., Rojas Tafur, T. H., Román Tiquidimas, D., Venegas, C. S., & De Vengoechea, C. (2023). Indigenous ecological calendars and seasonal vector-borne diseases in the Colombian Amazon: an intercultural and interdisciplinary approach. Acta Amazonica, 53(2), 177–186. https://doi.org/10.1590/1809-4392202200910 | |
| dc.relation.references | Jobe, N. B., Huijben, S., & Paaijmans, K. P. (2023). Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors. The Lancet Planetary Health, 7(8), e706–e717. https://doi.org/10.1016/S2542-5196(23)00136-5 | |
| dc.relation.references | Juma, E. O., Kim, C.-H., Dunlap, C., Allan, B. F., & Stone, C. M. (2020). Culex pipiens and Culex restuans egg rafts harbor diverse bacterial communities compared to their midgut tissues. Parasites & Vectors, 13(1), 532. https://doi.org/10.1186/s13071-020-04408-4 | |
| dc.relation.references | Jupatanakul, N., Pengon, J., Selisana, S. M. G., Choksawangkarn, W., Jaito, N., Saeung, A., Bunyong, R., Posayapisit, N., Thammatinna, K., Kalpongnukul, N., Aupalee, K., Pisitkun, T., & Kamchonwongpaisan, S. (2020). Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus. Acta Tropica, 212, 105686. https://doi.org/10.1016/j.actatropica.2020.105686 | |
| dc.relation.references | Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285 | |
| dc.relation.references | Karatepe, B., Aksoy, S., & Karatepe, M. (2018). Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods. Scientific Reports, 8(1), 10616. https://doi.org/10.1038/s41598-018-29031-3 | |
| dc.relation.references | Karimian, F., Koosha, M., Choubdar, N., & Oshaghi, M. A. (2022). Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity. PLOS Neglected Tropical Diseases, 16(7), e0010609. https://doi.org/10.1371/journal.pntd.0010609 | |
| dc.relation.references | Kato, H., Calvopiña, M., Criollo, H., & Hashiguchi, Y. (2013). First human cases of Leishmania (Viannia) naiffi infection in Ecuador and identification of its suspected vector species. Acta Tropica, 128(3), 710–713. https://doi.org/10.1016/j.actatropica.2013.09.001 | |
| dc.relation.references | Kaur, R., Meier, C. J., McGraw, E. A., Hillyer, J. F., & Bordenstein, S. R. (2024). The mechanism of cytoplasmic incompatibility is conserved in Wolbachia infected Aedes aegypti mosquitoes deployed for arbovirus control. PLOS Biology, 22(3), e3002573. https://doi.org/10.1371/journal.pbio.3002573 | |
| dc.relation.references | Kelly, P. H., Bahr, S. M., Serafim, T. D., Ajami, N. J., Petrosino, J. F., Meneses, C., Kirby, J. R., Valenzuela, J. G., Kamhawi, S., & Wilson, M. E. (2017). The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. MBio, 8(1). https://doi.org/10.1128/mBio.01121-16 | |
| dc.relation.references | Kitano, T., Umetsu, K., Tian, W., & Osawa, M. (2007). Two universal primer sets for species identification among vertebrates. International Journal of Legal Medicine, 121(5), 1–10. https://doi.org/10.1007/s00414-006-0113-y | |
| dc.relation.references | Kocher, T., Thomas, W., Meyer, A., Edwards, S., Pääbo, S., Villablanca, F., & Wilson, A. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86(16), 1–5. https://doi.org/10.1073/pnas.86.16.6196 | |
| dc.relation.references | Konecka, E., & Olszanowski, Z. (2019). First Evidence of Intracellular Bacteria Cardinium in Thermophilic Mite Microzetorchestes emeryi (Acari: Oribatida): Molecular Screening of Bacterial Endosymbiont Species. Current Microbiology, 76(9), 1038–1044. https://doi.org/10.1007/s00284-019-01717-5 | |
| dc.relation.references | Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones SJ, & Marra MA. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. https://doi.org/10.1101/gr.092759.109 | |
| dc.relation.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 | |
| dc.relation.references | Laroche, L., Ayhan, N., Charrel, R., Bañuls, A.-L., & Prudhomme, J. (2023). Persistence of Toscana virus in sugar and blood meals of phlebotomine sand flies: epidemiological and experimental consequences. Scientific Reports, 13(1), 5608. https://doi.org/10.1038/s41598-023-32431-9 | |
| dc.relation.references | Lee, D. A. B., Fernandes Shimabukuro, P. H., Brilhante, A. F., Cadina Arantes, P. V., Sanches, G. S., Franco, E. O., Machado, R. Z., Maggi, R. G., Breitschwerdt, E. B., & André, M. R. (2024). Bartonella spp. in Phlebotomine Sand Flies, Brazil. Emerging Infectious Diseases, 30(10). https://doi.org/10.3201/eid3010.240397 | |
| dc.relation.references | Li H, Jiang Z, Zhou J, Liu X, Zhang Y, & Chu D. (2023). Ecological Factors Associated with the Distribution of Bemisia tabaci Cryptic Species and Their Facultative Endosymbionts. Insects, 14(3), 252. https://doi.org/10.3390/insects14030252 | |
| dc.relation.references | Li K, Chen H, Jiang J, Li X, Xu J, & Ma Y. (2016). Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Scientific Reports, 6(1), 36406. https://doi.org/10.1038/srep36406 | |
| dc.relation.references | Lin, D.-J., Zhou, J., Ali, A., Fu, H., Gao, S., Jin, L., Fang, Y., & Wang, J. (2024). Biocontrol efficiency and characterization of insecticidal protein from sugarcane endophytic Serratia marcescens (SM) against oriental armyworm Mythimna separata (Walker). International Journal of Biological Macromolecules, 262, 129978. https://doi.org/10.1016/j.ijbiomac.2024.129978 | |
| dc.relation.references | Liu, H., Yin, J., Huang, X., Zang, C., Zhang, Y., Cao, J., & Gong, M. (2024). Mosquito Gut Microbiota: A Review. Pathogens, 13(8), 691. https://doi.org/10.3390/pathogens13080691 | |
| dc.relation.references | Liu, J., Jiang, J., Song, S., Tornabene, L., Chabarria, R., Naylor, G. J. P., & Li, C. (2017). Multilocus DNA barcoding – Species Identification with Multilocus Data. Scientific Reports, 7(1), 16601. https://doi.org/10.1038/s41598-017-16920-2 | |
| dc.relation.references | López, M., Erazo, D., Hoyos, J., León, C., Fuya, P., Lugo, L., Cordovez, J. M., & González, C. (2021). Measuring spatial co-occurrences of species potentially involved in Leishmania transmission cycles through a predictive and fieldwork approach. Scientific Reports, 11(1), 6789. https://doi.org/10.1038/s41598-021-85763-9 | |
| dc.relation.references | Lozano-Sardaneta, Y. N., Marina, C. F., Torres-Monzón, J. A., Sánchez-Cordero, V., & Becker, I. (2023). Molecular detection of Wolbachia and Bartonella as part of the microbiome of phlebotomine sand flies from Chiapas, Mexico. Parasitology Research, 122(6), 1293–1301. https://doi.org/10.1007/s00436-023-07829-z | |
| dc.relation.references | Lozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga-Salas, P., Sánchez-Cordero, V., & Becker, I. (2021). Rickettsial agents detected in the genus Psathyromyia (Diptera: Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitology International, 82, 102286. https://doi.org/10.1016/j.parint.2021.102286 | |
| dc.relation.references | Lu, Y., Zhou, G., Ewald, J., Pang, Z., Shiri, T., & Xia, J. (2023). MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Research, 51(W1), W310–W318. https://doi.org/10.1093/nar/gkad407 | |
| dc.relation.references | Maciel-de-Freitas, R., Sauer, F. G., Kliemke, K., Garcia, G. A., Pavan, M. G., David, M. R., Schmidt-Chanasit, J., Hoffmann, A., & Lühken, R. (2024). Wolbachia strains wMel and wAlbB differentially affect Aedes aegypti traits related to fecundity. Microbiology Spectrum, 12(4). https://doi.org/10.1128/spectrum.00128-24 | |
| dc.relation.references | Maleki-Ravasan, N., Ghafari, S. M., Najafzadeh, N., Karimian, F., Darzi, F., Davoudian, R., Farshbaf Pourabad, R., & Parvizi, P. (2024). Characterization of bacteria expectorated during forced salivation of the Phlebotomus papatasi: A neglected component of sand fly infectious inoculums. PLOS Neglected Tropical Diseases, 18(5), e0012165. https://doi.org/10.1371/journal.pntd.0012165 | |
| dc.relation.references | Marcondes, C. (2007). A proposal of generic and subgeneric abbreviations for phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae) of the World. Entomological News, 118(4):351-356([351:APOGAS]2.0.CO;2). | |
| dc.relation.references | Martinez, J., Klasson, L., Welch, J. J., & Jiggins, F. M. (2021). Life and Death of Selfish Genes: Comparative Genomics Reveals the Dynamic Evolution of Cytoplasmic Incompatibility. Molecular Biology and Evolution, 38(1), 2–15. https://doi.org/10.1093/molbev/msaa209 | |
| dc.relation.references | Martínez‐Burgos, M., Lozano‐Sardaneta, Y. N., Rodríguez‐Rojas, J. J., Gómez‐Rivera, Á. S., Canto‐Mis, K. L., Flores‐Escobar, E., Mis‐Ávila, P. C., Correa‐Morales, F., & Becker, I. (2023). Species diversity and detection of pathogens in phlebotomine sand flies collected from forest management areas of Quintana Roo, Mexico. Medical and Veterinary Entomology, 37(4), 845–858. https://doi.org/10.1111/mve.12691 | |
| dc.relation.references | Martínez-Pérez, L. (2018). Frecuencia de uso de animales domésticos como fuente de alimentación de Lutzomyia spp. (Diptera: Psychodidae) en la vereda Toro, San Cayetano, Bolívar [Universidad de Sucre 2017]. http://repositorio.unisucre.edu.co/handle/001/624 | |
| dc.relation.references | Masson, F., Calderon‐Copete, S., Schüpfer, F., Vigneron, A., Rommelaere, S., Garcia‐Arraez, M. G., Paredes, J. C., & Lemaitre, B. (2020). Blind killing of both male and female Drosophila embryos by a natural variant of the endosymbiotic bacterium Spiroplasma poulsonii. Cellular Microbiology, 22(5). https://doi.org/10.1111/cmi.13156 | |
| dc.relation.references | Matthews, M. L., Covey, H. O., Drolet, B. S., & Brelsfoard, C. L. (2022). Wolbachia wAlbB inhibits bluetongue and epizootic hemorrhagic fever viruses in Culicoides midge cells. Medical and Veterinary Entomology, 36(3), 320–328. https://doi.org/10.1111/mve.12569 | |
| dc.relation.references | Meneses, H. do N. de M., Oliveira-da-Costa, M., Basta, P. C., Morais, C. G., Pereira, R. J. B., de Souza, S. M. S., & Hacon, S. de S. (2022). Mercury Contamination: A Growing Threat to Riverine and Urban Communities in the Brazilian Amazon. International Journal of Environmental Research and Public Health, 19(5), 2816. https://doi.org/10.3390/ijerph19052816 | |
| dc.relation.references | Meng, Q., Liang, Y., Xu, Y., Li, S., Huang, H., Xu, Y., Cao, F., Yin, J., Zhu, T., Gao, H., & Yu, Z. (2025). A novel FadL family outer membrane transporter is involved in the uptake of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 91(2). https://doi.org/10.1128/aem.00827-24 | |
| dc.relation.references | Miller, W. J., & Riegler, M. (2006). Evolutionary Dynamics of w Au-Like Wolbachia Variants in Neotropical Drosophila spp. Applied and Environmental Microbiology, 72(1), 826–835. https://doi.org/10.1128/AEM.72.1.826-835.2006 | |
| dc.relation.references | Minard, G., Tran, F. H., Van, V. T., Goubert, C., Bellet, C., Lambert, G., Kim, K. L. H., Thuy, T. H. T., Mavingui, P., & Valiente Moro, C. (2015). French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00970 | |
| dc.relation.references | Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015 | |
| dc.relation.references | Molina, J., Hildebrand, P., Olano, V., Muñoz de Hoyos, P., Barreto, M., & Guhl, F. (2000). Fauna de insectos hematófagos del sur del Parque Nacional Natural Chiribiquete, Caquetá, Colombia. Biomédica, 20(4), 1–13. https://doi.org/10.7705/biomedica.v20i4.1075 | |
| dc.relation.references | Montalvo, A., Fraga, J., Maes, I., Dujardin JC, & Van der Auwera, G. (2011). Three new sensitive and specific heat-shock protein 70 PCRs for global Leishmania species identification. Eur J Clin Microbiol Infect Dis, 31(7):1453-61. https://doi.org/10.1007/s10096-011-1463-z | |
| dc.relation.references | Monteiro, C. C., Villegas, L. E. M., Campolina, T. B., Pires, A. C. M. A., Miranda, J. C., Pimenta, P. F. P., & Secundino, N. F. C. (2016). Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasites & Vectors, 9(1), 480. https://doi.org/10.1186/s13071-016-1767-z | |
| dc.relation.references | Montenegro, D., Cortés-Cortés, G., Balbuena-Alonso, M. G., Warner, C., & Camps, M. (2024). Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Tropica, 260, 107410. https://doi.org/10.1016/j.actatropica.2024.107410 | |
| dc.relation.references | Moraes, C. S., Seabra, S. H., Albuquerque-Cunha, J. M., Castro, D. P., Genta, F. A., Souza, W. de, Brazil, R. P., Garcia, E. S., & Azambuja, P. (2009). Prodigiosin is not a determinant factor in lysis of Leishmania (Viannia) braziliensis after interaction with Serratia marcescens d-mannose sensitive fimbriae. Experimental Parasitology, 122(2), 84–90. https://doi.org/10.1016/j.exppara.2009.03.004 | |
| dc.relation.references | Moraes, C. S., Seabra, S. H., Castro, D. P., Brazil, R. P., de Souza, W., Garcia, E. S., & Azambuja, P. (2008). Leishmania (Leishmania) chagasi interactions with Serratia marcescens: Ultrastructural studies, lysis and carbohydrate effects. Experimental Parasitology, 118(4), 561–568. https://doi.org/10.1016/j.exppara.2007.11.015 | |
| dc.relation.references | Morales, A., & Minter, D. M. (1981). Estudio sobre flebotomíneos en Araracuara. Caquetá, Colombia, S. A. Incluyendo la descripción de Lutzomyia araracuarensis (Díptera, Psychodidae). Biomédica, 1(3), 94. https://doi.org/10.7705/biomedica.v1i3.1790 | |
| dc.relation.references | Moreno, M., Guzmán-Rodríguez, L., Valderrama-Ardila, C., Alexander, N., & Ocampo, C. B. (2020). Land use in relation to composition and abundance of phlebotomines (Diptera: Psychodidae) in five foci of domiciliary transmission of cutaneous leishmaniasis in the Andean region of Colombia. Acta Tropica, 203, 105315. https://doi.org/10.1016/j.actatropica.2019.105315 | |
| dc.relation.references | Nguyen, D. T., Morrow, J. L., Spooner-Hart, R. N., & Riegler, M. (2017). Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution, 71(4), 995–1008. https://doi.org/10.1111/evo.13197 | |
| dc.relation.references | Omondi, Z. N., & Demir, S. (2021). Bacteria composition and diversity in the gut of sand fly: impact on Leishmania and sand fly development. International Journal of Tropical Insect Science, 41(1), 25–32. https://doi.org/10.1007/s42690-020-00184-x | |
| dc.relation.references | OMS. (2010). Control de las leishmaniasis : informe de una reunión del Comité de Expertos de la OMS sobre el Control de las Leishmaniasis, . Organización Mundial de la Salud | |
| dc.relation.references | Ono, M., Braig, H. R., Munstermann, L. E., Ferro, C., & O’NeilL, S. L. (2001). Wolbachia Infections of Phlebotomine Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 38(2), 237–241. https://doi.org/10.1603/0022-2585-38.2.237 | |
| dc.relation.references | OPS/OMS. (2020). Leishmaniasis. https://www.paho.org/es/temas/leishmaniasis | |
| dc.relation.references | Osorio, J., Villa-Arias, S., Camargo, C., Ramírez-Sánchez, L. F., Barrientos, L. M., Bedoya, C., Rúa-Uribe, G., Dorus, S., Alfonso-Parra, C., & Avila, F. W. (2023). wMel Wolbachia alters female post-mating behaviors and physiology in the dengue vector mosquito Aedes aegypti. Communications Biology, 6(1), 865. https://doi.org/10.1038/s42003-023-05180-8 | |
| dc.relation.references | Osorno-Mesa, E., Morales-Alarcón, A., de Osorno, F., & Ferro-Vela C. (1972). Phlebotominae de Colombia (Diptera, Psychodidae) IX. Distribución geográfica de especies de Brumptomyia y Lutzomyia Franca 1924, encontradas en Colombia. | |
| dc.relation.references | Owashi, Y., Arai, H., Adachi-Hagimori, T., & Kageyama, D. (2024). Rickettsia induces strong cytoplasmic incompatibility in a predatory insect. Proceedings of the Royal Society B: Biological Sciences, 291(2027). https://doi.org/10.1098/rspb.2024.0680 | |
| dc.relation.references | PAHO, (Pan American Health Organization). (2024). Plan of action to strengthen the surveillance and control of leishmaniasis in the Americas 2023-2030. Pan American Health Organization. https://doi.org/10.37774/9789275128787 | |
| dc.relation.references | Pang, R., Chen, M., Yue, L., Xing, K., Li, T., Kang, K., Liang, Z., Yuan, L., & Zhang, W. (2018). A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLOS Genetics, 14(10), e1007725. https://doi.org/10.1371/journal.pgen.1007725 | |
| dc.relation.references | Papadopoulos, C., Karas, P. A., Vasileiadis, S., Ligda, P., Saratsis, A., Sotiraki, S., & Karpouzas, D. G. (2020). Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens, 9(6), 428. https://doi.org/10.3390/pathogens9060428 | |
| dc.relation.references | Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C., & Göker, M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5607–5612. https://doi.org/10.1099/ijsem.0.004332 | |
| dc.relation.references | Pascar, J., Middleton, H., & Dorus, S. (2023). Aedes aegypti microbiome composition covaries with the density of Wolbachia infection. Microbiome, 11(1), 255. https://doi.org/10.1186/s40168-023-01678-9 | |
| dc.relation.references | Paternina, L. E. (2012). Determinación molecular de las fuentes alimenticias de Lutzomyia spp. (Diptera: Psychodidae) asociadas a casos de Leishmaniasis Cutánea en el departamento de Sucre, Caribe Colombiano [Tesis de maestría, Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Biociencias.]. https://repositorio.unal.edu.co/handle/unal/9861?locale-attribute=en | |
| dc.relation.references | Paternina, L. E., Verbel-Vergara, D., Romero-Ricardo, L., Pérez-Doria, A., Paternina-Gómez, M., Martínez, L., & Bejarano, E. E. (2016). Evidence for anthropophily in five species of phlebotomine sand flies (Diptera: Psychodidae) from northern Colombia, revealed by molecular identification of bloodmeals. Acta Tropica, 153, 86–92. https://doi.org/10.1016/j.actatropica.2015.10.005 | |
| dc.relation.references | Pereira Júnior, A. M., Teles, C. B. G., de Azevedo dos Santos, A. P., de Souza Rodrigues, M., Marialva, E. F., Pessoa, F. A. C., & Medeiros, J. F. (2015). Ecological aspects and molecular detection of Leishmania DNA Ross (Kinetoplastida: Trypanosomatidae) in phlebotomine sandflies (Diptera: Psychodidae) in terra firme and várzea environments in the Middle Solimões Region, Amazonas State, Brazil. Parasites & Vectors, 8(1), 180. https://doi.org/10.1186/s13071-015-0789-2 | |
| dc.relation.references | Pereira-Filho, A. A., Fonteles, R. S., Bandeira, M. da C. A., Moraes, J. L. P., Rebêlo, J. M. M., & Melo, M. N. (2018). Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae: Phlebotominae) in the Lençóis Maranhenses National Park, Brazil. Journal of Medical Entomology, 55(4), 989–994. https://doi.org/10.1093/jme/tjy014 | |
| dc.relation.references | Perlmutter, J. I., Atadurdyyeva, A., Schedl, M. E., & Unckless, R. L. (2025). Wolbachia enhances the survival of Drosophila infected with fungal pathogens. BMC Biology, 23(1), 42. https://doi.org/10.1186/s12915-025-02130-0 | |
| dc.relation.references | Pimentel, A. C., Sánchez, U. Y. del V., de Lima, A. C. S., Silveira, F. T., Vasconcelos dos Santos, T., & Ishikawa, E. A. Y. (2022). Blood Feeding Sources of Nyssomyia antunesi (Diptera: Psychodidae): A Suspected Vector of Leishmania (Kinetoplastida: Trypanosomatidae) in the Brazilian Amazon. Journal of Medical Entomology, 59(5), 1847–1852. https://doi.org/10.1093/jme/tjac108 | |
| dc.relation.references | Pimentel, A., Sánchez, U. Y., de Lima, A., Silveira, F., Vasconcelos, D. S. T., & Ishikawa, E. (2022). Blood Feeding Sources of Nyssomyia antunesi (Diptera: Psychodidae): A Suspected Vector of Leishmania (Kinetoplastida: Trypanosomatidae) in the Brazilian Amazon. Journal of Medical Entomology, 59(5), 1847–1852. https://doi.org/10.1093/jme/tjac108 | |
| dc.relation.references | Pinto, I. de S., Rodrigues, B. L., de Araujo-Pereira, T., Shimabukuro, P. H. F., de Pita-Pereira, D., Britto, C., & Brazil, R. P. (2023). DNA barcoding of sand flies (Diptera, Psychodidae, Phlebotominae) from the western Brazilian Amazon. PLOS ONE, 18(2), e0281289. https://doi.org/10.1371/journal.pone.0281289 | |
| dc.relation.references | Portella, T. P., Sudbrack, V., Coutinho, R. M., Prado, P. I., & Kraenkel, R. A. (2024). Bayesian spatio-temporal modeling to assess the effect of land-use changes on the incidence of Cutaneous Leishmaniasis in the Brazilian Amazon. Science of The Total Environment, 953(176064), 2–7. https://doi.org/10.1016/j.scitotenv.2024.176064 | |
| dc.relation.references | Porter, C., & Collins, F. (1991). Species-Diagnostic Differences in a Ribosomal DNA Internal Transcribed Spacer from the Sibling Species Anopheles Freeborni and Anopheles Hermsi (Diptera: Culicidae). The American Journal of Tropical Medicine and Hygiene, 45(2), 271–279. https://doi.org/10.4269/ajtmh.1991.45.271 | |
| dc.relation.references | Porter, J., & Sullivan, W. (2023). The cellular lives of Wolbachia. Nature Reviews Microbiology, 21(11), 750–766. https://doi.org/10.1038/s41579-023-00918-x | |
| dc.relation.references | Posada-López, L. (2016). Inventario de especies y diversidad haplotípica MtCOI de Phlebotominae (Diptera: Psychodidae) en zonas de importancia para la transmisión de leishmaniasis en Colombia [Facultad de Ciencias Escuela de Biociencias, Universidad Nacional de Colombia Sede Medellín ]. https://repositorio.unal.edu.co/handle/unal/58710 | |
| dc.relation.references | Posada-Lopez, L., Galati, E. A., Shaw, J., & Galvis-Ovallos, F. (2024). Incriminating leishmaniases vectors in Colombia: An overview and roadmap for future research. Acta Tropica, 260, 107409. https://doi.org/10.1016/j.actatropica.2024.107409 | |
| dc.relation.references | Posada-López, L., Galvis-Ovallos, F., & Galati EAB. (2018). Description of Trichophoromyia velezbernali, a New Sand Fly Species (Diptera: Psychodidae: Phlebotominae) from Colombian Amazonia. Journal of Medical Entomology, 55(1), 122–127. https://doi.org/10.1093/jme/tjx180 | |
| dc.relation.references | Posada-López, L., Rodrigues B.L, Velez I.D, & Uribe, S. (2023). Improving the COI DNA barcoding library for Neotropical phlebotomine sand flies (Diptera: Psychodidae). Parasites & Vectors, 16(1), 1–12. https://doi.org/10.1186/s13071-023-05807-z | |
| dc.relation.references | Posada-López, L., Velez-Mira, A., Cantillo, O., Castillo-Castañeda, A., Ramírez JD, Galati, E., & Galvis-Ovallos, F. (2023). Ecological interactions of sand flies, hosts, and Leishmania panamensis in an endemic area of cutaneous leishmaniasis in Colombia. PLOS Neglected Tropical Diseases, 17(5), e0011316. https://doi.org/10.1371/journal.pntd.0011316 | |
| dc.relation.references | QGIS Development Team. (2023). QGIS Geographic Information System. Open Source Geospatial Foundation Project. qgis.org | |
| dc.relation.references | Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219 | |
| dc.relation.references | Quiroga, C., Cevallos, V., Morales, D., Baldeón, M. E., Cárdenas, P., Rojas-Silva, P., & Ponce, P. (2017). Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae, Phlebotominae) From Ecuador. Journal of Medical Entomology, 54(6), 1704–1711. https://doi.org/10.1093/jme/tjx122 | |
| dc.relation.references | Rana, A., Sudakov, K., Carmeli, S., Miyara, S. B., Bucki, P., & Minz, D. (2024). Volatile organic compounds of the soil bacterium Bacillus halotolerans suppress pathogens and elicit defense responsive genes in plants. Microbiological Research, 281, 127611. https://doi.org/10.1016/j.micres.2024.127611 | |
| dc.relation.references | Rangel, E. F., & Lainson, R. (2009). Proven and putative vectors of American cutaneous leishmaniasis in Brazil: aspects of their biology and vectorial competence. Memórias Do Instituto Oswaldo Cruz, 104(7), 937–954. https://doi.org/10.1590/S0074-02762009000700001 | |
| dc.relation.references | Ready, P. D., Arias, J. R., & Freitas, R. A. (1985). A pilot study to control Lutzomyia umbratilis (Diptera: Psychodidae), the major vector of Leishmania braziliensis guyanensis, in a peri-urban rainforest of Manaus, Amazonas State, Brazil. Memórias Do Instituto Oswaldo Cruz, 80(1), 27–36. https://doi.org/10.1590/S0074-02761985000100005 | |
| dc.relation.references | Resadore, F., Júnior, A. M. P., de Paulo, P. F. M., Gil, L. H. S., Rodrigues, M. M. S., Araújo, M. D. S., Julião, G. R., & Medeiros, J. F. (2019). Composition and Vertical Stratification of Phlebotomine Sand Fly Fauna and the Molecular Detection of Leishmania in Forested Areas in Rondônia State Municipalities, Western Amazon, Brazil. Vector-Borne and Zoonotic Diseases, 19(5), 347–357. https://doi.org/10.1089/vbz.2018.2372 | |
| dc.relation.references | Rodpai, R., Boonroumkaew, P., Sadaow, L., Sanpool, O., Janwan, P., Thanchomnang, T., Intapan, P. M., & Maleewong, W. (2023). Microbiome Composition and Microbial Community Structure in Mosquito Vectors Aedes aegypti and Aedes albopictus in Northeastern Thailand, a Dengue-Endemic Area. Insects, 14(2), 184. https://doi.org/10.3390/insects14020184 | |
| dc.relation.references | Rodrigues, B., & Galati, E. (2023). Molecular taxonomy of phlebotomine sand flies (Diptera, Psychodidae) with emphasis on DNA barcoding: A review. Acta Tropica, 238(106778), 1–14. https://doi.org/10.1016/j.actatropica.2022.106778 | |
| dc.relation.references | Rodrigues, B. L., Baton, L. A., & Shimabukuro, P. H. F. (2020). Single‐locus DNA barcoding and species delimitation of the sandfly subgenus Evandromyia (Aldamyia). Medical and Veterinary Entomology, 34(4), 420–431. https://doi.org/10.1111/mve.12458 | |
| dc.relation.references | Rodrigues, M., Brito-Sousa, J. D., Dias, Á. L. B., Monteiro, W., & Sampaio, V. (2019). The role of deforestation on American cutaneous leishmaniasis incidence: spatial‐temporal distribution, environmental and socioeconomic factors associated in the Brazilian Amazon. Tropical Medicine & International Health, 24(3), 348–355. https://doi.org/10.1111/tmi.13196 | |
| dc.relation.references | Roque, A., & Jansen, A. (2014). Wild and synanthropic reservoirs of Leishmania species in the Americas. International Journal for Parasitology: Parasites and Wildlife, 3(3), 1–12. https://doi.org/10.1016/j.ijppaw.2014.08.004 | |
| dc.relation.references | Rosário, A. A. do, Dias-Lima, A. G., Lambert, S. M., Souza, B. M. P. da S., & Bravo, F. (2022). Identification and molecular characterization of Wolbachia strains and natural infection for Leishmania sp. in neotropical Phlebotominae (Diptera: Psychodidae) species, leishmaniasis vectors. Acta Tropica, 235, 106624. https://doi.org/10.1016/j.actatropica.2022.106624 | |
| dc.relation.references | Ross, P. A., Axford, J. K., Yang, Q., Staunton, K. M., Ritchie, S. A., Richardson, K. M., & Hoffmann, A. A. (2020). Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti. PLOS Neglected Tropical Diseases, 14(1), e0007958. https://doi.org/10.1371/journal.pntd.0007958 | |
| dc.relation.references | Ross, P. A., & Hoffmann, A. A. (2022). Fitness costs of Wolbachia shift in locally‐adapted Aedes aegypti mosquitoes. Environmental Microbiology, 24(12), 5749–5759. https://doi.org/10.1111/1462-2920.16235 | |
| dc.relation.references | Rossi, F., Carles, L., Donnadieu, F., Batisson, I., & Artigas, J. (2021). Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal of Hazardous Materials, 420, 126651. https://doi.org/10.1016/j.jhazmat.2021.126651 | |
| dc.relation.references | Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248 | |
| dc.relation.references | Ruang-Areerate, T., Kittyapong, P., Baimai, V., & O’Neill, S. L. (2003). Molecular Phylogeny of Wolbachia Endosymbionts in Southeast Asian Mosquitoes (Diptera: Culicidae) Based on wsp Gene Sequences. Journal of Medical Entomology, 40(1), 1–5. https://doi.org/10.1603/0022-2585-40.1.1 | |
| dc.relation.references | Sandoval-Ramírez, CM., Hernández, C., Teherán, A., Gutierrez-Marin R, Martínez-Vega, R., Morales, D., Hoyos-Lopez, R., Araque-Mogollón, A., & Ramírez J.D. (2020). Complex ecological interactions across a focus of cutaneous leishmaniasis in Eastern Colombia: novel description of Leishmania species, hosts and phlebotomine fauna. Royal Society Open Science, 7(7), 200266. https://doi.org/10.1098/rsos.200266 | |
| dc.relation.references | Santamaría, E., Ponce, N., Zipa, Y., & Ferro, C. (2012). Presencia en el peridomicilio de vectores infectados con Leishmania (Viannia) panamensis en dos focos endémicos en el occidente de Boyacá, piedemonte del valle del Magdalena medio, Colombia. Biomédica, 26(1), 82–94. https://doi.org/10.7705/biomedica.v26i1.1503 | |
| dc.relation.references | Sant’Anna, M. R. V., Darby, A. C., Brazil, R. P., Montoya-Lerma, J., Dillon, V. M., Bates, P. A., & Dillon, R. J. (2012). Investigation of the Bacterial Communities Associated with Females of Lutzomyia Sand Fly Species from South America. PLoS ONE, 7(8), e42531. https://doi.org/10.1371/journal.pone.0042531 | |
| dc.relation.references | Santos, N. S. dos, Pinho, F. A. de, Hlavac, N. R. C., Nunes, T. L., Almeida, N. R., Solcà, M. S., Varjão, B. M., Portela, R. W., Rugani, J. N., Rêgo, F. D., Barrouin-Melo, S. M., & Soares, R. P. (2021). Feline Leishmaniasis Caused by Leishmania infantum: Parasite Sequencing, Seropositivity, and Clinical Characterization in an Endemic Area From Brazil. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.734916 | |
| dc.relation.references | Santos, T. V. dos, & Silveira, F. T. (2020). Increasing putative vector importance of Trichophoromyia phlebotomines (Diptera: Psychodidae). Memórias Do Instituto Oswaldo Cruz, 115. https://doi.org/10.1590/0074-02760190284 | |
| dc.relation.references | Santos Walter Souza, Ortega Fellipe Diogo, Alves Veracilda Ribeiro, & Garcez Lourdes Maria. (2019). Flebotomíneos (Psychodidae: Phlebotominae) de área endêmica para leishmaniose cutânea e visceral no nordeste do estado do Pará, Brasil. Revista Pan-Amazônica de Saúde, 10(0), 1–6. https://doi.org/10.5123/S2176-6223201900059 | |
| dc.relation.references | Santos-Silva, L., Roque, W. F., de Moura, J. M., Mello, I. S., de Carvalho, L. A. L., Pinheiro, D. G., Bouzan, R. S., Brescovit, A. D., de Andrade, R. L. T., da Silva, G. F., Battirola, L. D., & Soares, M. A. (2024). Toxic metals in Amazonian soil modify the bacterial community associated with Diplopoda. Science of The Total Environment, 955, 176915. https://doi.org/10.1016/j.scitotenv.2024.176915 | |
| dc.relation.references | Sarkhandia, S., Devi, M., Sharma, G., Mahajan, R., Chadha, P., Saini, H. S., & Kaur, S. (2023). Larvicidal, growth inhibitory and biochemical effects of soil bacterium, Pseudomonas sp. EN4 against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiology, 23(1), 95. https://doi.org/10.1186/s12866-023-02841-w | |
| dc.relation.references | Scarpassa, V., Cunha-Machado, A. S., & Alencar, R. (2021). Multiple evolutionary lineages for the main vector of Leishmania guyanensis, Lutzomyia umbratilis (Diptera: Psychodidae), in the Brazilian Amazon. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-93072-4 | |
| dc.relation.references | Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 | |
| dc.relation.references | SIAT-AC - Instituto SINCHI. (2022). Límite de la Amazonia colombiana. Escala: 1:100.000. Datos Abiertos - Instituto SINCHI . https://datos.siatac.co/datasets/7fbe5e6357354c7c9baf8a44369ceef7/about | |
| dc.relation.references | Silva, A. N. R., Júnior, A. M. P., de Paulo, P. F. M., da Silva, M. S., Castro, T. S., Costa GDS, Freitas, M. T. de S., Rodrigues, M. M. de S., & Medeiros, J. F. (2021). Detection of Leishmania species (Kinetoplastida, Trypanosomatidae) in phlebotomine sand flies (Diptera, Psychodidae) from Porto Velho, Northern Brazil. Acta Tropica, 213, 105757. https://doi.org/10.1016/j.actatropica.2020.105757 | |
| dc.relation.references | Silva, T. R. R., Assis, M. D. G., Freire, M. P., Rego, F. D., Gontijo, C. M. F., & Shimabukuro, P. H. F. (2014). Molecular Detection of Leishmania in Sand Flies (Diptera: Psychodidae: Phlebotominae) Collected in the Caititu Indigenous Reserve of the Municipality of Lábrea, State of Amazonas, Brazil. Journal of Medical Entomology, 51(6), 1276–1282. https://doi.org/10.1603/ME14025 | |
| dc.relation.references | Silveira, F., Ishikawa, E., De Souza, A., & Lainson, R. (2002). An outbreak of cutaneous leishmaniasis among soldiers in Belém, Pará State, Brazil, caused by Leishmania (Viannia) lindenbergi n. sp. Parasite, 9(1), 43–50. https://doi.org/10.1051/parasite/200209143 | |
| dc.relation.references | Silveira, F. T., Souza, A. A. A., Lainson, R., Shaw, J. J., Braga, R. R., & Ishikawa, E. E. A. (1991). Cutaneous leishmaniasis in the Amazon region: natural infection of the sandfly Lutzomyia ubiquitalis (Psychodidae: Phlebotominae) by Leishmania (Viannia) lainsoni in Pará state, Brazil. Memórias Do Instituto Oswaldo Cruz, 86(1), 127–130. https://doi.org/10.1590/S0074-02761991000100021 | |
| dc.relation.references | Silveira, N. S., Monteiro, R., Zucchi, R., & de Moraes, R. (1995). Uso da análise faunística de insetos na avaliação do impacto ambiental. Scientia Agricola, 52(1), 9–15. https://doi.org/10.1590/S0103-90161995000100003 | |
| dc.relation.references | Soares, O. S. R., Rodrigues, B. L., & Shimabukuro, P. H. F. (2024). Accessing the sand fly diversity of Tocantins, Northern Brazil: species delimitation using COI DNA barcoding. Biota Neotropica, 24(4), 2–6. https://doi.org/10.1590/1676-0611-bn-2024-1680 | |
| dc.relation.references | Stevens, L., Dorn PL, Hobson, J., de la Rua, N. M., Lucero, D. E., Klotz, J. H., Schmidt, J. O., & Klotz, S. A. (2012). Vector Blood Meals and Chagas Disease Transmission Potential, United States. Emerging Infectious Diseases, 18(4), 646–649. https://doi.org/10.3201/eid1804.111396 | |
| dc.relation.references | Tabbabi, A., Mizushima, D., Yamamoto, D. S., & Kato, H. (2022). Sand Flies and Their Microbiota. Parasitologia, 2(2), 71–87. https://doi.org/10.3390/parasitologia2020008 | |
| dc.relation.references | Tabbabi, A., Mizushima, D., Yamamoto, D. S., & Kato, H. (2023). Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies. Parasites & Vectors, 16(1), 310. https://doi.org/10.1186/s13071-023-05939-2 | |
| dc.relation.references | Tabbabi, A., Mizushima, D., Yamamoto, D. S., Zhioua, E., & Kato, H. (2024). Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLOS Neglected Tropical Diseases, 18(9), e0012458. https://doi.org/10.1371/journal.pntd.0012458 | |
| dc.relation.references | Tabbabi, A., Watanabe, S., Mizushima, D., Caceres, A. G., Gomez, E. A., Yamamoto, D. S., Cui, L., Hashiguchi, Y., & Kato, H. (2020). Comparative Analysis of Bacterial Communities in Lutzomyia ayacuchensis Populations with Different Vector Competence to Leishmania Parasites in Ecuador and Peru. Microorganisms, 9(1). https://doi.org/10.3390/microorganisms9010068 | |
| dc.relation.references | Tarlachkov, S. V., Efeykin, B. D., Castillo, P., Evtushenko, L. I., & Subbotin, S. A. (2023). Distribution of Bacterial Endosymbionts of the Cardinium Clade in Plant-Parasitic Nematodes. International Journal of Molecular Sciences, 24(3), 2905. https://doi.org/10.3390/ijms24032905 | |
| dc.relation.references | Teles, C. B. G., Santos, A. P. de A. dos, Freitas, R. A., Oliveira, A. F. J. de, Ogawa, G. M., Rodrigues, M. S., Pessoa, F. A. C., Medeiros, J. F., & Camargo, L. M. A. (2016). Phlebotomine sandfly (Diptera: Psychodidae) diversity and their Leishmania DNA in a hot spot of American Cutaneous Leishmaniasis human cases along the Brazilian border with Peru and Bolivia. Memórias Do Instituto Oswaldo Cruz, 111(7), 423–432. https://doi.org/10.1590/0074-02760160054 | |
| dc.relation.references | Telleria, E. L., Martins-da-Silva, A., Tempone, A. J., & Traub-Csekö, Y. M. (2018). Leishmania , microbiota and sand fly immunity. Parasitology, 145(10), 1336–1353. https://doi.org/10.1017/S0031182018001014 | |
| dc.relation.references | Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673 | |
| dc.relation.references | Tidman, R., Abela-Ridder, B., & de Castañeda, R. R. (2021). The impact of climate change on neglected tropical diseases: a systematic review. Transactions of The Royal Society of Tropical Medicine and Hygiene, 115(2), 147–168. https://doi.org/10.1093/trstmh/traa192 | |
| dc.relation.references | Tong-Pu, L., Si-Si, Z., Chun-Ying, Z., Jun-Tao, G., Yu-Xi, Z., Xu, Z., Zhiyong, X., & Xiao-Yue, H. (2020). Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiology Ecology, 96(12). https://doi.org/10.1093/femsec/fiaa194 | |
| dc.relation.references | Ulloa, G. M., Vásquez-Achaya, F., Gomes, C., del Valle, L. J., Ruiz, J., Pons, M. J., & del Valle Mendoza, J. (2018). Molecular Detection of Bartonella bacilliformis in Lutzomyia maranonensis in Cajamarca, Peru: A New Potential Vector of Carrion’s Disease in Peru? The American Journal of Tropical Medicine and Hygiene, 99(5), 1229–1233. https://doi.org/10.4269/ajtmh.18-0520 | |
| dc.relation.references | Valdivia, H. O., De Los Santos, M. B., Fernandez, R., Baldeviano, G. C., Zorrilla, V. O., Vera, H., Lucas, C. M., Edgel, K. A., Lescano, A. G., Mundal, K. D., & Graf, P. C. F. (2012). Natural Leishmania Infection of Lutzomyia auraensis in Madre de Dios, Peru, Detected by a Fluorescence Resonance Energy Transfer–Based Real-Time Polymerase Chain Reaction. The American Society of Tropical Medicine and Hygiene, 87(3), 511–517. https://doi.org/10.4269/ajtmh.2012.11-0708 | |
| dc.relation.references | Vandana, V., Dong, S., Sheth, T., Sun, Q., Wen, H., Maldonado, A., Xi, Z., & Dimopoulos, G. (2024). Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi. PLOS Pathogens, 20(4), e1012145. https://doi.org/10.1371/journal.ppat.1012145 | |
| dc.relation.references | Vasconcelos dos Santos, T., Prévot, G., Ginouvès, M., Duarte, R., Silveira, F. T., Póvoa, M. M., & Rangel, E. F. (2018). Ecological aspects of Phlebotomines (Diptera: Psychodidae) and the transmission of American cutaneous leishmaniasis agents in an Amazonian/ Guianan bordering area. Parasites & Vectors, 11(1), 612. https://doi.org/10.1186/s13071-018-3190-0 | |
| dc.relation.references | Vasquez-Trujillo, A., Gonzalez-Reina, A. E., Gongora-Orjuela, A., Prieto-Suarez, E., Palomares, J. E., & Buitrago-Alvarez, L. S. (2013). Seasonal variation and natural infection of Lutzomyia antunesi (Diptera: Psychodidae: Phlebotominae), an endemic species in the Orinoquia region of Colombia. Memórias Do Instituto Oswaldo Cruz, 108(4), 463–469. https://doi.org/10.1590/S0074-0276108042013011 | |
| dc.relation.references | Vásquez-Trujillo, A., Santamaría-Herreño, E., González-Reina, A. E., Buitrago-Álvarez, L. S., Góngora-Orjuela, A., & Cabrera-Quintero, O. L. (2018). Lutzomyia antunesi as suspected vector of cutaneous leishmaniasis in the Orinoquian region of Colombia. Rev. Salud Pública, 10 (4):625-632, 1–8. | |
| dc.relation.references | Vazquez-Prokopec, G. M., Galvin, W. A., Kelly, R., & Kitron, U. (2009). A New, Cost-Effective, Battery-Powered Aspirator for Adult Mosquito Collections. Journal of Medical Entomology, 46(6), 1256–1259. https://doi.org/10.1603/033.046.0602 | |
| dc.relation.references | VectorSurv. (2024). Pool Infection Rate. Sistema de Vigilancia de Enfermedades Transmitidas Por Vectores. https://vectorsurv.org/docs/tools/calculators/infection-rate/ | |
| dc.relation.references | Vivero, R. J., Cadavid-Restrepo, G., Herrera, C. X. M., & Soto, S. I. U. (2017). Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast. Parasites & Vectors, 10(1), 110. https://doi.org/10.1186/s13071-017-2031-x | |
| dc.relation.references | Vivero, R. J., Castañeda-Monsalve, V. A., Romero, L. R., D. Hurst, G., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Gut Microbiota Dynamics in Natural Populations of Pintomyia evansi under Experimental Infection with Leishmania infantum. Microorganisms, 9(6), 1214. https://doi.org/10.3390/microorganisms9061214 | |
| dc.relation.references | Vivero, R. J., Castañeda-Monsalve, V. A., Romero, L. R., Hurst, G. D., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Gut microbiota dynamics in natural populations of pintomyia evansi under experimental infection with leishmania infantum. Microorganisms, 9(6), 1–14. https://doi.org/10.3390/microorganisms9061214 | |
| dc.relation.references | Vivero, R. J., Contreras-Gutiérrez, M. A., & Bejarano, E. E. (2009). Changes in the carboxyl-terminal domain of cytochrome b as a taxonomic character in Lutzomyia (Diptera: Psychodidae). Revista Colombiana de Entomología, 35(1), 83–88. https://doi.org/10.25100/socolen.v35i1.9194 | |
| dc.relation.references | Vivero, R. J., Jaramillo, N. G., Cadavid-Restrepo, G., Soto, S. I. U., & Herrera, C. X. M. (2016). Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasites & Vectors, 9(1), 496. https://doi.org/10.1186/s13071-016-1766-0 | |
| dc.relation.references | Vivero, R. J., Torres-Gutierrez, C., Bejarano, E. E., Peña, H. C., Estrada, L. G., Florez, F., Ortega, E., Aparicio, Y., & Muskus, C. E. (2015). Study on natural breeding sites of sand flies (Diptera: Phlebotominae) in areas of Leishmania transmission in Colombia. Parasites & Vectors, 8(1), 116. https://doi.org/10.1186/s13071-015-0711-y | |
| dc.relation.references | Vivero, R. J., Villegas-Plazas, M., Cadavid-Restrepo, G. E., Herrera, C. X. M., Uribe, S. I., & Junca, H. (2019). Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Scientific Reports, 9(1), 17746. https://doi.org/10.1038/s41598-019-53769-z | |
| dc.relation.references | Vivero-Gomez, R. J., Castañeda-Monsalve, V. A., Atencia, M. C., Hoyos-Lopez, R., Hurst, G. D., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Molecular phylogeny of heritable symbionts and microbiota diversity analysis in phlebotominae sand flies and Culex nigripalpus from Colombia. PLOS Neglected Tropical Diseases, 15(12), e0009942. https://doi.org/10.1371/journal.pntd.0009942 | |
| dc.relation.references | Vivero-Gomez, R. J., Largo, D. F., Cadavid-Restrepo, G., Duque-Granda, D., & Moreno-Herrera, C. X. (2025). Studying the Interactions Between Microbiomes and Leishmania Parasites in Sand Flies: A Source of New Targets for Pathogen Control (J. D. Ramírez González, Ed.). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-70591-5 | |
| dc.relation.references | Vlassoff, C., Giron, N., Vera Soto, M. J., Maia-Elkhoury, A. N. S., Lal, A., Castellanos, L. G., Almeida, G., & Lim, C. (2023). Ensuring access to essential health products: Lessons from Colombia’s leishmaniasis control and elimination initiative. PLOS Neglected Tropical Diseases, 17(12), e0011752. https://doi.org/10.1371/journal.pntd.0011752 | |
| dc.relation.references | Volf, P., Kiewegová, A., & Nemec, A. (2002). Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitologica, 49(1), 73–77. https://doi.org/10.14411/fp.2002.014 | |
| dc.relation.references | von der Schulenburg, J. H. G., Habig, M., Sloggett, J. J., Webberley, K. M., Bertrand, D., Hurst, G. D. D., & Majerus, M. E. N. (2001). Incidence of Male-Killing Rickettsia spp. (α-Proteobacteria) in the Ten-Spot Ladybird Beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Applied and Environmental Microbiology, 67(1), 270–277. https://doi.org/10.1128/AEM.67.1.270-277.2001 | |
| dc.relation.references | Vossbrinck, C. R., Andreadis, T. G., Vavra, J., & Becnel, J. J. (2004). Molecular Phytogeny and Evolution of Mosquito Parasitic Microsporidia (Microsporidia: Amblyosporidae). Journal of Eukaryotic Microbiology, 51(1), 88–95. https://doi.org/10.1111/j.1550-7408.2004.tb00167.x | |
| dc.relation.references | Wang, F., Xiao, J., Zhang, Y., Li, R., Liu, L., & Deng, J. (2021). Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 174, 111456. https://doi.org/10.1016/j.postharvbio.2020.111456 | |
| dc.relation.references | Wei, Y., Wang, J., Wei, Y.-H., Song, Z., Hu, K., Chen, Y., Zhou, G., Zhong, D., & Zheng, X. (2021). Vector Competence for DENV-2 Among Aedes albopictus (Diptera: Culicidae) Populations in China. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.649975 | |
| dc.relation.references | White, J. A., Kelly, S. E., Cockburn, S. N., Perlman, S. J., & Hunter, M. S. (2011). Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity, 106(4), 585–591. https://doi.org/10.1038/hdy.2010.89 | |
| dc.relation.references | Wolff, M., Sierra, D., Murcia, L. M., & Vélez, B. I. D. (2003). Phlebotominae Fauna (Diptera: Psychodidae) in the Department of Amazonas, Colombia. Neotropical Entomology , 32(3):523-526, 523–526. https://www.scielo.br/j/ne/a/hjnFwPQzDWWShSt5d7CYYwH/?format=pdf&lang=en | |
| dc.relation.references | World Health Organization, (WHO). (2020). Leishmaniasis. https://www.paho.org/en/topics/leishmaniasis. | |
| dc.relation.references | World Health Organization, (WHO). (2024). Leishmaniasis: Number of cases of cuteneous leishmaniasis reported: 2022. https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html | |
| dc.relation.references | Wu, D., Wang, W., Yao, Y., Li, H., Wang, Q., & Niu, B. (2023). Microbial interactions within beneficial consortia promote soil health. Science of The Total Environment, 900, 165801. https://doi.org/10.1016/j.scitotenv.2023.165801 | |
| dc.relation.references | Wu, K., & Hoy, M. A. (2012). Cardinium is associated with reproductive incompatibility in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae). Journal of Invertebrate Pathology, 110(3), 359–365. https://doi.org/10.1016/j.jip.2012.03.027 | |
| dc.relation.references | Wu, P., Sun, P., Nie, K., Zhu, Y., Shi, M., Xiao, C., Liu, H., Liu, Q., Zhao, T., Chen, X., Zhou, H., Wang, P., & Cheng, G. (2019). A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host & Microbe, 25(1), 101-112.e5. https://doi.org/10.1016/j.chom.2018.11.004 | |
| dc.relation.references | Ye, Y. H., Seleznev, A., Flores, H. A., Woolfit, M., & McGraw, E. A. (2017). Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia mediated antiviral protection. Journal of Invertebrate Pathology, 143, 18–25. https://doi.org/10.1016/j.jip.2016.11.011 | |
| dc.relation.references | Young, D. (1979). A review of the bloodsucking psychodid flies of Colombia (Diptera: Phlebotominae and Sycoracinae). In Institute of Food and Agricultural Sciences, University of Florida, Gainesville. | |
| dc.relation.references | Young, D., & Duncan, M. (1994). Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Associated Publishers. | |
| dc.relation.references | Young, D. G., Morales, A., Kreutzer, R. D., Alexander, J. B., Corredor, A., & Tesh, R. B. (1987). Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from Cryopreserved Colombian Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 24(5), 587–589. https://doi.org/10.1093/jmedent/24.5.587 | |
| dc.relation.references | Young, D., & Morales, A. (1987). New Species and Records of Phlebotomine Sand Flies from Colombia (Diptera: Psychodidae). Journal of Medical Entomology, 24(6), 662. https://doi.org/10.1093/jmedent/24.6.651 | |
| dc.relation.references | Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction. Biotechnology and Bioengineering, 89(6), 670–679. https://doi.org/10.1002/bit.20347 | |
| dc.relation.references | Zhou, W., Rousset, F., & O’Neill, S. (1998). Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 509–515. https://doi.org/10.1098/rspb.1998.0324 | |
| dc.relation.references | Zorrilla V, De Los Santos MB, Espada L, Santos RDP, Fernandez R, Urquia A, Stoops CA, Ballard SB, Lescano AG, Vásquez GM, & Valdivia HO. (2017). Distribution and identification of sand flies naturally infected with Leishmania from the Southeastern Peruvian Amazon. PLOS Neglected Tropical Diseases, 11(11), 1–14. https://doi.org/10.1371/journal.pntd.0006029 | |
| dc.relation.references | Zorrilla VO, Lozano ME, Espada LJ., Kosoy M, McKee C, Valdivia HO, Arevalo H, Troyes M, Stoops CA, Fisher ML, & Vásquez GM. (2021). Comparison of sand fly trapping approaches for vector surveillance of Leishmania and Bartonella species in ecologically distinct, endemic regions of Peru. PLOS Neglected Tropical Diseases, 15(7), e0009517. https://doi.org/10.1371/journal.pntd.0009517 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 570 - Biología::577 - Ecología | |
| dc.subject.ddc | 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados | |
| dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
| dc.subject.lemb | Leishmaniasis | |
| dc.subject.lemb | Contról biológico | |
| dc.subject.proposal | Flebotomíneos | spa |
| dc.subject.proposal | Amazonas | spa |
| dc.subject.proposal | Caquetá | spa |
| dc.subject.proposal | Diversidad | spa |
| dc.subject.proposal | Microbiota | spa |
| dc.subject.proposal | Endosimbiontes | spa |
| dc.subject.proposal | Vectores | spa |
| dc.subject.proposal | Ingesta sanguínea | spa |
| dc.subject.proposal | Taxonomía integrativa | spa |
| dc.subject.proposal | Leishmaniasis | spa |
| dc.subject.proposal | Infeccion natural | spa |
| dc.subject.proposal | Deteccion de parásitos | spa |
| dc.subject.proposal | Sand flies | eng |
| dc.subject.proposal | Microbiota | eng |
| dc.subject.proposal | Endosymbionts | eng |
| dc.subject.proposal | Vectors | eng |
| dc.subject.proposal | Blood meal | eng |
| dc.subject.proposal | Integrative taxonomy | eng |
| dc.subject.proposal | Leishmaniasis | eng |
| dc.subject.proposal | Natural infection | eng |
| dc.subject.proposal | Parasite detection | eng |
| dc.subject.proposal | Parasite detection | eng |
| dc.subject.wikidata | Microbioma | |
| dc.title | Caracterización del microbioma, los endosimbiontes, las fuentes de ingesta sanguínea y Leishmania sp. en flebotomíneos presentes en áreas de transmisión histórica para Leishmaniasis en Amazonas y Caquetá | spa |
| dc.title.translated | Characterization of the microbiome, endosymbionts, blood boold sources, and Leishmania sp. in sand flies present in areas of historical transmission for Leishmaniasis in Amazonas and Caquetá | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.awardtitle | Alianza estratégica interdisciplinaria Leticia, Medellín y La Paz para el estudio del microbioma de insectos vectores de enfermedades tropicales y su relación con el cambio climático y la sociedad | |
| oaire.fundername | Universidad Nacional de Colombia | |
| oaire.fundername | Minciencias |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ciencias - Biotecnología.pdf
- Tamaño:
- 7.65 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

