Variational inference for fully bayesian hierarchical linear models
| dc.contributor.advisor | Sosa Martinez, Juan Camilo | |
| dc.contributor.author | Parra Aldana, Cristian Camilo | |
| dc.contributor.cvlac | Sosa Martinez, Juan Camilo [0001359814] | |
| dc.contributor.googlescholar | Sosa Martinez, Juan Camilo [armR6koAAAAJ] | |
| dc.contributor.orcid | Sosa Martinez, Juan Camilo [0000000174324014] | |
| dc.contributor.researchgate | Sosa Martinez, Juan Camilo [Juan-Sosa-10] | |
| dc.contributor.scopus | Sosa Martinez, Juan Camilo [80099012] | |
| dc.date.accessioned | 2026-02-11T15:21:22Z | |
| dc.date.available | 2026-02-11T15:21:22Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones a colro, diagramas | spa |
| dc.description.abstract | Los modelos lineales jerárquicos bayesianos ofrecen un marco natural para capturar estructuras anidadas y de agrupamiento en los datos. La estimación clásica mediante Cadenas de Markov Monte Carlo (MCMC) proporciona distribuciones posteriores bien calibradas, pero con un alto costo computacional, a menudo prohibitivo en escenarios de gran escala o alta dimensión. En contraste, la Inferencia Variacional (VI) y su variante estocástica (SVI) han surgido como alternativas eficientes, basadas en la optimización y no en el muestreo. Su rapidez, sin embargo, se logra a expensas de la calidad de la aproximación, especialmente en contextos jerárquicos cuando la separación intrinseca de los grupos no está marcada a priori. Esta tesis evalúa críticamente las ventajas y desventajas de ambos paradigmas a lo largo de diferentes niveles de complejidad: el Modelo de Regresión Lineal (LRM), el Modelo Jerárquico (HLRM) y el Modelo Jerárquico con Agrupamiento (CHLRM). Los estudios de simulación y la aplicación a datos reales muestran que VI y SVI reproducen efectos globales y patrones de agrupamiento con un tiempo de cómputo mínimo, pero distorsionan sistemáticamente las dependencias posteriores y generan valores inestables en criterios de información como WAIC y DIC. El aporte de este trabajo consiste en clarificar la diferencia de alcance entre la inferencia basada en muestreo y la basada en optimización, destacando los contextos en que los métodos variacionales pueden actuar como sustitutos prácticos de MCMC y aquellos en los que sus limitaciones son críticas. Más allá de la comparación metodológica, la tesis cumple también un papel pedagógico al hacer accesible la computación bayesiana avanzada, y señala futuras extensiones bajo el mismo marco variacional hacia modelos lineales generalizados (GLM) y otros miembros de la familia exponencial. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Bayesian hierarchical linear models provide a natural framework to capture nested and clustered structures in data. Classical estimation via Markov Chain Monte Carlo (MCMC) delivers well-calibrated posterior distributions but is computationally demanding, often prohibitive in high-dimensional or large-scale settings. In contrast, Variational Inference (VI) and Stochastic Variational Inference (SVI) have emerged as efficient alternatives, relying on optimization rather than sampling. Their tractability, however, comes at the cost of approximation quality, especially in hierarchical contexts where the intrinsic separation of groups is not marked a priori. This thesis critically evaluates the advantages and disadvantages of both paradigms across increasing levels of complexity: the Linear Regression Model (LRM), the Hierarchical Linear Regression Model (HLRM), and the Clustered HLRM (CHLRM). Simulation studies and an application to real data show that VI and SVI reproduce global regression effects and clustering patterns with minimal runtime, but systematically distort posterior dependencies and yield unstable information criteria such as WAIC and DIC. The contribution of this work lies in clarifying the difference in scope between sampling-based and optimization-based inference, highlighting contexts where variational methods can act as practical surrogates to MCMC, and where their limitations are critical. Beyond the methodological comparison, the thesis also serves a pedagogical role, making advanced Bayesian computation accessible, and points to future extensions under the same variational framework to generalized linear models (GLMs) and other members of the exponential family. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias - Estadística | |
| dc.description.methods | Building on the theoretical foundations of Bayesian inference and variational methods, this chapter develops the methodological framework of the thesis. We formalize the Linear Regression Model (LRM), the Hierarchical Linear Regression Model (HLRM), and the Clustering HLRM (CHLRM), specifying their priors and posterior structures. These models provide the ground on which we implement and compare MCMC, Variational Inference (VI), and Stochastic Variational Inference (SVI), thus establishing the link between theory and application that guides the subsequent empirical analysis. | |
| dc.description.notes | ||
| dc.description.researcharea | Estadística Bayesiana | |
| dc.description.technicalinfo | All code developed for this thesis is publicly available in a GitHub repository at https://github.com/ccparra/VariationalBayes-HLRM/. The implementation follows an object-oriented design using the R6 library in R, providing the reader with reusable classes and methods to freely apply and extend the algorithms presented in this work. | |
| dc.format.extent | xv, 102 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89494 | |
| dc.language.iso | eng | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | |
| dc.relation.references | Amari, S.-i. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2):251– 276 | |
| dc.relation.references | Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. University of London, University College London (United Kingdom) | |
| dc.relation.references | Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 1 edition | |
| dc.relation.references | Blei, D. M. and Jordan, M. I. (2006). Variational inference for dirichlet process mixtures. Bayesian Anal., 1(1):121–143 | |
| dc.relation.references | Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2016). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112:859 – 877 | |
| dc.relation.references | Brown, L. D. (1986). Fundamentals of statistical exponential families with applications in statistical decision theory. Lecture Notes-Monograph Series, 9:i–279 | |
| dc.relation.references | Christensen, R., Johnson, W. O., Branscum, A. J., and Hanson, T. E. (2010). Bayesian ideas and data analysis. Chapman & Hall/CRC Texts in Statistical Science. CRC Press, Boca Raton, FL | |
| dc.relation.references | Crawley, M. J. (2012). The R Book. Wiley-Blackwell, Hoboken, NJ, 2 edition | |
| dc.relation.references | Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann. Stat., 7(2):269–281 | |
| dc.relation.references | Gamerman, D. and Lopes, H. F. (2006). Markov chain Monte Carlo. Chapman & Hall/CRC Texts in Statistical Science. Chapman & Hall/CRC, Philadelphia, PA, 2 edition | |
| dc.relation.references | Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D. (2014). Bayesian Data Analysis. CRC Press, Florida | |
| dc.relation.references | Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge, New York | |
| dc.relation.references | Ghahramani, Z. and Beal, M. (2000). Propagation algorithms for variational bayesian learning. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing Systems, volume 13. MIT Press | |
| dc.relation.references | Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer, Seattle WA | |
| dc.relation.references | Hoffman, M., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational inference. Journal of Machine Learning Research, 14 No. 4:1303–1347 | |
| dc.relation.references | Kass, R. E. and Wasserman, L. (1995). A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion. J. Am. Stat. Assoc., 90(431):928–934 | |
| dc.relation.references | Kingma, D. P. and Welling, M. (2022). Auto-encoding variational bayes | |
| dc.relation.references | Kullback, S. and Leibler, R. A. (1951). Information and sufficiency. The Annals of Mathematical Statistics, 22:79–86 | |
| dc.relation.references | Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press | |
| dc.relation.references | Ormerod, J. T. and Wand, M. P. (2010). Explaining variational approximations. The American Statistician, 64(2):140–153 | |
| dc.relation.references | Parra, C. (2025). Variational Inference in Hierarchical Linear Regression Models. https://github. com/ccparra/VariationalBayes-HLRM/ | |
| dc.relation.references | Ranganath, R., Gerrish, S., and Blei, D. (2014). Black box variational inference. Technical report, Princeton University | |
| dc.relation.references | Regueiro, P., Rodríguez, A., and Sosa, J. (2024). Stochastic gradient variational bayes in the stochastic blockmodel | |
| dc.relation.references | Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22:400–407 | |
| dc.relation.references | Sosa, J. and Aristizabal, J. (2022). Some developments in bayesian hierarchical linear regression modeling. Revista Colombiana de Estadística - Applied Statistics, 45:231–255 | |
| dc.relation.references | Wainwright, M. J. and Jordan, M. I. (2007). Graphical models, exponential families, and variational inference. Found. Trends® Mach. Learn., 1(1-2):1–305 | |
| dc.relation.references | Wang, H., Bhattacharya, A., Pati, D., and Yang, Y. (2022). Structured variational inference in bayesian state-space models. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I., editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 8884–8905. PMLR | |
| dc.relation.references | Watanabe, S. (2012). A widely applicable bayesian information criterion. CoRR, abs/1208.6338 | |
| dc.relation.references | Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis using g-prior distributions, pages 233–243. NorthHolland, Amsterdam | |
| dc.relation.references | Zetterström, V. (2021). Variational bayes as a computer intensive method for bayesian regression. Master’s thesis, Uppsala University | |
| dc.relation.references | Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S. (2018). Advances in variational inference | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | |
| dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | |
| dc.subject.lemb | DECISIONES ESTADISTICAS | spa |
| dc.subject.lemb | Statistical decision | eng |
| dc.subject.lemb | TEORIA BAYESIANA DE DECISIONES ESTADISTICAS | spa |
| dc.subject.lemb | Bayesian statistical decision theory | eng |
| dc.subject.lemb | MODELOS LINEALES (ESTADISTICA) PROCESAMIENTO DE DATOS | spa |
| dc.subject.lemb | Linear models (statistics) - data processing | eng |
| dc.subject.lemb | PROCESOS DE MARKOV | spa |
| dc.subject.lemb | Markov processes | eng |
| dc.subject.lemb | METODO DE MONTECARLO | spa |
| dc.subject.lemb | Monte carlo method | eng |
| dc.subject.proposal | Bayesian hierarchical models | eng |
| dc.subject.proposal | Variational Inference | eng |
| dc.subject.proposal | Stochastic Variational Inference | eng |
| dc.subject.proposal | Exponential family | eng |
| dc.subject.proposal | Evidence Lower Bound | eng |
| dc.subject.proposal | Bayesian computation | eng |
| dc.subject.proposal | Modelos jerárquicos bayesianos | spa |
| dc.subject.proposal | Inferencia Variacional | spa |
| dc.subject.proposal | Inferencia Variacional Estocástica | spa |
| dc.subject.proposal | Familia exponencial | spa |
| dc.subject.proposal | Computación bayesiana | spa |
| dc.subject.proposal | ELBO | spa |
| dc.title | Variational inference for fully bayesian hierarchical linear models | eng |
| dc.title.translated | Inferencia variacional para modelos lineales jerárquicos completamente bayesianos | spa |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026286565_2025.pdf
- Tamaño:
- 6.65 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

