En 20 día(s), 7 hora(s) y 51 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Caracterización del microbioma, los endosimbiontes, las fuentes de ingesta sanguínea y Leishmania sp. en flebotomíneos presentes en áreas de transmisión histórica para Leishmaniasis en Amazonas y Caquetá

dc.contributor.advisorMoreno Herrera, Claudia Ximena
dc.contributor.advisorVivero Gómez, Rafael José
dc.contributor.advisorCadavid Restrepo, Gloria Estér
dc.contributor.authorCaviedes-Triana, Katerine
dc.contributor.cvlacKaterine Caviedes Triana
dc.contributor.orcidCaviedes-Triana, Katerine {0009000558383782]
dc.contributor.orcidMoreno Herrera, Claudia Ximena [0000000281325223]
dc.contributor.researchgroupMicrobiodiversidad y Bioprospección
dc.date.accessioned2025-12-10T16:49:24Z
dc.date.available2025-12-10T16:49:24Z
dc.date.issued2025
dc.description.abstractLa integración de enfoques taxonómicos y moleculares, junto con el análisis de fuentes sanguíneas y la diversidad bacteriana y patogénica asociada con los flebotomíneos, es relevante para diseñar estrategias que mitiguen la transmisión patógenos, principalmente en regiones poco exploradas como la Amazonía colombiana. Este estudio tuvo como objetivos identificar las especies de flebotomíneos en áreas de Amazonas y Caquetá mediante taxonomía integrativa; detectar las fuentes sanguíneas mediante los marcadores Cytb y 12S; y el ADN de Leishmania con el marcador HSP-70, y caracterizar el microbioma mediante secuenciación de próxima generación. Se recolectaron 1104 flebotomíneos, agrupados en 30 especies, 11 de relevancia epidemiológica. El enfoque integrativo confirmó 12 nuevos registros a nivel departamental, incluyendo Sciopemyia fluviatilis documentado por primera vez en Colombia. Homo sapiens y Sus scrofa representaron las principales fuentes sanguíneas, mientras que Leishmania predominó en Nyssomyia y Trichophoromyia. La comunidad central del microbioma estuvo representada por 18 géneros, siendo Novosphingobium, Cutibacterium, Methylobacterium y Staphylococcus los de mayor prevalencia. Se identificaron géneros como Delftia, Haemophillus y Serratia con potencial para inhibir el desarrollo de patógenos. Y se detectaron los endosimbiontes Arsenophonus, Spiroplasma, Wolbachia y Cardinium, junto con Bartonella y Rickettsia. Los resultados destacan la importancia de mantener actualizado el conocimiento de las especies de flebotomíneos en zonas endémicas, desde una perspectiva taxonómica, molecular y ecológica, motiva a futuros estudios que permitan comprender el posible impacto de los endosimbiontes sobre el comportamiento vectorial y a profundizar sobre su posible participación en la transmisión de otros patógenos de interés en salud pública. (Tomado de la fuente)spa
dc.description.abstractThe integration of taxonomic and molecular approaches, together with the analysis of blood sources and bacterial and pathogenic diversity associated with phlebotomine sand flies, is relevant to design strategies to mitigate pathogen transmission, mainly in poorly explored regions such as the Colombian Amazon. The objectives of this study were to identify phlebotomine sandfly species in Amazonas and Caquetá by integrative taxonomy; to identify blood sources by Cytb and 12S markers; to detect Leishmania DNA with the HSP-70 marker; and to characterize the microbiome by next-generation sequencing. A total of 1104 phlebotomine sand flies were collected, grouped into 30 species, 11 of epidemiological relevance. The integrative approach confirmed 12 new records at departmental level, including Sciopemyia fluviatilis documented for the first time in Colombia. Homo sapiens and Sus scrofa represented the main blood sources, while Leishmania predominated in Nyssomyia and Trichophoromyia. The core microbiome community was represented by 18 genera, with Novosphingobium, Cutibacterium, Methylobacterium and Staphylococcus being the most prevalent. Genera such as Delftia, Haemophillus and Serratia were identified as having the potential to inhibit pathogen development. And the endosymbionts Arsenophonus, Spiroplasma, Wolbachia and Cardinium were detected, together with Bartonella and Rickettsia. The results highlight the importance of keeping the knowledge of phlebotomine sandfly species in endemic areas up to date, from a taxonomic, molecular and ecological perspective, and motivate future studies to understand the possible impact of endosymbionts on vector behavior and to deepen their possible participation in the transmission of other pathogens of public health interest.eng
dc.description.curricularareaBiotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Biotecnología
dc.description.notesN/A
dc.description.researchareaBiotecnología ambiental
dc.description.sponsorshipEsta investigación fue financiada por la Universidad Nacional de Colombia, proyecto Hermes número 57545 «Alianza estratégica interdisciplinaria Leticia, Medellín y La Paz para el estudio del microbioma de insectos vectores de enfermedades tropicales y su relación con el cambio climático y la sociedad», así como por el Programa de Becas MinCiencias SGR, Convocatoria 15, para el Desarrollo de Capital Humano en el contexto del Bicentenario y el Plan Bienal 2021-2022 (FCTeI).
dc.description.technicalinfoN/A
dc.format.extent1 recurso en línea (183 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89195
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia, Sede Medellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.relation.referencesAgencia UNAL. (2025). Registran jejenes vectores de leishmaniasis que circulan en la Amazonia. https://agenciadenoticias.unal.edu.co/detalle/registran-jejenes-vectores-de-leishmaniasis-que-circulan-en-la-amazonia
dc.relation.referencesAguiar Martins, K., Meirelles, M. H. de A., Mota, T. F., Abbasi, I., de Queiroz, A. T. L., Brodskyn, C. I., Veras, P. S. T., Mothé Fraga, D. B., & Warburg, A. (2021). Effects of larval rearing substrates on some life-table parameters of Lutzomyia longipalpis sand flies. PLOS Neglected Tropical Diseases, 15(1), e0009034. https://doi.org/10.1371/journal.pntd.0009034
dc.relation.referencesAlexander, B., Ferro, C., Young, D. G., Morales, A., & Tesh, R. B. (1992). Ecology of phlebotomine sand flies (Diptera: Psychodidae) in a focus of Leishmania (Viannia) braziliensis in northeastern Colombia. Memórias Do Instituto Oswaldo Cruz, 87(3), 387–395. https://doi.org/10.1590/S0074-02761992000300009
dc.relation.referencesAlexander, J., Takaoka, H., Eshita, Y., Gomez, E., & Hashiguchi, Y. (1992). New records of phlebotomine sand flies (Diptera: Psychodidae) from Ecuador. Memorias Do Instituto Oswaldo Cruz, 81(1), 123–130.
dc.relation.referencesAmni, F., Maleki-Ravasan, N., Nateghi-Rostami, M., Hadighi, R., Karimian, F., Meamar, A. R., Badirzadeh, A., & Parvizi, P. (2023). Co-infection of Phlebotomus papatasi (Diptera: Psychodidae) gut bacteria with Leishmania major exacerbates the pathological responses of BALB/c mice. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1115542
dc.relation.referencesAraujo-Pereira, T., Pita-Pereira, D., Baia-Gomes, S. M., Boité, M., Silva, F., Pinto, I. S., de Sousa, R. L. T., Fuzari, A., de Souza, C., Brazil, R., & Britto, C. (2020). An overview of the sandfly fauna (Diptera: Psychodidae) followed by the detection of Leishmania DNA and blood meal identification in the state of Acre, Amazonian Brazil. Memórias Do Instituto Oswaldo Cruz, 115. https://doi.org/10.1590/0074-02760200157
dc.relation.referencesAzpurua, J., De La Cruz, D., Valderama, A., & Windsor, D. (2010). Lutzomyia Sand Fly Diversity and Rates of Infection by Wolbachia and an Exotic Leishmania Species on Barro Colorado Island, Panama. PLoS Neglected Tropical Diseases, 4(3), 1–9. https://doi.org/10.1371/journal.pntd.0000627
dc.relation.referencesBarreto, M., Burbano, M. E., & Barreto, P. (2000). Lutzomyia sand flies (Diptera: Psychodidae) from middle and lower Putumayo department, Colombia, with new records to the country. Memórias Do Instituto Oswaldo Cruz, 95(5), 633–637. https://doi.org/10.1590/S0074-02762000000500009
dc.relation.referencesBattisti, J. M., Lawyer, P. G., & Minnick, M. F. (2015). Colonization of Lutzomyia verrucarum and Lutzomyia longipalpis Sand Flies (Diptera: Psychodidae) by Bartonella bacilliformis, the Etiologic Agent of Carrión’s Disease. PLOS Neglected Tropical Diseases, 9(10), e0004128. https://doi.org/10.1371/journal.pntd.0004128
dc.relation.referencesBeebe, N. W., Pagendam, D., Trewin, B. J., Boomer, A., Bradford, M., Ford, A., Liddington, C., Bondarenco, A., De Barro, P. J., Gilchrist, J., Paton, C., Staunton, K. M., Johnson, B., Maynard, A. J., Devine, G. J., Hugo, L. E., Rasic, G., Cook, H., Massaro, P., … Ritchie, S. A. (2021). Releasing incompatible males drives strong suppression across populations of wild and Wolbachia carrying Aedes aegypti in Australia. Proceedings of the National Academy of Sciences, 118(41). https://doi.org/10.1073/pnas.2106828118
dc.relation.referencesBejarano, E., & Estrada, L. (2016). Family Psychodidae. Zootaxa, 4122(1), 1–53. https://doi.org/10.11646/zootaxa.4122.1.20
dc.relation.referencesBlacksell, S. D., Le, K. K., Rungrojn, A., Wongsantichon, J., Stenos, J., Graves, S. R., & Day, N. P. J. (2024). Gaps and inconsistencies in the current knowledge and implementation of biosafety and biosecurity practices for rickettsial pathogens. BMC Infectious Diseases, 24(1), 268. https://doi.org/10.1186/s12879-024-09151-0
dc.relation.referencesBogale, H. N., Cannon, M. V., Keita, K., Camara, D., Barry, Y., Keita, M., Coulibaly, D., Kone, A. K., Doumbo, O. K., Thera, M. A., Plowe, C. V., Travassos, M., Irish, S., & Serre, D. (2020). Relative contributions of various endogenous and exogenous factors to the mosquito microbiota. Parasites & Vectors, 13(1), 619. https://doi.org/10.1186/s13071-020-04491-7
dc.relation.referencesBohacsova, M., Mediannikov, O., Kazimirova, M., Raoult, D., & Sekeyova, Z. (2016). Arsenophonus nasoniae and Rickettsiae Infection of Ixodes ricinus Due to Parasitic Wasp Ixodiphagus hookeri. PLOS ONE, 11(2), e0149950. https://doi.org/10.1371/journal.pone.0149950
dc.relation.referencesBraga, R. R., Lainson, R., Ishikawa, E. A. Y., & Shaw, J. J. (2003). Leishmania (Viannia) utingensis n . sp., a parasite from the sandfly Lutzomyia (Viannamyia) tuberculata in Amazonian Brazil. Parasite, 10(2), 111–118. https://doi.org/10.1051/parasite/2003102111
dc.relation.referencesBraig, H. R., Zhou, W., Dobson, S. L., & O’Neill, S. L. (1998). Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis. Journal of Bacteriology, 180(9), 2373–2378. https://doi.org/10.1128/JB.180.9.2373-2378.1998
dc.relation.referencesBrilhante, A. F., Lima, L., de Ávila, M. M., Medeiros-Sousa, A. R., de Souza, J. F., dos Santos, N. P., de Paula, M. B., Godoy, R. E., Sábio, P. B., Cardoso, C. de O., Nunes, V. L. B., Teixeira, M. M. G., & Galati, E. (2021). Remarkable diversity, new records and Leishmania detection in the sand fly fauna of an area of high endemicity for cutaneous leishmaniasis in Acre state, Brazilian Amazonian Forest. Acta Tropica, 223, 106103. https://doi.org/10.1016/j.actatropica.2021.106103
dc.relation.referencesBrooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J., & Bordenstein, S. R. (2016). Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLOS Biology, 14(11), e2000225. https://doi.org/10.1371/journal.pbio.2000225
dc.relation.referencesCabrera, M., Capparelli, M. V., Ñacato-Ch, C., Moulatlet, G. M., López-Heras, I., Díaz González, M., Alvear-S, D., & Rico, A. (2023). Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere, 337, 139286. https://doi.org/10.1016/j.chemosphere.2023.139286
dc.relation.referencesCabrera, O. L., Mosquera, L., & Santamaría, E. (2009). Flebótomos (Diptera: Psychodidae) del departamento de Guaviare, Colombia, con nuevos registros para el país. Biomédica, 29(1), 73. https://doi.org/10.7705/biomedica.v29i1.43
dc.relation.referencesCai, T., Nadal-Jimenez, P., Gao, Y., Arai, H., Li, C., Su, C., King, K. C., He, S., Li, J., Hurst, G. D. D., & Wan, H. (2024). Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus. The ISME Journal, 18(1). https://doi.org/10.1093/ismejo/wrae194
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
dc.relation.referencesCampolina, T. B., Villegas, L. E. M., Monteiro, C. C., Pimenta, P. F. P., & Secundino, N. F. C. (2020). Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLOS Neglected Tropical Diseases, 14(10), e0008666. https://doi.org/10.1371/journal.pntd.0008666
dc.relation.referencesCantanhêde, L. M., & Cupolillo, E. (2023). Leishmania (Viannia) naiffi Lainson & Shaw 1989. Parasites & Vectors, 16(1), 194. https://doi.org/10.1186/s13071-023-05814-0
dc.relation.referencesCaragata, E. P., & Short, S. M. (2022). Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. Current Opinion in Insect Science, 50, 100875. https://doi.org/10.1016/j.cois.2022.100875
dc.relation.referencesCarneiro, A., de Souza, E., Barroso, E., de Ávila, M., Melchior, L., Rocha, R., Shimabukuro, P., Galati, E., & Brilhante, A. (2023). Phlebotomine Fauna (Diptera: Psychodidae) and Infection by Leishmania spp. in Forest Fragments of a University Campus, Western Amazon. Journal of Medical Entomology, 60(1), 218–223. https://doi.org/10.1093/jme/tjac162
dc.relation.referencesCasagrande, G. C. R., Dambros, J., de Andrade, E. A., Martello, F., Sobral-Souza, T., Moreno, M. I. C., Battirola, L. D., & de Andrade, R. L. T. (2023). Atmospheric mercury in forests: accumulation analysis in a gold mining area in the southern Amazon, Brazil. Environmental Monitoring and Assessment, 195(4), 477. https://doi.org/10.1007/s10661-023-11063-6
dc.relation.referencesCastañeda-Espinosa, A., Duque-Granda, D., Cadavid-Restrepo, G., Murcia, L. M., Junca, H., Moreno-Herrera, C. X., & Vivero-Gómez, R. J. (2025). Study of Bacterial Communities in Water and Different Developmental Stages of Aedes aegypti from Aquatic Breeding Sites in Leticia City, Colombian Amazon Biome. Insects, 16(2), 195. https://doi.org/10.3390/insects16020195
dc.relation.referencesCera-Vallejo, Y., Ardila MM, Herrera, L., Martínez, L., & Pérez-Doria, A. (2024). Phlebotomine (Diptera: Psychodidae) species and their blood meal sources in a new leishmaniasis focus in Los Montes de María, Bolívar, in northern Colombia. Biomédica, 44(2), 248–257. https://doi.org/10.7705/biomedica.6876
dc.relation.referencesChalita, M., Kim, Y. O., Park, S., Oh, H.-S., Cho, J. H., Moon, J., Baek, N., Moon, C., Lee, K., Yang, J., Nam, G. G., Jung, Y., Na, S.-I., Bailey, M. J., & Chun, J. (2024). EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology, 74(6). https://doi.org/10.1099/ijsem.0.006421
dc.relation.referencesChang, C., Sun, X., Tian, P., Miao, N., Zhang, Y., & Liu, X. (2022). Plant secondary metabolite and temperature determine the prevalence of Arsenophonus endosymbionts in aphid populations. Environmental Microbiology, 24(8), 3764–3776. https://doi.org/10.1111/1462-2920.15929
dc.relation.referencesChiel, E., Inbar, M., Mozes-Daube, N., White, J. A., Hunter, M. S., & Zchori-Fein, E. (2009). Assessments of Fitness Effects by the Facultative Symbiont Rickettsia in the Sweetpotato Whitefly (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America, 102(3), 413–418. https://doi.org/10.1603/008.102.0309
dc.relation.referencesChudzik, A., Bromke, M. A., Gamian, A., & Paściak, M. (2024). Comprehensive lipidomic analysis of the genus Cutibacterium. MSphere, 9(5). https://doi.org/10.1128/msphere.00054-24
dc.relation.referencesColeman, S. A., & Minnick, M. F. (2003). Differential expression of the invasion-associated locus B (ialB) gene of Bartonella bacilliformis in response to environmental cues. Microbial Pathogenesis, 34(4), 179–186. https://doi.org/10.1016/S0882-4010(03)00005-6
dc.relation.referencesContreras-Gutiérrez, M. A., Vélez, I. D., Porter, C., & Uribe, S. I. (2014). Lista actualizada de flebotomíneos (Diptera: Psychodidae: Phlebotominae) de la región cafetera colombiana. Biomédica, 34(3). https://doi.org/10.7705/biomedica.v34i3.2121
dc.relation.referencesContreras-Gutiérrez, M. A., Vivero RJ, Vélez ID, Porter CH, & Uribe, S. (2014). DNA Barcoding for the Identification of Sand Fly Species (Diptera, Psychodidae, Phlebotominae) in Colombia. PLoS ONE, 9(1), 1–9. https://doi.org/10.1371/journal.pone.0085496
dc.relation.referencesCORPOAMAZONIA. (2008). Agenda ambiental departamento del Amazonas. https://www.corpoamazonia.gov.co/files/Ordenamiento/agendas/01_DMarco_Agenda_Amazonas.pdf
dc.relation.referencesCortés, L. A. (2012). Foco de leishmaniasis en El Hobo, municipio de El Carmen de Bolívar, Bolívar, Colombia. Biomédica, 26(1), 236. https://doi.org/10.7705/biomedica.v26i1.1518
dc.relation.referencesCosta, G. D. S., Júnior, A. M. P., Castro, T. S., de Paulo, P. F. M., Ferreira, G. E. M., & Medeiros, J. F. (2021). Sand fly fauna and molecular detection of Leishmania species and blood meal sources in different rural environments in western Amazon. Acta Tropica, 224, 106150. https://doi.org/10.1016/j.actatropica.2021.106150
dc.relation.referencesCosta, J. C. R., Marchi, G. H., Santos, C. S., Andrade, M. C. M., Chaves Junior, S. P., Silva, M. A. N., Melo, M. N., & Andrade, A. J. (2021). First molecular evidence of frogs as a food source for sand flies (Diptera: Phlebotominae) in Brazilian caves. Parasitology Research, 120(5), 1571–1582. https://doi.org/10.1007/s00436-021-07154-
dc.relation.referencesCruz, L. N. P. D., Carvalho-Costa, L. F., & Rebêlo, J. M. M. (2021). Molecular Evidence Suggests That Wolbachia pipientis (Rickettsiales: Anaplasmataceae) is Widely Associated With South American Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 58(6), 2186–2195. https://doi.org/10.1093/jme/tjab130
dc.relation.referencesda Silva, M. S., Júnior, A. M. P., Costa, N. V. C., Costa, G. D. S., Rodrigues, M. M. S., & Medeiros, J. F. (2022). Use of light emitting diodes (LEDs) are effective and useful for sand fly ecoepidemiology studies in an Amazonian environment. Acta Tropica, 233, 1–7. https://doi.org/10.1016/j.actatropica.2022.106550
dc.relation.referencesda Silva MS, Picelli, A. M., Pereira de França, K., Galati, E., Andrade, F. J., Julião, G., Dutra-Rêgo, F., & Medeiros, J. (2024). Entomological inferences highlight the risk of Leishmania transmission in the urban area of Porto Velho, Rondônia, Brazil. PLOS ONE, 19(8), e0309168. https://doi.org/10.1371/journal.pone.0309168
dc.relation.referencesDa Silva, Y. Y., Sales, K. G. D. S., Miranda, D. E. D. O., Figueredo, L. A., Brandão-Filho, S. P., & Dantas-Torres, F. (2020). Detection of Leishmania DNA in Sand Flies (Diptera: Psychodidae) From a Cutaneous Leishmaniasis Outbreak Area in Northeastern Brazil. Journal of Medical Entomology, 57 (2), 229–233. https://doi.org/10.1093/jme/tjz189
dc.relation.referencesDantas da Silva, M., Nakaghi, A. C. H., Galvis-Ovallos, F., Leonel, J. A. F., Vioti, G., Galati, E. A. B., Fazolato, N. C. de O., Martins, J. P., & Oliveira, T. M. F. de S. (2025). Infectiousness to sand flies of a cat naturally infected with Leishmania infantum at the moment of diagnosis and after three different courses of treatment. Revista Brasileira de Parasitologia Veterinária, 34(1). https://doi.org/10.1590/s1984-29612025006
dc.relation.referencesde Ávila, M. M., Brilhante A.F, de Souza C.F, Bevilacqua P.D, Galati EAB, & Brazil, R. P. (2018). Ecology, feeding and natural infection by Leishmania spp. of phlebotomine sand flies in an area of high incidence of American tegumentary leishmaniasis in the municipality of Rio Branco, Acre, Brazil. Parasites & Vectors, 11(1), 64. https://doi.org/10.1186/s13071-018-2641-y
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). (2024). Página para la descarga de datos geoestadísticos: Versión MGN2024-Nivel Departamento. Geoportal DANE. https://geoportal.dane.gov.co/servicios/descarga-y-metadatos/datos-geoestadisticos/
dc.relation.referencesDi Muccio, T., Marinucci, M., Frusteri, L., Maroli, M., Pesson, B., & Gramiccia, M. (2000). Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larroussius (Diptera, Psychodidae) by ITS2 rDNA sequences. Insect Biochemistry and Molecular Biology, 30(5), 387–393. https://doi.org/10.1016/S0965-1748(00)00012-6
dc.relation.referencesdo Socorro, C. M. C., Costa de Souza, B., Carvalho, G. M. F. T., de Sousa, A., Cibelle da Silva Peixoto, M., Carvalho Garcia Miranda Filgueiras, T., Carvalho Miranda, F., Luiz Althoff, S., Gladson Corrêa Carvalho, R., & Veiga Gonçalves, N. (2022). Visceral Leishmaniasis and Land Use and Cover in the Carajás Integration Region, Eastern Amazon, Brazil. Tropical Medicine and Infectious Disease, 7(10), 255. https://doi.org/10.3390/tropicalmed7100255
dc.relation.referencesDong, Y., Manfredini, F., & Dimopoulos, G. (2009). Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites. PLoS Pathogens, 5(5), e1000423. https://doi.org/10.1371/journal.ppat.1000423
dc.relation.referencesDoremus, M. R., Stouthamer, C. M., Kelly, S. E., Schmitz-Esser, S., & Hunter, M. S. (2022). Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity, 128(3), 187–195. https://doi.org/10.1038/s41437-022-00507-3
dc.relation.referencesDupuis, J. R., Roe, A. D., & Sperling, F. A. (2012). Multi‐locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology, 21(18), 4422–4436. https://doi.org/10.1111/j.1365-294X.2012.05642.x
dc.relation.referencesDuque-Granda, D., Moreno-Herrera, C. X., Cadavid-Restrepo, G., & Vivero-Gómez, R. (2023). Molecular detection and phylogenetic analyses of Arsenophonus endosymbiont in wild specimens of phlebotomine sand flies from Colombia. Journal of Asia-Pacific Entomology, 26(1), 102023. https://doi.org/10.1016/j.aspen.2022.102023
dc.relation.referencesDuque-Granda, D., Vivero-Gómez, R. J., Junca, H., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2024). Interaction and effects of temperature preference under a controlled environment on the diversity and abundance of the microbiome in Lutzomyia longipalpis (Diptera: Psychodidae). Biotechnology Reports, 44, e00857. https://doi.org/10.1016/j.btre.2024.e00857
dc.relation.referencesDuron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstädter, J., & Hurst, G. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27. https://doi.org/10.1186/1741-7007-6-27
dc.relation.referencesDutra-Rêgo, F., Binder, C., Capucci, D. C., Vaz, T. P., Andrade Filho, J. D., Fontes, G., & Gontijo, C. M. F. (2024). Diversity, Leishmania detection, and blood meal sources of sand flies from Iguatama, Minas Gerais, Brazil. PLOS ONE, 19(5), e0302567. https://doi.org/10.1371/journal.pone.0302567
dc.relation.referencesEcheverri-Rubiano, C., Pérez, J. D., Ramírez, G., Cardozo, M. del M., Torres, D., & Giraldo, C. G. (2024). Memorias Congreso Sociedad Colombiana de Entomología. 51 Congreso SOCOLEN. Sociedad Colombiana de Entomología. http://www.socolen.org.co
dc.relation.referencesEgyirifa, R. K., & Akorli, J. (2024). Two promising candidates for paratransgenesis, Elizabethkingia and Asaia, increase in both sexes of Anopheles gambiae mosquitoes after feeding. Malaria Journal, 23(1), 45. https://doi.org/10.1186/s12936-024-04870-w
dc.relation.referencesEl Espectador. (2025). Identifican ocho especies de insectos vectores de leishmaniasis en la Amazonia colombiana. https://www.elespectador.com/ambiente/amazonas/identifican-ocho-especies-de-insectos-vectores-de-leishmaniasis-en-la-amazonia-colombiana/
dc.relation.referencesEllwanger, J. H., Kulmann-Leal, B., Kaminski, V. L., Valverde-Villegas, J. M., Da Veiga, A. B., Spilki, F. R., Fearnside, P. M., Caesar, L., Giatti, L. L., Wallau, G. L., Almeida, S. E., Borba, M. R., Hora, V. P., & Chies, J. A. (2020). Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais Da Academia Brasileira de Ciências, 92(1). https://doi.org/10.1590/0001-3765202020191375
dc.relation.referencesEspejo, R. T., Feijóo, C. G., Romero, J., & Vásquez, M. (1998). PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity. Microbiology, 144(6), 1611–1617. https://doi.org/10.1099/00221287-144-6-1611
dc.relation.referencesEspinoza, J.-C., Jimenez, J. C., Marengo, J. A., Schongart, J., Ronchail, J., Lavado-Casimiro, W., & Ribeiro, J. V. M. (2024). The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Scientific Reports, 14(1), 8107. https://doi.org/10.1038/s41598-024-58782-5
dc.relation.referencesFernandez, R., Lopez, V., Cardenas, R., & Requena, E. (2015). Description of Lutzomyia (Trichophoromyia) nautaensis n. sp. (Diptera: Psychodidae) from the Peruvian Amazon. Journal of Medical Entomology, 52(4), 622–625. https://doi.org/10.1093/jme/tjv057
dc.relation.referencesFerro, C., Marín, D., Góngora, R., Carrasquilla, M. C., Trujillo, J. E., Rueda NK., Marín, J., Valderrama-Ardila, C., Alexander, N., Pérez, M., Munstermann LE, & Ocampo CB. (2011). Phlebotomine Vector Ecology in the Domestic Transmission of American Cutaneous Leishmaniasis in Chaparral, Colombia. The American Society of Tropical Medicine and Hygiene, 85(5), 847–856. https://doi.org/10.4269/ajtmh.2011.10-0560
dc.relation.referencesFlores, B. M., Montoya, E., Sakschewski, B., Nascimento, N., Staal, A., Betts, R. A., Levis, C., Lapola, D. M., Esquível-Muelbert, A., Jakovac, C., Nobre, C. A., Oliveira, R. S., Borma, L. S., Nian, D., Boers, N., Hecht, S. B., ter Steege, H., Arieira, J., Lucas, I. L., … Hirota, M. (2024). Critical transitions in the Amazon forest system. Nature, 626(7999), 555–564. https://doi.org/10.1038/s41586-023-06970-0
dc.relation.referencesFolmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299, 1–6.
dc.relation.referencesFonteles, R. S., Pereira Filho, A. A., Moraes, J. L. P., Pereira, S. R. F., Rodrigues, B. L., & Rebêlo, J. M. M. (2018). Detection of Leishmania DNA and Blood Meal Identification in Sand Flies (Diptera: Psychodidae) From Lençois Maranhenses National Park Region, Brazil. Journal of Medical Entomology, 55(2), 445–451. https://doi.org/10.1093/jme/tjx230
dc.relation.referencesFoo, I. J.-H., Hoffmann, A. A., & Ross, P. A. (2019). Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density in Aedes aegypti Mosquitoes. Tropical Medicine and Infectious Disease, 4(1), 13. https://doi.org/10.3390/tropicalmed4010013
dc.relation.referencesGalati, E. (2024). Morfologia e terminologia de Phlebotominae (Diptera: Psychodidae). Classificação e identificação de táxons das Américas. Vol I. Apostila da Disciplina Bioecologia e Identificação de Phlebotominae do Programa de Pós-Graduação em Saúde Pública. http://www.fsp.usp.br/egalati
dc.relation.referencesGarcía-Leal, J., Carrero-Sarmiento, D., & Hoyos-López, R. (2021). Diversity of the genus Lutzomyia (Diptera: Psychodidae) in municipalities of the department of Córdoba – Colombia. Acta Biológica Colombiana, 27(3), 394–402. https://doi.org/10.15446/abc.v27n3.90684
dc.relation.referencesGarcia-Quintanilla, M., Dichter, A. A., Guerra, H., & Kempf, V. A. J. (2019). Carrion’s disease: more than a neglected disease. Parasites & Vectors, 12(1), 141. https://doi.org/10.1186/s13071-019-3390-2
dc.relation.referencesGhosh, S., Bouvaine, S., & Maruthi, M. (2015). Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiology, 15(1), 93. https://doi.org/10.1186/s12866-015-0425-5
dc.relation.referencesGiorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., & Gebiola, M. (2010). Rickettsia Symbionts Cause Parthenogenetic Reproduction in the Parasitoid Wasp Pnigalio soemius (Hymenoptera: Eulophidae). Applied and Environmental Microbiology, 76(8), 2589–2599. https://doi.org/10.1128/AEM.03154-09
dc.relation.referencesGobernación del Caquetá. (2020). Plan de Desarrollo Departamental 2020 - 2023. https://www.caqueta.gov.co/noticias/p-lan-de-desarrollo-departamental-2020--2023
dc.relation.referencesGonzález, C., León, C., Paz, A., López, M., Molina, G., Toro, D., Ortiz, M., Cordovez, J. M., Atencia, M. C., Aguilera, G., & Tovar, C. (2018). Diversity patterns, Leishmania DNA detection, and bloodmeal identification of Phlebotominae sand flies in villages in northern Colombia. PLOS ONE, 13(1), e0190686. https://doi.org/10.1371/journal.pone.0190686
dc.relation.referencesGuimarães-e-Silva, A. S., Silva, S. de O., Ribeiro da Silva, R. C., Pinheiro, V. C. S., Rebêlo, J. M. M., & Melo, M. N. (2017). Leishmania infection and blood food sources of phlebotomines in an area of Brazil endemic for visceral and tegumentary leishmaniasis. PLOS ONE, 12(8), e0179052. https://doi.org/10.1371/journal.pone.0179052
dc.relation.referencesGutierrez, M., Lopez, R., Ramos, A., Vélez, I., Gomez, R., Arrivillaga-Henríquez, J., & Uribe, S. (2021). DNA barcoding of Lutzomyia longipalpis species complex (Diptera: Psychodidae), suggests the existence of 8 candidate species. Acta Tropica, 221, 1–9. https://doi.org/10.1016/j.actatropica.2021.105983
dc.relation.referencesHebert, P. D., Ratnasingham, S., & deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1). https://doi.org/10.1098/rsbl.2003.0025
dc.relation.referencesHerren, J. K., Mbaisi, L., Mararo, E., Makhulu, E. E., Mobegi, V. A., Butungi, H., Mancini, M. V., Oundo, J. W., Teal, E. T., Pinaud, S., Lawniczak, M. K. N., Jabara, J., Nattoh, G., & Sinkins, S. P. (2020). A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nature Communications, 11(1), 2187. https://doi.org/10.1038/s41467-020-16121-y
dc.relation.referencesHery, L., Guidez, A., Durand, A.-A., Delannay, C., Normandeau-Guimond, J., Reynaud, Y., Issaly, J., Goindin, D., Legrave, G., Gustave, J., Raffestin, S., Breurec, S., Constant, P., Dusfour, I., Guertin, C., & Vega-Rúa, A. (2021). Natural Variation in Physicochemical Profiles and Bacterial Communities Associated with Aedes aegypti Breeding Sites and Larvae on Guadeloupe and French Guiana. Microbial Ecology, 81(1), 93–109. https://doi.org/10.1007/s00248-020-01544-3
dc.relation.referencesHoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281
dc.relation.referencesHoldridge, L. R. (1967). Life zone ecology. Tropical Science Center, 10–149
dc.relation.referencesHoyos, L. R., Uribe, Sandra. S., & Vélez, I. (2002). Tipificación de especímenes colombianos de Lutzomyia longipalpis (Diptera: Psychodidae) mediante “Código de Barras.” Revista Colombiana de Entomología, 38-N1(0120–0488), 1–7.
dc.relation.referencesHrdina, A., Serra Canales, M., Arias-Rojas, A., Frahm, D., & Iatsenko, I. (2024). The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization. MBio, 15(8). https://doi.org/10.1128/mbio.00936-24
dc.relation.referencesHuang, W., Rodrigues, J., Bilgo, E., Tormo, J. R., Challenger, J. D., De Cozar-Gallardo, C., Pérez-Victoria, I., Reyes, F., Castañeda-Casado, P., Gnambani, E. J., Hien, D. F. de S., Konkobo, M., Urones, B., Coppens, I., Mendoza-Losana, A., Ballell, L., Diabate, A., Churcher, T. S., & Jacobs-Lorena, M. (2023). Delftia tsuruhatensis TC1 symbiont suppresses malaria transmission by anopheline mosquitoes. Science, 381(6657), 533–540. https://doi.org/10.1126/science.adf8141
dc.relation.referencesHugo, L. E., Rašić, G., Maynard, A. J., Ambrose, L., Liddington, C., Thomas, C. J. E., Nath, N. S., Graham, M., Winterford, C., Wimalasiri-Yapa, B. M. C. R., Xi, Z., Beebe, N. W., & Devine, G. J. (2022). Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background. PLOS Neglected Tropical Diseases, 16(10), e0010786. https://doi.org/10.1371/journal.pntd.0010786
dc.relation.referencesHunter, M. S., Perlman, S. J., & Kelly, S. E. (2003). A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1529), 2185–2190. https://doi.org/10.1098/rspb.2003.2475
dc.relation.referencesI Hassan, M. (2014). A Recent Evaluation of the Sandfly, Phlepotomus Papatasi Midgut Symbiotic Bacteria Effect on the Survivorship of Leshmania Major. Journal of Ancient Diseases & Preventive Remedies, 02(01). https://doi.org/10.4172/2329-8731.1000110
dc.relation.referencesINDEPAZ, I. for D. and P. S. (2024). Livestock farming and deforestation in the Amazon. https://indepaz.org.co/ganaderia-y-deforestacion-en-la-amazonia/
dc.relation.referencesInstituto Nacional de Salud (INS). (2023). Public health surveillance protocol: Leishmaniasis. Version 6. https://doi.org/doi.org/10.33610/IMYH4569
dc.relation.referencesInstituto Nacional de Salud (INS). (2024). Weekly epidemiological report. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx
dc.relation.referencesIX Reunión Colombiana Leishmaniasis y enfermedad de Chagas, S. 1, 2024. (2024). Memorias: IX Reunión Colombiana Leishmaniasis y Enfermedad de Chagas. Actualidades Biológicas, 46(2145–7166), 100. https://revistas.udea.edu.co/index.php/actbio/article/view/358101
dc.relation.referencesJaffar, S., Ahmad, S., & Lu, Y. (2022). Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.979383
dc.relation.referencesJaimes-Dueñez, J., Castillo-Castañeda, A., Jiménez-Leaño, Á., Duque JE, Cantillo-Barraza, O., Cáceres-Rivera DI, Granada, Y., Triana-Chávez, O., & Ramírez JD. (2023). Epidemiological features of Leishmania infantum in dogs (Canis lupus familiaris) suggest a latent risk of visceral leishmaniasis in the metropolitan area of Bucaramanga, Santander, Eastern Colombia. Preventive Veterinary Medicine, 219(106021), 1–8. https://doi.org/10.1016/j.prevetmed.2023.106021
dc.relation.referencesJakovac, C. C., Junqueira, A. B., Crouzeilles, Renato., Peña‐Claros, Marielos., Mesquita, R. C. G., & Bongers, Frans. (2021). The role of land‐use history in driving successional pathways and its implications for the restoration of tropical forests. Biological Reviews, 96(4), 1114–1134. https://doi.org/10.1111/brv.12694
dc.relation.referencesJancarova, M., Polanska, N., Volf, P., & Dvorak, V. (2023). The role of sand flies as vectors of viruses other than phleboviruses. Journal of General Virology, 104(4). https://doi.org/10.1099/jgv.0.001837
dc.relation.referencesJiménez, A. D., Cárdenas Carrillo, C. A., Ariza Tello, A., Echeverri, J. A., González, A. D., Gutiérrez, H. R., Matta, N. E., Rojas Tafur, T. H., Román Tiquidimas, D., Venegas, C. S., & De Vengoechea, C. (2023). Indigenous ecological calendars and seasonal vector-borne diseases in the Colombian Amazon: an intercultural and interdisciplinary approach. Acta Amazonica, 53(2), 177–186. https://doi.org/10.1590/1809-4392202200910
dc.relation.referencesJobe, N. B., Huijben, S., & Paaijmans, K. P. (2023). Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors. The Lancet Planetary Health, 7(8), e706–e717. https://doi.org/10.1016/S2542-5196(23)00136-5
dc.relation.referencesJuma, E. O., Kim, C.-H., Dunlap, C., Allan, B. F., & Stone, C. M. (2020). Culex pipiens and Culex restuans egg rafts harbor diverse bacterial communities compared to their midgut tissues. Parasites & Vectors, 13(1), 532. https://doi.org/10.1186/s13071-020-04408-4
dc.relation.referencesJupatanakul, N., Pengon, J., Selisana, S. M. G., Choksawangkarn, W., Jaito, N., Saeung, A., Bunyong, R., Posayapisit, N., Thammatinna, K., Kalpongnukul, N., Aupalee, K., Pisitkun, T., & Kamchonwongpaisan, S. (2020). Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus. Acta Tropica, 212, 105686. https://doi.org/10.1016/j.actatropica.2020.105686
dc.relation.referencesKalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285
dc.relation.referencesKaratepe, B., Aksoy, S., & Karatepe, M. (2018). Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods. Scientific Reports, 8(1), 10616. https://doi.org/10.1038/s41598-018-29031-3
dc.relation.referencesKarimian, F., Koosha, M., Choubdar, N., & Oshaghi, M. A. (2022). Comparative analysis of the gut microbiota of sand fly vectors of zoonotic visceral leishmaniasis (ZVL) in Iran; host-environment interplay shapes diversity. PLOS Neglected Tropical Diseases, 16(7), e0010609. https://doi.org/10.1371/journal.pntd.0010609
dc.relation.referencesKato, H., Calvopiña, M., Criollo, H., & Hashiguchi, Y. (2013). First human cases of Leishmania (Viannia) naiffi infection in Ecuador and identification of its suspected vector species. Acta Tropica, 128(3), 710–713. https://doi.org/10.1016/j.actatropica.2013.09.001
dc.relation.referencesKaur, R., Meier, C. J., McGraw, E. A., Hillyer, J. F., & Bordenstein, S. R. (2024). The mechanism of cytoplasmic incompatibility is conserved in Wolbachia infected Aedes aegypti mosquitoes deployed for arbovirus control. PLOS Biology, 22(3), e3002573. https://doi.org/10.1371/journal.pbio.3002573
dc.relation.referencesKelly, P. H., Bahr, S. M., Serafim, T. D., Ajami, N. J., Petrosino, J. F., Meneses, C., Kirby, J. R., Valenzuela, J. G., Kamhawi, S., & Wilson, M. E. (2017). The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. MBio, 8(1). https://doi.org/10.1128/mBio.01121-16
dc.relation.referencesKitano, T., Umetsu, K., Tian, W., & Osawa, M. (2007). Two universal primer sets for species identification among vertebrates. International Journal of Legal Medicine, 121(5), 1–10. https://doi.org/10.1007/s00414-006-0113-y
dc.relation.referencesKocher, T., Thomas, W., Meyer, A., Edwards, S., Pääbo, S., Villablanca, F., & Wilson, A. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86(16), 1–5. https://doi.org/10.1073/pnas.86.16.6196
dc.relation.referencesKonecka, E., & Olszanowski, Z. (2019). First Evidence of Intracellular Bacteria Cardinium in Thermophilic Mite Microzetorchestes emeryi (Acari: Oribatida): Molecular Screening of Bacterial Endosymbiont Species. Current Microbiology, 76(9), 1038–1044. https://doi.org/10.1007/s00284-019-01717-5
dc.relation.referencesKrzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones SJ, & Marra MA. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. https://doi.org/10.1101/gr.092759.109
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
dc.relation.referencesLaroche, L., Ayhan, N., Charrel, R., Bañuls, A.-L., & Prudhomme, J. (2023). Persistence of Toscana virus in sugar and blood meals of phlebotomine sand flies: epidemiological and experimental consequences. Scientific Reports, 13(1), 5608. https://doi.org/10.1038/s41598-023-32431-9
dc.relation.referencesLee, D. A. B., Fernandes Shimabukuro, P. H., Brilhante, A. F., Cadina Arantes, P. V., Sanches, G. S., Franco, E. O., Machado, R. Z., Maggi, R. G., Breitschwerdt, E. B., & André, M. R. (2024). Bartonella spp. in Phlebotomine Sand Flies, Brazil. Emerging Infectious Diseases, 30(10). https://doi.org/10.3201/eid3010.240397
dc.relation.referencesLi H, Jiang Z, Zhou J, Liu X, Zhang Y, & Chu D. (2023). Ecological Factors Associated with the Distribution of Bemisia tabaci Cryptic Species and Their Facultative Endosymbionts. Insects, 14(3), 252. https://doi.org/10.3390/insects14030252
dc.relation.referencesLi K, Chen H, Jiang J, Li X, Xu J, & Ma Y. (2016). Diversity of bacteriome associated with Phlebotomus chinensis (Diptera: Psychodidae) sand flies in two wild populations from China. Scientific Reports, 6(1), 36406. https://doi.org/10.1038/srep36406
dc.relation.referencesLin, D.-J., Zhou, J., Ali, A., Fu, H., Gao, S., Jin, L., Fang, Y., & Wang, J. (2024). Biocontrol efficiency and characterization of insecticidal protein from sugarcane endophytic Serratia marcescens (SM) against oriental armyworm Mythimna separata (Walker). International Journal of Biological Macromolecules, 262, 129978. https://doi.org/10.1016/j.ijbiomac.2024.129978
dc.relation.referencesLiu, H., Yin, J., Huang, X., Zang, C., Zhang, Y., Cao, J., & Gong, M. (2024). Mosquito Gut Microbiota: A Review. Pathogens, 13(8), 691. https://doi.org/10.3390/pathogens13080691
dc.relation.referencesLiu, J., Jiang, J., Song, S., Tornabene, L., Chabarria, R., Naylor, G. J. P., & Li, C. (2017). Multilocus DNA barcoding – Species Identification with Multilocus Data. Scientific Reports, 7(1), 16601. https://doi.org/10.1038/s41598-017-16920-2
dc.relation.referencesLópez, M., Erazo, D., Hoyos, J., León, C., Fuya, P., Lugo, L., Cordovez, J. M., & González, C. (2021). Measuring spatial co-occurrences of species potentially involved in Leishmania transmission cycles through a predictive and fieldwork approach. Scientific Reports, 11(1), 6789. https://doi.org/10.1038/s41598-021-85763-9
dc.relation.referencesLozano-Sardaneta, Y. N., Marina, C. F., Torres-Monzón, J. A., Sánchez-Cordero, V., & Becker, I. (2023). Molecular detection of Wolbachia and Bartonella as part of the microbiome of phlebotomine sand flies from Chiapas, Mexico. Parasitology Research, 122(6), 1293–1301. https://doi.org/10.1007/s00436-023-07829-z
dc.relation.referencesLozano-Sardaneta, Y. N., Valderrama, A., Sánchez-Montes, S., Grostieta, E., Colunga-Salas, P., Sánchez-Cordero, V., & Becker, I. (2021). Rickettsial agents detected in the genus Psathyromyia (Diptera: Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitology International, 82, 102286. https://doi.org/10.1016/j.parint.2021.102286
dc.relation.referencesLu, Y., Zhou, G., Ewald, J., Pang, Z., Shiri, T., & Xia, J. (2023). MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Research, 51(W1), W310–W318. https://doi.org/10.1093/nar/gkad407
dc.relation.referencesMaciel-de-Freitas, R., Sauer, F. G., Kliemke, K., Garcia, G. A., Pavan, M. G., David, M. R., Schmidt-Chanasit, J., Hoffmann, A., & Lühken, R. (2024). Wolbachia strains wMel and wAlbB differentially affect Aedes aegypti traits related to fecundity. Microbiology Spectrum, 12(4). https://doi.org/10.1128/spectrum.00128-24
dc.relation.referencesMaleki-Ravasan, N., Ghafari, S. M., Najafzadeh, N., Karimian, F., Darzi, F., Davoudian, R., Farshbaf Pourabad, R., & Parvizi, P. (2024). Characterization of bacteria expectorated during forced salivation of the Phlebotomus papatasi: A neglected component of sand fly infectious inoculums. PLOS Neglected Tropical Diseases, 18(5), e0012165. https://doi.org/10.1371/journal.pntd.0012165
dc.relation.referencesMarcondes, C. (2007). A proposal of generic and subgeneric abbreviations for phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae) of the World. Entomological News, 118(4):351-356([351:APOGAS]2.0.CO;2).
dc.relation.referencesMartinez, J., Klasson, L., Welch, J. J., & Jiggins, F. M. (2021). Life and Death of Selfish Genes: Comparative Genomics Reveals the Dynamic Evolution of Cytoplasmic Incompatibility. Molecular Biology and Evolution, 38(1), 2–15. https://doi.org/10.1093/molbev/msaa209
dc.relation.referencesMartínez‐Burgos, M., Lozano‐Sardaneta, Y. N., Rodríguez‐Rojas, J. J., Gómez‐Rivera, Á. S., Canto‐Mis, K. L., Flores‐Escobar, E., Mis‐Ávila, P. C., Correa‐Morales, F., & Becker, I. (2023). Species diversity and detection of pathogens in phlebotomine sand flies collected from forest management areas of Quintana Roo, Mexico. Medical and Veterinary Entomology, 37(4), 845–858. https://doi.org/10.1111/mve.12691
dc.relation.referencesMartínez-Pérez, L. (2018). Frecuencia de uso de animales domésticos como fuente de alimentación de Lutzomyia spp. (Diptera: Psychodidae) en la vereda Toro, San Cayetano, Bolívar [Universidad de Sucre 2017]. http://repositorio.unisucre.edu.co/handle/001/624
dc.relation.referencesMasson, F., Calderon‐Copete, S., Schüpfer, F., Vigneron, A., Rommelaere, S., Garcia‐Arraez, M. G., Paredes, J. C., & Lemaitre, B. (2020). Blind killing of both male and female Drosophila embryos by a natural variant of the endosymbiotic bacterium Spiroplasma poulsonii. Cellular Microbiology, 22(5). https://doi.org/10.1111/cmi.13156
dc.relation.referencesMatthews, M. L., Covey, H. O., Drolet, B. S., & Brelsfoard, C. L. (2022). Wolbachia wAlbB inhibits bluetongue and epizootic hemorrhagic fever viruses in Culicoides midge cells. Medical and Veterinary Entomology, 36(3), 320–328. https://doi.org/10.1111/mve.12569
dc.relation.referencesMeneses, H. do N. de M., Oliveira-da-Costa, M., Basta, P. C., Morais, C. G., Pereira, R. J. B., de Souza, S. M. S., & Hacon, S. de S. (2022). Mercury Contamination: A Growing Threat to Riverine and Urban Communities in the Brazilian Amazon. International Journal of Environmental Research and Public Health, 19(5), 2816. https://doi.org/10.3390/ijerph19052816
dc.relation.referencesMeng, Q., Liang, Y., Xu, Y., Li, S., Huang, H., Xu, Y., Cao, F., Yin, J., Zhu, T., Gao, H., & Yu, Z. (2025). A novel FadL family outer membrane transporter is involved in the uptake of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 91(2). https://doi.org/10.1128/aem.00827-24
dc.relation.referencesMiller, W. J., & Riegler, M. (2006). Evolutionary Dynamics of w Au-Like Wolbachia Variants in Neotropical Drosophila spp. Applied and Environmental Microbiology, 72(1), 826–835. https://doi.org/10.1128/AEM.72.1.826-835.2006
dc.relation.referencesMinard, G., Tran, F. H., Van, V. T., Goubert, C., Bellet, C., Lambert, G., Kim, K. L. H., Thuy, T. H. T., Mavingui, P., & Valiente Moro, C. (2015). French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00970
dc.relation.referencesMinh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015
dc.relation.referencesMolina, J., Hildebrand, P., Olano, V., Muñoz de Hoyos, P., Barreto, M., & Guhl, F. (2000). Fauna de insectos hematófagos del sur del Parque Nacional Natural Chiribiquete, Caquetá, Colombia. Biomédica, 20(4), 1–13. https://doi.org/10.7705/biomedica.v20i4.1075
dc.relation.referencesMontalvo, A., Fraga, J., Maes, I., Dujardin JC, & Van der Auwera, G. (2011). Three new sensitive and specific heat-shock protein 70 PCRs for global Leishmania species identification. Eur J Clin Microbiol Infect Dis, 31(7):1453-61. https://doi.org/10.1007/s10096-011-1463-z
dc.relation.referencesMonteiro, C. C., Villegas, L. E. M., Campolina, T. B., Pires, A. C. M. A., Miranda, J. C., Pimenta, P. F. P., & Secundino, N. F. C. (2016). Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasites & Vectors, 9(1), 480. https://doi.org/10.1186/s13071-016-1767-z
dc.relation.referencesMontenegro, D., Cortés-Cortés, G., Balbuena-Alonso, M. G., Warner, C., & Camps, M. (2024). Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Tropica, 260, 107410. https://doi.org/10.1016/j.actatropica.2024.107410
dc.relation.referencesMoraes, C. S., Seabra, S. H., Albuquerque-Cunha, J. M., Castro, D. P., Genta, F. A., Souza, W. de, Brazil, R. P., Garcia, E. S., & Azambuja, P. (2009). Prodigiosin is not a determinant factor in lysis of Leishmania (Viannia) braziliensis after interaction with Serratia marcescens d-mannose sensitive fimbriae. Experimental Parasitology, 122(2), 84–90. https://doi.org/10.1016/j.exppara.2009.03.004
dc.relation.referencesMoraes, C. S., Seabra, S. H., Castro, D. P., Brazil, R. P., de Souza, W., Garcia, E. S., & Azambuja, P. (2008). Leishmania (Leishmania) chagasi interactions with Serratia marcescens: Ultrastructural studies, lysis and carbohydrate effects. Experimental Parasitology, 118(4), 561–568. https://doi.org/10.1016/j.exppara.2007.11.015
dc.relation.referencesMorales, A., & Minter, D. M. (1981). Estudio sobre flebotomíneos en Araracuara. Caquetá, Colombia, S. A. Incluyendo la descripción de Lutzomyia araracuarensis (Díptera, Psychodidae). Biomédica, 1(3), 94. https://doi.org/10.7705/biomedica.v1i3.1790
dc.relation.referencesMoreno, M., Guzmán-Rodríguez, L., Valderrama-Ardila, C., Alexander, N., & Ocampo, C. B. (2020). Land use in relation to composition and abundance of phlebotomines (Diptera: Psychodidae) in five foci of domiciliary transmission of cutaneous leishmaniasis in the Andean region of Colombia. Acta Tropica, 203, 105315. https://doi.org/10.1016/j.actatropica.2019.105315
dc.relation.referencesNguyen, D. T., Morrow, J. L., Spooner-Hart, R. N., & Riegler, M. (2017). Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution, 71(4), 995–1008. https://doi.org/10.1111/evo.13197
dc.relation.referencesOmondi, Z. N., & Demir, S. (2021). Bacteria composition and diversity in the gut of sand fly: impact on Leishmania and sand fly development. International Journal of Tropical Insect Science, 41(1), 25–32. https://doi.org/10.1007/s42690-020-00184-x
dc.relation.referencesOMS. (2010). Control de las leishmaniasis : informe de una reunión del Comité de Expertos de la OMS sobre el Control de las Leishmaniasis, . Organización Mundial de la Salud
dc.relation.referencesOno, M., Braig, H. R., Munstermann, L. E., Ferro, C., & O’NeilL, S. L. (2001). Wolbachia Infections of Phlebotomine Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 38(2), 237–241. https://doi.org/10.1603/0022-2585-38.2.237
dc.relation.referencesOPS/OMS. (2020). Leishmaniasis. https://www.paho.org/es/temas/leishmaniasis
dc.relation.referencesOsorio, J., Villa-Arias, S., Camargo, C., Ramírez-Sánchez, L. F., Barrientos, L. M., Bedoya, C., Rúa-Uribe, G., Dorus, S., Alfonso-Parra, C., & Avila, F. W. (2023). wMel Wolbachia alters female post-mating behaviors and physiology in the dengue vector mosquito Aedes aegypti. Communications Biology, 6(1), 865. https://doi.org/10.1038/s42003-023-05180-8
dc.relation.referencesOsorno-Mesa, E., Morales-Alarcón, A., de Osorno, F., & Ferro-Vela C. (1972). Phlebotominae de Colombia (Diptera, Psychodidae) IX. Distribución geográfica de especies de Brumptomyia y Lutzomyia Franca 1924, encontradas en Colombia.
dc.relation.referencesOwashi, Y., Arai, H., Adachi-Hagimori, T., & Kageyama, D. (2024). Rickettsia induces strong cytoplasmic incompatibility in a predatory insect. Proceedings of the Royal Society B: Biological Sciences, 291(2027). https://doi.org/10.1098/rspb.2024.0680
dc.relation.referencesPAHO, (Pan American Health Organization). (2024). Plan of action to strengthen the surveillance and control of leishmaniasis in the Americas 2023-2030. Pan American Health Organization. https://doi.org/10.37774/9789275128787
dc.relation.referencesPang, R., Chen, M., Yue, L., Xing, K., Li, T., Kang, K., Liang, Z., Yuan, L., & Zhang, W. (2018). A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLOS Genetics, 14(10), e1007725. https://doi.org/10.1371/journal.pgen.1007725
dc.relation.referencesPapadopoulos, C., Karas, P. A., Vasileiadis, S., Ligda, P., Saratsis, A., Sotiraki, S., & Karpouzas, D. G. (2020). Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens, 9(6), 428. https://doi.org/10.3390/pathogens9060428
dc.relation.referencesParte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C., & Göker, M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5607–5612. https://doi.org/10.1099/ijsem.0.004332
dc.relation.referencesPascar, J., Middleton, H., & Dorus, S. (2023). Aedes aegypti microbiome composition covaries with the density of Wolbachia infection. Microbiome, 11(1), 255. https://doi.org/10.1186/s40168-023-01678-9
dc.relation.referencesPaternina, L. E. (2012). Determinación molecular de las fuentes alimenticias de Lutzomyia spp. (Diptera: Psychodidae) asociadas a casos de Leishmaniasis Cutánea en el departamento de Sucre, Caribe Colombiano [Tesis de maestría, Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Biociencias.]. https://repositorio.unal.edu.co/handle/unal/9861?locale-attribute=en
dc.relation.referencesPaternina, L. E., Verbel-Vergara, D., Romero-Ricardo, L., Pérez-Doria, A., Paternina-Gómez, M., Martínez, L., & Bejarano, E. E. (2016). Evidence for anthropophily in five species of phlebotomine sand flies (Diptera: Psychodidae) from northern Colombia, revealed by molecular identification of bloodmeals. Acta Tropica, 153, 86–92. https://doi.org/10.1016/j.actatropica.2015.10.005
dc.relation.referencesPereira Júnior, A. M., Teles, C. B. G., de Azevedo dos Santos, A. P., de Souza Rodrigues, M., Marialva, E. F., Pessoa, F. A. C., & Medeiros, J. F. (2015). Ecological aspects and molecular detection of Leishmania DNA Ross (Kinetoplastida: Trypanosomatidae) in phlebotomine sandflies (Diptera: Psychodidae) in terra firme and várzea environments in the Middle Solimões Region, Amazonas State, Brazil. Parasites & Vectors, 8(1), 180. https://doi.org/10.1186/s13071-015-0789-2
dc.relation.referencesPereira-Filho, A. A., Fonteles, R. S., Bandeira, M. da C. A., Moraes, J. L. P., Rebêlo, J. M. M., & Melo, M. N. (2018). Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae: Phlebotominae) in the Lençóis Maranhenses National Park, Brazil. Journal of Medical Entomology, 55(4), 989–994. https://doi.org/10.1093/jme/tjy014
dc.relation.referencesPerlmutter, J. I., Atadurdyyeva, A., Schedl, M. E., & Unckless, R. L. (2025). Wolbachia enhances the survival of Drosophila infected with fungal pathogens. BMC Biology, 23(1), 42. https://doi.org/10.1186/s12915-025-02130-0
dc.relation.referencesPimentel, A. C., Sánchez, U. Y. del V., de Lima, A. C. S., Silveira, F. T., Vasconcelos dos Santos, T., & Ishikawa, E. A. Y. (2022). Blood Feeding Sources of Nyssomyia antunesi (Diptera: Psychodidae): A Suspected Vector of Leishmania (Kinetoplastida: Trypanosomatidae) in the Brazilian Amazon. Journal of Medical Entomology, 59(5), 1847–1852. https://doi.org/10.1093/jme/tjac108
dc.relation.referencesPimentel, A., Sánchez, U. Y., de Lima, A., Silveira, F., Vasconcelos, D. S. T., & Ishikawa, E. (2022). Blood Feeding Sources of Nyssomyia antunesi (Diptera: Psychodidae): A Suspected Vector of Leishmania (Kinetoplastida: Trypanosomatidae) in the Brazilian Amazon. Journal of Medical Entomology, 59(5), 1847–1852. https://doi.org/10.1093/jme/tjac108
dc.relation.referencesPinto, I. de S., Rodrigues, B. L., de Araujo-Pereira, T., Shimabukuro, P. H. F., de Pita-Pereira, D., Britto, C., & Brazil, R. P. (2023). DNA barcoding of sand flies (Diptera, Psychodidae, Phlebotominae) from the western Brazilian Amazon. PLOS ONE, 18(2), e0281289. https://doi.org/10.1371/journal.pone.0281289
dc.relation.referencesPortella, T. P., Sudbrack, V., Coutinho, R. M., Prado, P. I., & Kraenkel, R. A. (2024). Bayesian spatio-temporal modeling to assess the effect of land-use changes on the incidence of Cutaneous Leishmaniasis in the Brazilian Amazon. Science of The Total Environment, 953(176064), 2–7. https://doi.org/10.1016/j.scitotenv.2024.176064
dc.relation.referencesPorter, C., & Collins, F. (1991). Species-Diagnostic Differences in a Ribosomal DNA Internal Transcribed Spacer from the Sibling Species Anopheles Freeborni and Anopheles Hermsi (Diptera: Culicidae). The American Journal of Tropical Medicine and Hygiene, 45(2), 271–279. https://doi.org/10.4269/ajtmh.1991.45.271
dc.relation.referencesPorter, J., & Sullivan, W. (2023). The cellular lives of Wolbachia. Nature Reviews Microbiology, 21(11), 750–766. https://doi.org/10.1038/s41579-023-00918-x
dc.relation.referencesPosada-López, L. (2016). Inventario de especies y diversidad haplotípica MtCOI de Phlebotominae (Diptera: Psychodidae) en zonas de importancia para la transmisión de leishmaniasis en Colombia [Facultad de Ciencias Escuela de Biociencias, Universidad Nacional de Colombia Sede Medellín ]. https://repositorio.unal.edu.co/handle/unal/58710
dc.relation.referencesPosada-Lopez, L., Galati, E. A., Shaw, J., & Galvis-Ovallos, F. (2024). Incriminating leishmaniases vectors in Colombia: An overview and roadmap for future research. Acta Tropica, 260, 107409. https://doi.org/10.1016/j.actatropica.2024.107409
dc.relation.referencesPosada-López, L., Galvis-Ovallos, F., & Galati EAB. (2018). Description of Trichophoromyia velezbernali, a New Sand Fly Species (Diptera: Psychodidae: Phlebotominae) from Colombian Amazonia. Journal of Medical Entomology, 55(1), 122–127. https://doi.org/10.1093/jme/tjx180
dc.relation.referencesPosada-López, L., Rodrigues B.L, Velez I.D, & Uribe, S. (2023). Improving the COI DNA barcoding library for Neotropical phlebotomine sand flies (Diptera: Psychodidae). Parasites & Vectors, 16(1), 1–12. https://doi.org/10.1186/s13071-023-05807-z
dc.relation.referencesPosada-López, L., Velez-Mira, A., Cantillo, O., Castillo-Castañeda, A., Ramírez JD, Galati, E., & Galvis-Ovallos, F. (2023). Ecological interactions of sand flies, hosts, and Leishmania panamensis in an endemic area of cutaneous leishmaniasis in Colombia. PLOS Neglected Tropical Diseases, 17(5), e0011316. https://doi.org/10.1371/journal.pntd.0011316
dc.relation.referencesQGIS Development Team. (2023). QGIS Geographic Information System. Open Source Geospatial Foundation Project. qgis.org
dc.relation.referencesQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219
dc.relation.referencesQuiroga, C., Cevallos, V., Morales, D., Baldeón, M. E., Cárdenas, P., Rojas-Silva, P., & Ponce, P. (2017). Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae, Phlebotominae) From Ecuador. Journal of Medical Entomology, 54(6), 1704–1711. https://doi.org/10.1093/jme/tjx122
dc.relation.referencesRana, A., Sudakov, K., Carmeli, S., Miyara, S. B., Bucki, P., & Minz, D. (2024). Volatile organic compounds of the soil bacterium Bacillus halotolerans suppress pathogens and elicit defense responsive genes in plants. Microbiological Research, 281, 127611. https://doi.org/10.1016/j.micres.2024.127611
dc.relation.referencesRangel, E. F., & Lainson, R. (2009). Proven and putative vectors of American cutaneous leishmaniasis in Brazil: aspects of their biology and vectorial competence. Memórias Do Instituto Oswaldo Cruz, 104(7), 937–954. https://doi.org/10.1590/S0074-02762009000700001
dc.relation.referencesReady, P. D., Arias, J. R., & Freitas, R. A. (1985). A pilot study to control Lutzomyia umbratilis (Diptera: Psychodidae), the major vector of Leishmania braziliensis guyanensis, in a peri-urban rainforest of Manaus, Amazonas State, Brazil. Memórias Do Instituto Oswaldo Cruz, 80(1), 27–36. https://doi.org/10.1590/S0074-02761985000100005
dc.relation.referencesResadore, F., Júnior, A. M. P., de Paulo, P. F. M., Gil, L. H. S., Rodrigues, M. M. S., Araújo, M. D. S., Julião, G. R., & Medeiros, J. F. (2019). Composition and Vertical Stratification of Phlebotomine Sand Fly Fauna and the Molecular Detection of Leishmania in Forested Areas in Rondônia State Municipalities, Western Amazon, Brazil. Vector-Borne and Zoonotic Diseases, 19(5), 347–357. https://doi.org/10.1089/vbz.2018.2372
dc.relation.referencesRodpai, R., Boonroumkaew, P., Sadaow, L., Sanpool, O., Janwan, P., Thanchomnang, T., Intapan, P. M., & Maleewong, W. (2023). Microbiome Composition and Microbial Community Structure in Mosquito Vectors Aedes aegypti and Aedes albopictus in Northeastern Thailand, a Dengue-Endemic Area. Insects, 14(2), 184. https://doi.org/10.3390/insects14020184
dc.relation.referencesRodrigues, B., & Galati, E. (2023). Molecular taxonomy of phlebotomine sand flies (Diptera, Psychodidae) with emphasis on DNA barcoding: A review. Acta Tropica, 238(106778), 1–14. https://doi.org/10.1016/j.actatropica.2022.106778
dc.relation.referencesRodrigues, B. L., Baton, L. A., & Shimabukuro, P. H. F. (2020). Single‐locus DNA barcoding and species delimitation of the sandfly subgenus Evandromyia (Aldamyia). Medical and Veterinary Entomology, 34(4), 420–431. https://doi.org/10.1111/mve.12458
dc.relation.referencesRodrigues, M., Brito-Sousa, J. D., Dias, Á. L. B., Monteiro, W., & Sampaio, V. (2019). The role of deforestation on American cutaneous leishmaniasis incidence: spatial‐temporal distribution, environmental and socioeconomic factors associated in the Brazilian Amazon. Tropical Medicine & International Health, 24(3), 348–355. https://doi.org/10.1111/tmi.13196
dc.relation.referencesRoque, A., & Jansen, A. (2014). Wild and synanthropic reservoirs of Leishmania species in the Americas. International Journal for Parasitology: Parasites and Wildlife, 3(3), 1–12. https://doi.org/10.1016/j.ijppaw.2014.08.004
dc.relation.referencesRosário, A. A. do, Dias-Lima, A. G., Lambert, S. M., Souza, B. M. P. da S., & Bravo, F. (2022). Identification and molecular characterization of Wolbachia strains and natural infection for Leishmania sp. in neotropical Phlebotominae (Diptera: Psychodidae) species, leishmaniasis vectors. Acta Tropica, 235, 106624. https://doi.org/10.1016/j.actatropica.2022.106624
dc.relation.referencesRoss, P. A., Axford, J. K., Yang, Q., Staunton, K. M., Ritchie, S. A., Richardson, K. M., & Hoffmann, A. A. (2020). Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti. PLOS Neglected Tropical Diseases, 14(1), e0007958. https://doi.org/10.1371/journal.pntd.0007958
dc.relation.referencesRoss, P. A., & Hoffmann, A. A. (2022). Fitness costs of Wolbachia shift in locally‐adapted Aedes aegypti mosquitoes. Environmental Microbiology, 24(12), 5749–5759. https://doi.org/10.1111/1462-2920.16235
dc.relation.referencesRossi, F., Carles, L., Donnadieu, F., Batisson, I., & Artigas, J. (2021). Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. Journal of Hazardous Materials, 420, 126651. https://doi.org/10.1016/j.jhazmat.2021.126651
dc.relation.referencesRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248
dc.relation.referencesRuang-Areerate, T., Kittyapong, P., Baimai, V., & O’Neill, S. L. (2003). Molecular Phylogeny of Wolbachia Endosymbionts in Southeast Asian Mosquitoes (Diptera: Culicidae) Based on wsp Gene Sequences. Journal of Medical Entomology, 40(1), 1–5. https://doi.org/10.1603/0022-2585-40.1.1
dc.relation.referencesSandoval-Ramírez, CM., Hernández, C., Teherán, A., Gutierrez-Marin R, Martínez-Vega, R., Morales, D., Hoyos-Lopez, R., Araque-Mogollón, A., & Ramírez J.D. (2020). Complex ecological interactions across a focus of cutaneous leishmaniasis in Eastern Colombia: novel description of Leishmania species, hosts and phlebotomine fauna. Royal Society Open Science, 7(7), 200266. https://doi.org/10.1098/rsos.200266
dc.relation.referencesSantamaría, E., Ponce, N., Zipa, Y., & Ferro, C. (2012). Presencia en el peridomicilio de vectores infectados con Leishmania (Viannia) panamensis en dos focos endémicos en el occidente de Boyacá, piedemonte del valle del Magdalena medio, Colombia. Biomédica, 26(1), 82–94. https://doi.org/10.7705/biomedica.v26i1.1503
dc.relation.referencesSant’Anna, M. R. V., Darby, A. C., Brazil, R. P., Montoya-Lerma, J., Dillon, V. M., Bates, P. A., & Dillon, R. J. (2012). Investigation of the Bacterial Communities Associated with Females of Lutzomyia Sand Fly Species from South America. PLoS ONE, 7(8), e42531. https://doi.org/10.1371/journal.pone.0042531
dc.relation.referencesSantos, N. S. dos, Pinho, F. A. de, Hlavac, N. R. C., Nunes, T. L., Almeida, N. R., Solcà, M. S., Varjão, B. M., Portela, R. W., Rugani, J. N., Rêgo, F. D., Barrouin-Melo, S. M., & Soares, R. P. (2021). Feline Leishmaniasis Caused by Leishmania infantum: Parasite Sequencing, Seropositivity, and Clinical Characterization in an Endemic Area From Brazil. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.734916
dc.relation.referencesSantos, T. V. dos, & Silveira, F. T. (2020). Increasing putative vector importance of Trichophoromyia phlebotomines (Diptera: Psychodidae). Memórias Do Instituto Oswaldo Cruz, 115. https://doi.org/10.1590/0074-02760190284
dc.relation.referencesSantos Walter Souza, Ortega Fellipe Diogo, Alves Veracilda Ribeiro, & Garcez Lourdes Maria. (2019). Flebotomíneos (Psychodidae: Phlebotominae) de área endêmica para leishmaniose cutânea e visceral no nordeste do estado do Pará, Brasil. Revista Pan-Amazônica de Saúde, 10(0), 1–6. https://doi.org/10.5123/S2176-6223201900059
dc.relation.referencesSantos-Silva, L., Roque, W. F., de Moura, J. M., Mello, I. S., de Carvalho, L. A. L., Pinheiro, D. G., Bouzan, R. S., Brescovit, A. D., de Andrade, R. L. T., da Silva, G. F., Battirola, L. D., & Soares, M. A. (2024). Toxic metals in Amazonian soil modify the bacterial community associated with Diplopoda. Science of The Total Environment, 955, 176915. https://doi.org/10.1016/j.scitotenv.2024.176915
dc.relation.referencesSarkhandia, S., Devi, M., Sharma, G., Mahajan, R., Chadha, P., Saini, H. S., & Kaur, S. (2023). Larvicidal, growth inhibitory and biochemical effects of soil bacterium, Pseudomonas sp. EN4 against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiology, 23(1), 95. https://doi.org/10.1186/s12866-023-02841-w
dc.relation.referencesScarpassa, V., Cunha-Machado, A. S., & Alencar, R. (2021). Multiple evolutionary lineages for the main vector of Leishmania guyanensis, Lutzomyia umbratilis (Diptera: Psychodidae), in the Brazilian Amazon. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-93072-4
dc.relation.referencesShannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
dc.relation.referencesSIAT-AC - Instituto SINCHI. (2022). Límite de la Amazonia colombiana. Escala: 1:100.000. Datos Abiertos - Instituto SINCHI . https://datos.siatac.co/datasets/7fbe5e6357354c7c9baf8a44369ceef7/about
dc.relation.referencesSilva, A. N. R., Júnior, A. M. P., de Paulo, P. F. M., da Silva, M. S., Castro, T. S., Costa GDS, Freitas, M. T. de S., Rodrigues, M. M. de S., & Medeiros, J. F. (2021). Detection of Leishmania species (Kinetoplastida, Trypanosomatidae) in phlebotomine sand flies (Diptera, Psychodidae) from Porto Velho, Northern Brazil. Acta Tropica, 213, 105757. https://doi.org/10.1016/j.actatropica.2020.105757
dc.relation.referencesSilva, T. R. R., Assis, M. D. G., Freire, M. P., Rego, F. D., Gontijo, C. M. F., & Shimabukuro, P. H. F. (2014). Molecular Detection of Leishmania in Sand Flies (Diptera: Psychodidae: Phlebotominae) Collected in the Caititu Indigenous Reserve of the Municipality of Lábrea, State of Amazonas, Brazil. Journal of Medical Entomology, 51(6), 1276–1282. https://doi.org/10.1603/ME14025
dc.relation.referencesSilveira, F., Ishikawa, E., De Souza, A., & Lainson, R. (2002). An outbreak of cutaneous leishmaniasis among soldiers in Belém, Pará State, Brazil, caused by Leishmania (Viannia) lindenbergi n. sp. Parasite, 9(1), 43–50. https://doi.org/10.1051/parasite/200209143
dc.relation.referencesSilveira, F. T., Souza, A. A. A., Lainson, R., Shaw, J. J., Braga, R. R., & Ishikawa, E. E. A. (1991). Cutaneous leishmaniasis in the Amazon region: natural infection of the sandfly Lutzomyia ubiquitalis (Psychodidae: Phlebotominae) by Leishmania (Viannia) lainsoni in Pará state, Brazil. Memórias Do Instituto Oswaldo Cruz, 86(1), 127–130. https://doi.org/10.1590/S0074-02761991000100021
dc.relation.referencesSilveira, N. S., Monteiro, R., Zucchi, R., & de Moraes, R. (1995). Uso da análise faunística de insetos na avaliação do impacto ambiental. Scientia Agricola, 52(1), 9–15. https://doi.org/10.1590/S0103-90161995000100003
dc.relation.referencesSoares, O. S. R., Rodrigues, B. L., & Shimabukuro, P. H. F. (2024). Accessing the sand fly diversity of Tocantins, Northern Brazil: species delimitation using COI DNA barcoding. Biota Neotropica, 24(4), 2–6. https://doi.org/10.1590/1676-0611-bn-2024-1680
dc.relation.referencesStevens, L., Dorn PL, Hobson, J., de la Rua, N. M., Lucero, D. E., Klotz, J. H., Schmidt, J. O., & Klotz, S. A. (2012). Vector Blood Meals and Chagas Disease Transmission Potential, United States. Emerging Infectious Diseases, 18(4), 646–649. https://doi.org/10.3201/eid1804.111396
dc.relation.referencesTabbabi, A., Mizushima, D., Yamamoto, D. S., & Kato, H. (2022). Sand Flies and Their Microbiota. Parasitologia, 2(2), 71–87. https://doi.org/10.3390/parasitologia2020008
dc.relation.referencesTabbabi, A., Mizushima, D., Yamamoto, D. S., & Kato, H. (2023). Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies. Parasites & Vectors, 16(1), 310. https://doi.org/10.1186/s13071-023-05939-2
dc.relation.referencesTabbabi, A., Mizushima, D., Yamamoto, D. S., Zhioua, E., & Kato, H. (2024). Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLOS Neglected Tropical Diseases, 18(9), e0012458. https://doi.org/10.1371/journal.pntd.0012458
dc.relation.referencesTabbabi, A., Watanabe, S., Mizushima, D., Caceres, A. G., Gomez, E. A., Yamamoto, D. S., Cui, L., Hashiguchi, Y., & Kato, H. (2020). Comparative Analysis of Bacterial Communities in Lutzomyia ayacuchensis Populations with Different Vector Competence to Leishmania Parasites in Ecuador and Peru. Microorganisms, 9(1). https://doi.org/10.3390/microorganisms9010068
dc.relation.referencesTarlachkov, S. V., Efeykin, B. D., Castillo, P., Evtushenko, L. I., & Subbotin, S. A. (2023). Distribution of Bacterial Endosymbionts of the Cardinium Clade in Plant-Parasitic Nematodes. International Journal of Molecular Sciences, 24(3), 2905. https://doi.org/10.3390/ijms24032905
dc.relation.referencesTeles, C. B. G., Santos, A. P. de A. dos, Freitas, R. A., Oliveira, A. F. J. de, Ogawa, G. M., Rodrigues, M. S., Pessoa, F. A. C., Medeiros, J. F., & Camargo, L. M. A. (2016). Phlebotomine sandfly (Diptera: Psychodidae) diversity and their Leishmania DNA in a hot spot of American Cutaneous Leishmaniasis human cases along the Brazilian border with Peru and Bolivia. Memórias Do Instituto Oswaldo Cruz, 111(7), 423–432. https://doi.org/10.1590/0074-02760160054
dc.relation.referencesTelleria, E. L., Martins-da-Silva, A., Tempone, A. J., & Traub-Csekö, Y. M. (2018). Leishmania , microbiota and sand fly immunity. Parasitology, 145(10), 1336–1353. https://doi.org/10.1017/S0031182018001014
dc.relation.referencesThompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
dc.relation.referencesTidman, R., Abela-Ridder, B., & de Castañeda, R. R. (2021). The impact of climate change on neglected tropical diseases: a systematic review. Transactions of The Royal Society of Tropical Medicine and Hygiene, 115(2), 147–168. https://doi.org/10.1093/trstmh/traa192
dc.relation.referencesTong-Pu, L., Si-Si, Z., Chun-Ying, Z., Jun-Tao, G., Yu-Xi, Z., Xu, Z., Zhiyong, X., & Xiao-Yue, H. (2020). Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiology Ecology, 96(12). https://doi.org/10.1093/femsec/fiaa194
dc.relation.referencesUlloa, G. M., Vásquez-Achaya, F., Gomes, C., del Valle, L. J., Ruiz, J., Pons, M. J., & del Valle Mendoza, J. (2018). Molecular Detection of Bartonella bacilliformis in Lutzomyia maranonensis in Cajamarca, Peru: A New Potential Vector of Carrion’s Disease in Peru? The American Journal of Tropical Medicine and Hygiene, 99(5), 1229–1233. https://doi.org/10.4269/ajtmh.18-0520
dc.relation.referencesValdivia, H. O., De Los Santos, M. B., Fernandez, R., Baldeviano, G. C., Zorrilla, V. O., Vera, H., Lucas, C. M., Edgel, K. A., Lescano, A. G., Mundal, K. D., & Graf, P. C. F. (2012). Natural Leishmania Infection of Lutzomyia auraensis in Madre de Dios, Peru, Detected by a Fluorescence Resonance Energy Transfer–Based Real-Time Polymerase Chain Reaction. The American Society of Tropical Medicine and Hygiene, 87(3), 511–517. https://doi.org/10.4269/ajtmh.2012.11-0708
dc.relation.referencesVandana, V., Dong, S., Sheth, T., Sun, Q., Wen, H., Maldonado, A., Xi, Z., & Dimopoulos, G. (2024). Wolbachia infection-responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi. PLOS Pathogens, 20(4), e1012145. https://doi.org/10.1371/journal.ppat.1012145
dc.relation.referencesVasconcelos dos Santos, T., Prévot, G., Ginouvès, M., Duarte, R., Silveira, F. T., Póvoa, M. M., & Rangel, E. F. (2018). Ecological aspects of Phlebotomines (Diptera: Psychodidae) and the transmission of American cutaneous leishmaniasis agents in an Amazonian/ Guianan bordering area. Parasites & Vectors, 11(1), 612. https://doi.org/10.1186/s13071-018-3190-0
dc.relation.referencesVasquez-Trujillo, A., Gonzalez-Reina, A. E., Gongora-Orjuela, A., Prieto-Suarez, E., Palomares, J. E., & Buitrago-Alvarez, L. S. (2013). Seasonal variation and natural infection of Lutzomyia antunesi (Diptera: Psychodidae: Phlebotominae), an endemic species in the Orinoquia region of Colombia. Memórias Do Instituto Oswaldo Cruz, 108(4), 463–469. https://doi.org/10.1590/S0074-0276108042013011
dc.relation.referencesVásquez-Trujillo, A., Santamaría-Herreño, E., González-Reina, A. E., Buitrago-Álvarez, L. S., Góngora-Orjuela, A., & Cabrera-Quintero, O. L. (2018). Lutzomyia antunesi as suspected vector of cutaneous leishmaniasis in the Orinoquian region of Colombia. Rev. Salud Pública, 10 (4):625-632, 1–8.
dc.relation.referencesVazquez-Prokopec, G. M., Galvin, W. A., Kelly, R., & Kitron, U. (2009). A New, Cost-Effective, Battery-Powered Aspirator for Adult Mosquito Collections. Journal of Medical Entomology, 46(6), 1256–1259. https://doi.org/10.1603/033.046.0602
dc.relation.referencesVectorSurv. (2024). Pool Infection Rate. Sistema de Vigilancia de Enfermedades Transmitidas Por Vectores. https://vectorsurv.org/docs/tools/calculators/infection-rate/
dc.relation.referencesVivero, R. J., Cadavid-Restrepo, G., Herrera, C. X. M., & Soto, S. I. U. (2017). Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast. Parasites & Vectors, 10(1), 110. https://doi.org/10.1186/s13071-017-2031-x
dc.relation.referencesVivero, R. J., Castañeda-Monsalve, V. A., Romero, L. R., D. Hurst, G., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Gut Microbiota Dynamics in Natural Populations of Pintomyia evansi under Experimental Infection with Leishmania infantum. Microorganisms, 9(6), 1214. https://doi.org/10.3390/microorganisms9061214
dc.relation.referencesVivero, R. J., Castañeda-Monsalve, V. A., Romero, L. R., Hurst, G. D., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Gut microbiota dynamics in natural populations of pintomyia evansi under experimental infection with leishmania infantum. Microorganisms, 9(6), 1–14. https://doi.org/10.3390/microorganisms9061214
dc.relation.referencesVivero, R. J., Contreras-Gutiérrez, M. A., & Bejarano, E. E. (2009). Changes in the carboxyl-terminal domain of cytochrome b as a taxonomic character in Lutzomyia (Diptera: Psychodidae). Revista Colombiana de Entomología, 35(1), 83–88. https://doi.org/10.25100/socolen.v35i1.9194
dc.relation.referencesVivero, R. J., Jaramillo, N. G., Cadavid-Restrepo, G., Soto, S. I. U., & Herrera, C. X. M. (2016). Structural differences in gut bacteria communities in developmental stages of natural populations of Lutzomyia evansi from Colombia’s Caribbean coast. Parasites & Vectors, 9(1), 496. https://doi.org/10.1186/s13071-016-1766-0
dc.relation.referencesVivero, R. J., Torres-Gutierrez, C., Bejarano, E. E., Peña, H. C., Estrada, L. G., Florez, F., Ortega, E., Aparicio, Y., & Muskus, C. E. (2015). Study on natural breeding sites of sand flies (Diptera: Phlebotominae) in areas of Leishmania transmission in Colombia. Parasites & Vectors, 8(1), 116. https://doi.org/10.1186/s13071-015-0711-y
dc.relation.referencesVivero, R. J., Villegas-Plazas, M., Cadavid-Restrepo, G. E., Herrera, C. X. M., Uribe, S. I., & Junca, H. (2019). Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Scientific Reports, 9(1), 17746. https://doi.org/10.1038/s41598-019-53769-z
dc.relation.referencesVivero-Gomez, R. J., Castañeda-Monsalve, V. A., Atencia, M. C., Hoyos-Lopez, R., Hurst, G. D., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2021). Molecular phylogeny of heritable symbionts and microbiota diversity analysis in phlebotominae sand flies and Culex nigripalpus from Colombia. PLOS Neglected Tropical Diseases, 15(12), e0009942. https://doi.org/10.1371/journal.pntd.0009942
dc.relation.referencesVivero-Gomez, R. J., Largo, D. F., Cadavid-Restrepo, G., Duque-Granda, D., & Moreno-Herrera, C. X. (2025). Studying the Interactions Between Microbiomes and Leishmania Parasites in Sand Flies: A Source of New Targets for Pathogen Control (J. D. Ramírez González, Ed.). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-70591-5
dc.relation.referencesVlassoff, C., Giron, N., Vera Soto, M. J., Maia-Elkhoury, A. N. S., Lal, A., Castellanos, L. G., Almeida, G., & Lim, C. (2023). Ensuring access to essential health products: Lessons from Colombia’s leishmaniasis control and elimination initiative. PLOS Neglected Tropical Diseases, 17(12), e0011752. https://doi.org/10.1371/journal.pntd.0011752
dc.relation.referencesVolf, P., Kiewegová, A., & Nemec, A. (2002). Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): transtadial passage and the role of female diet. Folia Parasitologica, 49(1), 73–77. https://doi.org/10.14411/fp.2002.014
dc.relation.referencesvon der Schulenburg, J. H. G., Habig, M., Sloggett, J. J., Webberley, K. M., Bertrand, D., Hurst, G. D. D., & Majerus, M. E. N. (2001). Incidence of Male-Killing Rickettsia spp. (α-Proteobacteria) in the Ten-Spot Ladybird Beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Applied and Environmental Microbiology, 67(1), 270–277. https://doi.org/10.1128/AEM.67.1.270-277.2001
dc.relation.referencesVossbrinck, C. R., Andreadis, T. G., Vavra, J., & Becnel, J. J. (2004). Molecular Phytogeny and Evolution of Mosquito Parasitic Microsporidia (Microsporidia: Amblyosporidae). Journal of Eukaryotic Microbiology, 51(1), 88–95. https://doi.org/10.1111/j.1550-7408.2004.tb00167.x
dc.relation.referencesWang, F., Xiao, J., Zhang, Y., Li, R., Liu, L., & Deng, J. (2021). Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 174, 111456. https://doi.org/10.1016/j.postharvbio.2020.111456
dc.relation.referencesWei, Y., Wang, J., Wei, Y.-H., Song, Z., Hu, K., Chen, Y., Zhou, G., Zhong, D., & Zheng, X. (2021). Vector Competence for DENV-2 Among Aedes albopictus (Diptera: Culicidae) Populations in China. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.649975
dc.relation.referencesWhite, J. A., Kelly, S. E., Cockburn, S. N., Perlman, S. J., & Hunter, M. S. (2011). Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity, 106(4), 585–591. https://doi.org/10.1038/hdy.2010.89
dc.relation.referencesWolff, M., Sierra, D., Murcia, L. M., & Vélez, B. I. D. (2003). Phlebotominae Fauna (Diptera: Psychodidae) in the Department of Amazonas, Colombia. Neotropical Entomology , 32(3):523-526, 523–526. https://www.scielo.br/j/ne/a/hjnFwPQzDWWShSt5d7CYYwH/?format=pdf&lang=en
dc.relation.referencesWorld Health Organization, (WHO). (2020). Leishmaniasis. https://www.paho.org/en/topics/leishmaniasis.
dc.relation.referencesWorld Health Organization, (WHO). (2024). Leishmaniasis: Number of cases of cuteneous leishmaniasis reported: 2022. https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html
dc.relation.referencesWu, D., Wang, W., Yao, Y., Li, H., Wang, Q., & Niu, B. (2023). Microbial interactions within beneficial consortia promote soil health. Science of The Total Environment, 900, 165801. https://doi.org/10.1016/j.scitotenv.2023.165801
dc.relation.referencesWu, K., & Hoy, M. A. (2012). Cardinium is associated with reproductive incompatibility in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae). Journal of Invertebrate Pathology, 110(3), 359–365. https://doi.org/10.1016/j.jip.2012.03.027
dc.relation.referencesWu, P., Sun, P., Nie, K., Zhu, Y., Shi, M., Xiao, C., Liu, H., Liu, Q., Zhao, T., Chen, X., Zhou, H., Wang, P., & Cheng, G. (2019). A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host & Microbe, 25(1), 101-112.e5. https://doi.org/10.1016/j.chom.2018.11.004
dc.relation.referencesYe, Y. H., Seleznev, A., Flores, H. A., Woolfit, M., & McGraw, E. A. (2017). Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia mediated antiviral protection. Journal of Invertebrate Pathology, 143, 18–25. https://doi.org/10.1016/j.jip.2016.11.011
dc.relation.referencesYoung, D. (1979). A review of the bloodsucking psychodid flies of Colombia (Diptera: Phlebotominae and Sycoracinae). In Institute of Food and Agricultural Sciences, University of Florida, Gainesville.
dc.relation.referencesYoung, D., & Duncan, M. (1994). Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Associated Publishers.
dc.relation.referencesYoung, D. G., Morales, A., Kreutzer, R. D., Alexander, J. B., Corredor, A., & Tesh, R. B. (1987). Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from Cryopreserved Colombian Sand Flies (Diptera: Psychodidae). Journal of Medical Entomology, 24(5), 587–589. https://doi.org/10.1093/jmedent/24.5.587
dc.relation.referencesYoung, D., & Morales, A. (1987). New Species and Records of Phlebotomine Sand Flies from Colombia (Diptera: Psychodidae). Journal of Medical Entomology, 24(6), 662. https://doi.org/10.1093/jmedent/24.6.651
dc.relation.referencesYu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction. Biotechnology and Bioengineering, 89(6), 670–679. https://doi.org/10.1002/bit.20347
dc.relation.referencesZhou, W., Rousset, F., & O’Neill, S. (1998). Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 509–515. https://doi.org/10.1098/rspb.1998.0324
dc.relation.referencesZorrilla V, De Los Santos MB, Espada L, Santos RDP, Fernandez R, Urquia A, Stoops CA, Ballard SB, Lescano AG, Vásquez GM, & Valdivia HO. (2017). Distribution and identification of sand flies naturally infected with Leishmania from the Southeastern Peruvian Amazon. PLOS Neglected Tropical Diseases, 11(11), 1–14. https://doi.org/10.1371/journal.pntd.0006029
dc.relation.referencesZorrilla VO, Lozano ME, Espada LJ., Kosoy M, McKee C, Valdivia HO, Arevalo H, Troyes M, Stoops CA, Fisher ML, & Vásquez GM. (2021). Comparison of sand fly trapping approaches for vector surveillance of Leishmania and Bartonella species in ecologically distinct, endemic regions of Peru. PLOS Neglected Tropical Diseases, 15(7), e0009517. https://doi.org/10.1371/journal.pntd.0009517
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.lembLeishmaniasis
dc.subject.lembContról biológico
dc.subject.proposalFlebotomíneosspa
dc.subject.proposalAmazonasspa
dc.subject.proposalCaquetáspa
dc.subject.proposalDiversidadspa
dc.subject.proposalMicrobiotaspa
dc.subject.proposalEndosimbiontesspa
dc.subject.proposalVectoresspa
dc.subject.proposalIngesta sanguíneaspa
dc.subject.proposalTaxonomía integrativaspa
dc.subject.proposalLeishmaniasisspa
dc.subject.proposalInfeccion naturalspa
dc.subject.proposalDeteccion de parásitosspa
dc.subject.proposalSand flieseng
dc.subject.proposalMicrobiotaeng
dc.subject.proposalEndosymbiontseng
dc.subject.proposalVectorseng
dc.subject.proposalBlood mealeng
dc.subject.proposalIntegrative taxonomyeng
dc.subject.proposalLeishmaniasiseng
dc.subject.proposalNatural infectioneng
dc.subject.proposalParasite detectioneng
dc.subject.proposalParasite detectioneng
dc.subject.wikidataMicrobioma
dc.titleCaracterización del microbioma, los endosimbiontes, las fuentes de ingesta sanguínea y Leishmania sp. en flebotomíneos presentes en áreas de transmisión histórica para Leishmaniasis en Amazonas y Caquetáspa
dc.title.translatedCharacterization of the microbiome, endosymbionts, blood boold sources, and Leishmania sp. in sand flies present in areas of historical transmission for Leishmaniasis in Amazonas and Caquetáeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleAlianza estratégica interdisciplinaria Leticia, Medellín y La Paz para el estudio del microbioma de insectos vectores de enfermedades tropicales y su relación con el cambio climático y la sociedad
oaire.fundernameUniversidad Nacional de Colombia
oaire.fundernameMinciencias

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Biotecnología.pdf
Tamaño:
7.65 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: