Nanopartículas de Óxido de Zinc Dopadas con Co, Cr, Fe, Mn y Ni. Propiedades Y Aplicación En La Degradación Fotocatalítica De Compuestos Orgánicos Contaminantes

dc.contributor.advisorAlmanza Montero, Ovidio Amado
dc.contributor.authorAcosta Humánez, Manuel Fernando
dc.contributor.cvlacAcosta Humánez, Manuel Fernando [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001117203]spa
dc.contributor.googlescholarAcosta Humánez, Manuel Fernando [https://scholar.google.com/citations?user=592jpq4AAAAJ&hl=en]spa
dc.contributor.orcidAcosta Humánez, Manuel Fernando [0000-0003-0610-4831]spa
dc.contributor.researchgateAcosta Humánez, Manuel Fernando [https://www.researchgate.net/profile/Fernando-Acosta-Humanez]spa
dc.contributor.researchgroupGrupo de Física Aplicadaspa
dc.contributor.scopusAcosta Humánez, Manuel Fernando [55509431400]spa
dc.date.accessioned2023-04-11T22:01:47Z
dc.date.available2023-04-11T22:01:47Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías a blanco y negrospa
dc.description.abstractIn this doctoral thesis, synthesis, characterization, and application of zinc oxide nanoparticles doped with transition metals (M), such as cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), and nickel (Ni), were studied. Samples were written as Zn1-xMxO. The preparation of these materials were carried out by the sol-gel method, citrate route, at a calcination temperature of 600 °C and a molar doping ratio x of 0.01 to 0.05 (1-5 at. %). Characterization was carried out using various experimental techniques. The chemical analysis was obtained through two techniques: atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF). The experimental x values were close to the theoretically x values The morphology of the particles was observed by scanning electron microscopy (SEM). By Fourier Transform Infrared Spectroscopy (FTIR) were observed the vibrational modes which were associated to gas adsorption (CO2 and NO3-), functional groups and organic residues. The vibrational mode attributed to the Zn-O bond was broadened with the kind of dopant metal and the molar ratio x, compared to the same signal from the ZnO sample; the FTIR band associated with the Zn-O tetrahedron decreased when x increase. Raman spectroscopy revealed the characteristic vibrational modes of zinc oxide, which had slight shifts with introduction of M doping metal. The E2high mode was the most intense vibrational mode in all samples. The Raman signals were deconvoluted as shown with 2B1low, A1(LO), and E1(LO) vibrational modes. The structural study was performed by X-ray diffraction (XRD). The formation of a single crystalline phase, type wurtzite was evidenced, evolving from its precursor materials. There were slight displacements of the diffraction peaks observed in the doped samples compared to the same peaks in ZnO, showing metals introduction in the crystal structure of zinc oxide. The preferential orientation of the crystals growth, TC(hkl), showed that there was a change in the crystalline growing preferential direction from (101) plane direction for ZnO to (100) plane direction for Co and Cr doped ZnO samples, and (100) and (002) direction planes for Fe and Mn doped ZnO samples. For Ni-ZnO samples, the crystals showed growingh preferential in the (002) plane direction. The lattice parameters of wurtzite structure for synthesized materials were determined using the Rietveld methodology. Lattice parameters a, c, u, c/a, V and R were evaluated for a type wurtzite structure, and these values were within those reported in the literature, showing slight displacements of the crystalline structure compared with an ideal ZnO structure. The same behavior was evidenced with the Zn(M)O4 tetrahedron distortion parameters. Crystal size was evaluated using Scherrer's equation, reporting dimensions of the nanometric order. Using the Williamson-Hall equation, the crystal size and microstrains were determined simultaneously. The microstrains found were associated with the stoichiometric gradient caused by the substitutional doping of metals M. The optical properties of the synthesized materials were determined by photoluminescence and diffuse reflectance ultraviolet-visible spectroscopy (UV-Vis DRS). In the case of photoluminescence, the measured spectra showed the formation of reactive species reported for zinc oxide. Among these, the associated signals were the oxygen and zinc vacancies (VO, VZn), oxygen interstices and antisites (Oi, OZn) and the excitonic transitions. Some samples showed the negatively charged oxygen vacancy (Oi-). By ultraviolet-visible spectroscopy, d-d transition of zinc oxide was reported in all samples. Signals associated with each dopant metal M were present and increased with the x molar ratio value. Symmetry for synthesized samples was tetrahedral for Co, Fe Mn and Ni doped ZnO, and octahedral for Cr and Ni doped ZnO samples. Diffuse reflectance measurements were useful to determine band gap energy values, through the Kubelka-Munk function. The gap values showed that there was no quantum confinement, so the changes in the band gap were associated to metal doping. Most of the samples presented red shifting, being very evident in Co doped ZnO samples. The excitonic transitions, only in Co doped ZnO samples, was in the visible region. The local structure, where the dopant metals in the zinc oxide is housed, was studied by electron paramagnetic resonance (EPR) spectroscopy. In the case of the zinc oxide sample taken as a control, there was no EPR signal that could be associated with free radicals present in the synthesized material. In the case of the cobalt-doped zinc oxide samples, these samples could be fitted with a spin Hamiltonian which contained the matrix elements of the Zeemann interaction and zero-field splitting, in a purely axial configuration, indicating that the atoms of cobalt were introduced into the ZnO structure in that symmetry. In the case of the chromium doped ZnO samples, with a spin value S = 3/2 and g values taken as isotropic, the symmetry where this dopant metal was lodged is axial, with slight rhombic deformations. All signals were associated with chromium ions in the ZnO structure. For the iron-doped zinc oxide samples, the spectra were fitted with a spin Hamiltonian containing a spin value S = 5/2, isotropic g values and dipole interaction parameters responsible for splitting at zero field. The manganese-doped zinc oxide samples were successfully simulated with a spin Hamiltonian containing the electronic Zeemann interactions, hyperfine coupling and fourth-order cubic field splitting parameter, represented by a, F parameters. g-values were taken as isotropic, the zero-field splitting (ZFS) parameters D and E were the same for all doped samples. When nickel doped zinc oxide samples were studied, they were simulated using the spin Hamiltonian considering that g and A values were anisotropic. Given the parameters D and E values, nickel ions would be present in axial symmetry. The presence of surface donors was not observed. The application of the obtained materials was carried out using photodegradation tests of a polluting organic compound: Congo red dye (RC). The degradation curves for all the synthesized materials showed a dye concentration decrease as a time function. This decrease was greater for the cobalt-doped zinc oxide samples. Remaining doped samples presented a similar behavior as like ZnO sample. A high photocatalytic efficiency was presented for Co doped ZnO samples. A pseudo-first order reaction kinetic model was used in order to evaluate reaction rate dye consumption time. Keywords: atomic absorption spectroscopy (AAS), chemical kinetics, Congo red (CR), electron paramagnetic resonance (EPR), Fourier transform infrared spectroscopy (FTIR), metal-doped ZnO, nanoparticles, photocatalysis, photoluminiscence spectroscopy (PLS), Raman spectroscopy, scanning electron microscopy (SEM), sol-gel method, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), wurtzite, X-ray diffraction (XRD), X-ray fluorescence (XRF), ZnO. (Texto tomado de la fuente)eng
dc.description.abstractEn esta tesis doctoral, se realizó la síntesis, caracterización y aplicación de nanopartículasde óxido de zinc dopadas con metales de transición (M), tales como cobalto (Co), cromo (Cr),hierro (Fe), manganeso (Mn) y níquel (Ni), resultando en la fórmula nominal no estequiométricaZn1−xMxO. La preparación de estos materiales se llevó a cabo mediante el método sol−gel, rutacitrato, a una temperatura de calcinación de 600 ○C y relación molar de dopado x de 0,01 a 0,05(1−5 % at.). La caracterización fue llevada a cabo mediante diversas técnicas experimentales.El análisis químico, con el cual pudo determinarse la concentración de los metales dopantesy el zinc, así como el valor experimental x de la relación molar de dopado para todas las muestras calcinadas, pudo ser obtenido mediante dos de las técnicas usadas en análisis químico: lasespectroscopías de absorción atómica (AAS) y fluorescencia de rayos X (XRF). Los valores de x experimentales estuvieron cerca a los valores de la relación molar de dopado obtenidos teóricamente.La morfología de las partículas obtenidas se observó mediante microscopía electrónica de barrido(SEM). Por espectroscop´ıa infrarroja con Transformada de Fourier (FTIR) se observaron los modos vibracionales asociados a la adsorción de gases (CO2 y NO2), grupos funcionales y residuosorgánicos mediante el modo característico del grupo −CH2−, en el caso de los materiales calcinados,provenientes de la síntesis. El modo vibracional atribuido al enlace Zn−O se ensanchó con el metaldopante y la relación molar de dopado x, comparado con la misma señal de la muestra ZnO; labanda en FTIR asociada al tetraedro de Zn−O disminuyó con el incremento de x, para cada metaldopante. Por espectroscopía Raman, se evidenciaron los modos vibracionales característicos del óxido de zinc, que tuvieron ligeros desplazamientos con la introducción del metal dopante M. Elmodo Ehigh2fue el modo vibracional más intenso en todas las muestras. Se hizo deconvolución de las señales tal como se mostró con los modos vibracionales 2Blow1, A1(LO) y E1(LO).El estudio estructural se realizó mediante difracción de rayos X (DRX). Se evidenció laformación de una única fase cristalina, tipo wurtzita característica del óxido de zinc, evolucionandodesde sus materiales precursores. Se dieron desplazamientos leves de los picos de difracción observados en las muestras dopadas comparadas con los picos en el ZnO, mostrando la introducciónde los metales en la estructura cristalina del ´oxido de zinc. La orientación preferencial de crecimiento cristalino T C(hkl) mostró que hubo un cambio en la preferencia de crecimientos de loscristales, pasando de la dirección del plano (101) del ZnO a la dirección del plano (100) para elZnO dopado con Co y Cr y la dirección de los planos (100) y (002) en muestras dopadas con Fey Mn. Para las muestras dopadas con Ni los cristales muestran preferencias de crecimiento enla direcci´on del plano (002). Los parámetros de red de la estructura wurtzita de los materialessintetizados se determinaron usando la metodología Rietveld. Los parámetros de red evaluados,como a, c, u, c/a, V y R estuvieron dentro de lo reportado en la literatura para este tipo demateriales, mostrando ligeros desplazamientos de la estructura cristalina del ZnO ideal. De igualmanera ocurrió con los parámetros de distorsión del tetraedro Zn(M)O4. Se evaluó el tama ̃no decristal mediante la ecuación de Scherrer reportando dimensiones del orden nanométrico. Por laecuación de Williamson−Hall se determinaron de manera simultánea el tamaño de cristal y microtensiones. Las microtensiones halladas se asociaron al gradiente estequiométrico causado por eldopado sustitucional de los metales M.Las propiedades ópticas de los materiales sintetizados se determinaron mediante las espectroscopías de fotoluminiscencia y de ultravioleta−visible en reflectancia difusa (UV−Vis DRS). Porultravioleta−visible, en todas las muestras se reportaron las señales asociadas a la transición d−ddel óxido de zinc. Señales asociadas a cada metal dopante M aparecieron y se incrementaron con elvalor de x. La simetría fue tetraédrica para las muestras dopadas con Co, Fe, Mn y Ni, octaédricapara Cr y Ni. En la parte de reflectancia difusa, estas mediciones fueron útiles para determinarlos valores de energía de la banda gap, mediante la función de Kubelka−Munk. Los valores de gapevidenciaron que no hubo confinamiento cuántico, por lo que las modificaciones en la banda gapse debieron al dopado metálico. La mayoría de las muestras presentaron desplazamientos al rojo,siendo muy evidente en las muestras de ZnO con Co. las transiciones excitónicas, sólo en el caso delas muestras de ZnO dopadas con Co, la longitud de onda asociada se incrementó al punto de pasarde la región del UV a la región del visible, con el incremento de la relación molar de dopado x     Para las demás muestras, se tuvieron pequeños aumentos en los valores de la longitud de onda, perodichos valores se mantuvieron en la región del UV, al igual que la muestra de ZnO sin dopar. En elcaso de la fotoluminiscencia, los espectros medidos mostraron la formación de especies reactivas reportadas para el óxido de zinc. Entre estas las señales asociadas estuvieron las vacancias de ox´ıgenoy zinc (VO, VZn), los intersticios y antisitios de oxíıgeno (Oi, OZn) y por supuesto las transicionesexcitónicas. Algunas muestras presentaron el intersticio de oxígeno cargado negativamente (O –i).La estructura local de los metales dopantes en el óxido de zinc se estudió por espectroscopiade resonancia paramagnética electrónica (EPR). En el caso de la muestra de óxido de zinc tomadacomo control, no existió señal EPR alguna que pudiera estar asociada a radicales libres presentesen el material sintetizado. En el caso de las muestras de óxido de zinc dopadas con cobalto, estasmuestras pudieron ser ajustadas con un Hamiltoniano de espín el cual contenía los elementos matriciales de la interacción Zeeman y desdoblamiento a campo cero, en una configuración puramenteaxial, indicando que los átomos de cobalto se introdujeron en la estructura del ZnO en esta simetr´ıa.En el caso de las muestras de ZnO dopadas con cromo, con un valor de esp´ın S = 3/2 y valoresde g tomado como isotrópico, la simetr´ıa donde se alojó este metal dopante es axial, con ligerasdeformaciones rómbicas. Todas las señales se asociaron a los iones de cromo en la estructura delZnO. Para las muestras de óxido de zinc dopadas con hierro, los espectros se ajustaron con unHamiltoniano de espín que contenía un valor de espín S = 5/2, valores isotópicos de g, y valores quedan cuenta de una interacción dipolar responsable del desdoblamiento a campo cero). Las muestrasde óxido de zinc dopadas con manganeso fueron simuladas exitosamente con un Hamiltoniano deesp´ın que contenía las interacciones Zeeman electrónica, acoplamiento hiperfino y parámetro dedesdoblamiento de campo c´ubicó de cuarto orden, representado por los par´ametros a y F. Losvalores de g se tomaron como isotrópicos, los parámetros de desdoblamiento a campo cero (ZFS) Dy E fueron iguales para todas las muestras dopadas. Por último, cuando se estudiaron las muestrasde óxido de zinc dopado con níquel, fueron simuladas usando el Hamiltoniano de espín teniendoen cuenta que los valores de g y A son anisotrópicos. Dados los valores de los parámetros D yE, los iones de níquel estarían presentes en simetría axial. No se observó la presencia de donoressuperficiales.La aplicación de los materiales obtenidos se llevó a cabo usando ensayos de fotodegradaciónde un compuesto orgánico contaminante: colorante rojo Congo (RC). Las curvas de degradaciónde todos los materiales sintetizados mostraron la disminución de la concentración del colorante  en función del tiempo. Dicha disminución fue mayor para las muestras de óxido de zinc dopadocon cobalto. El resto de muestras dopadas presentaron un comportamiento similar a cuando seusó la muestra de ZnO. Una alta eficiencia fotocatalítica se presentó para las muestras de ZnOdopado con Co. El modelo cinético usado para la evaluación de la velocidad de reacción y tiempode consumo del colorante fue el de pseudo−primer orden.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.description.researchareaSoluciones Tecnológicas e Investigación para la Industriaspa
dc.description.sponsorshipConvocatoria Colciencias 647 de 2014. Doctorados nacionales. El objetivo fue fortalecer los programas doctorales en universidades acreditadas del país mediante la financiación de sus estudiantes de doctorado.spa
dc.description.sponsorshipProyecto aprobado No. 41469 por la Dirección de Investigación y Extensión Sede Bogotá, en la cual pudieron culminarse los objetivos planteados de la tesis doctoral.spa
dc.format.extentxxxv, 252 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83694
dc.language.isoengeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesAbragam, A., & Bleaney, B. (1970). Electron paramagnetic resonance of transition ions (W. Marshall & D. H. Wilkinson, Eds.). Clarendon Press - Oxford.spa
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesBarrett, C. S., & Massalski, T. B. (1980). Structure of metals. Crystallographic Methods, Principles, and Data (3rd ed.). Pergamon Press.spa
dc.relation.referencesBarrón Montes, E. (2014). Síntesis y caracterización de nanoestructuras de óxido de zinc [Trabajo de grado]. Instituto Pedagógico Nacionalspa
dc.relation.referencesBindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X−ray peak profile analysis. Journal of Theoretical Applied Physics, 8 (4), 123–134.spa
dc.relation.referencesBöttcher, R., Lorenz, M., Pöppl, A., Spemann, D., & Grundmann, M. (2015). Local zincblende coordination in heteroepitaxial wurtzite Zn1−xMgxO:Mn thin films with 0.01 ≤ x ≤ 0.04 identified by electron paramagnetic resonance. Journal of Materials Chemistry C, 3 (45), 11918–11929.spa
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.spa
dc.relation.referencesFukumura, T., Toyosaki, H., & Yamada, Y. (2005). Magnetic oxide semiconductors. Semiconductor Science and Technology, 20 (4), S103–S111.spa
dc.relation.referencesGonzález Swacki, N., & Swacka, T. (2010). Basic elements of crystallography. Pan Stanford Publishing.spa
dc.relation.referencesGrundmann, M. (2006). The physics of semiconductors: An introduction including devices and nanophysics (2nd ed.). Springer.spa
dc.relation.referencesHarris, D. C. (2007). Quantitative chemical analysis (7th ed.). W. H. Freeman and Company.spa
dc.relation.referencesHaschke, M. (2014). Laboratory micro−X−ray fluorescence spectroscopy: instrumentation and applications. Springer.spa
dc.relation.referencesHe, B. B. (2009). Two dimensional X-Ray Diffraction. Wiley.spa
dc.relation.referencesHench, L. L., & West, J. K. (1990). The sol−gel process. Chemical Reviews, 90 (1), 33–72.spa
dc.relation.referencesKortüm, G. (1969). Reflectance spectroscopy. Principles, Methods, Applications. Springer-Verlag.spa
dc.relation.referencesKossut, J., & Gaj, J. A. (Eds.). (2010). Introduction to the Physics of Diluted Magnetic Semiconductors. Springer.spa
dc.relation.referencesLachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39 (1), 75–90.spa
dc.relation.referencesLam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination and Water Treatment, 41 (1-3), 131–169.spa
dc.relation.referencesMorkoç, H., & Ozgür, Ü. (Eds.). (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley.spa
dc.relation.referencesPankove, J. I. (1971). Optical processes in semiconductors. Dover Publications Inc.spa
dc.relation.referencesPearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003). Wide band gap ferromagnetic semiconductors and oxides. Journal of applied physics, 93 (1), 1–13.spa
dc.relation.referencesSamadi, M., Zirak, M., Naseri, A., Khorashadizade, E., & Moshfegh, A. Z. (2015). Recent progress on doped ZnO nanostructures for visible − light photocatalysis. Thin Solid Films, 605, 2–19.spa
dc.relation.referencesSchrader, B. (Ed.). (2008). Infrared and Raman spectroscopy methods and applications. Wiley VCH.spa
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2006). Principios de análisis instrumental (6.a ed.). Cencage.spa
dc.relation.referencesSkoog, D. A., Holler, J., & Nieman, T. (2001). Principios de Análisis Instrumental (5.a ed.). McGraw Hill.spa
dc.relation.referencesStoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, 178, 42–55.spa
dc.relation.referencesStuart, B. (2004). Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons.spa
dc.relation.referencesAcosta Humánez, M. F. (2009). Síntesis y caracterización de un óxido de lantano tipo perovskita mediante el método sol−gel [Trabajo de grado]. Universidad de Córdoba.spa
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.spa
dc.relation.referencesAcosta−Humánez, F., Cogollo Pitalúa, R., & Almanza, O. (2013). Electron paramagnetic resonance in Zn1−xCoxO. Journal of Magnetism and Magnetic Materials, 329, 39–42.spa
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.spa
dc.relation.referencesAcosta−Humánez, F., Vargas−Hernández, C., & Almanza, O. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1−xCoxO (x = 0.01 − 0.05) samples. Superficies y Vacío, 27 (2), 43–48.spa
dc.relation.referencesAljawfi, R. N., & Mollah, S. (2011). Properties of Co/Ni codoped ZnO based nanocrystalline DMS. Journal of Magnetism and Magnetic Materials, 323 (23), 3126–3132.spa
dc.relation.referencesAPHA, AWWA, & WEF. (1999). Standard methods for examination of water and wastewater (20th ed.). American Public Health Association.spa
dc.relation.referencesBasolo, F., & Johnson, R. (1980). Química de los compuestos de coordinación. Reverté.spa
dc.relation.referencesBindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X−ray peak profile analysis. Journal of Theoretical Applied Physics, 8 (4), 123–134.spa
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.spa
dc.relation.referencesBuchheit, R., Acosta−Humanez, F., & Almanza, O. (2016). Structural, EPR and optical studies on Cu−doped ZnO nanoparticles synthesized by the sol−gel method at different calcination temperatures. Revista Cubana de Fisica, 33 (1), 4–11.spa
dc.relation.referencesCaglar, Y. (2013). Sol−gel derived nanostructure undoped and cobalt doped ZnO: Structural, optical and electrical studies. Journal of alloys and compounds, 560, 181–18spa
dc.relation.referencesChang, R. (2002). Química (7.a ed.). McGraw−Hill.spa
dc.relation.referencesCochran, W., & Cox, G. (1995). Diseños experimentales. Trillas.spa
dc.relation.referencesElaziouti, A., Laouedj, N., & Ahmed, B. (2011). ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. Journal of Chemical Engineering & Process Technology, 2, 2–10spa
dc.relation.referencesHarris, D. C. (2007). Quantitative chemical analysis (7th ed.). W. H. Freeman and Company.spa
dc.relation.referencesHelrich, K. (Ed.). (1990). Official Methods of Analysis (15th, Vol. 1). Association of Official Analytical Chemists, Inc.spa
dc.relation.referencesInternational Centre for Diffraction Data. (2004). PDF−2 Database.spa
dc.relation.referencesLide, D. R. (2003). CRC Handbook of chemistry and physics (84th ed.). CRC Press.spa
dc.relation.referencesMartin, J. D. (2010). XPowder: Program for Qualitative and Quantitative Powder X−Ray Diffraction Analysis (PXRD).spa
dc.relation.referencesMartinez Lozano, G. (2007). Análisis de parámetros microestructurales: tamaño de cristalita y microdeformación de Compuestos Tipo Hidrotalcita de Cobalto [Tesis de maestría]. Instituto Politécnico Nacional.spa
dc.relation.referencesNoriega, R., Goris, L., Rivnay, J., Scholl, J., Thompson, L. M., Palke, A. C., Stebbins, J. F., & Salleo, A. (2009). Transport and structural characterization of solution − processable doped ZnO nanowires. Proceedings of SPIE − The International Society for Optical Engineering, 7411, 74110.spa
dc.relation.referencesPaşka, O., Ianoş, R., Păcurariu, C., & Brădeanu, A. (2014). Magnetic nanopowder as effective adsorbent for the removal of congo red from aqueous solution. Water Science & Technology, 69 (6), 1234–1240.spa
dc.relation.referencesPhilips Analytical B.V. (2002). X’Pert HighScore Plus (Version 2.2).spa
dc.relation.referencesRodríguez−Carvajal, J. (2006). Fullprof Suite software: Crystallographic tools for Rietveld, profile matching and integrated intensity refinements for X−ray and/or neutron data. https: / / www.ill.eu/sites/fullprof/php/programs.htmlspa
dc.relation.referencesSadiq, M. (1992). Toxic Metal Chemistry in Marine Environments. Marcel Dekker Inc.spa
dc.relation.referencesShannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta crystallographica A, 32, 751–767.spa
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2006). Principios de análisis instrumental (6.a ed.). Cencage.spa
dc.relation.referencesStoll, S. (2021). Easyspin. https://www.easyspin.org/index.htmlspa
dc.relation.referencesStoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, 178, 42–55.spa
dc.relation.referencesWilliams, C. H., David, D. J., & Iismaa, O. (1962). The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science, 59 (3), 381–385.spa
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.spa
dc.relation.referencesAcosta−Humánez, F., Magon, C. J., Montes−Vides, L., & Almanza, O. (2021). Structural, Optical and EPR Study of Zn1−xFexO Nanocrystals. Journal of Low Temperature Physics, 202 (1–2), 29–47.spa
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.spa
dc.relation.referencesAcosta−Humánez, F., Vargas−Hernández, C., & Almanza, O. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1−xCoxO (x = 0.01 − 0.05) samples. Superficies y Vacío, 27 (2), 43–48.spa
dc.relation.referencesAkhtari, F., Zorriasatein, S., Farahmandjou, M., & Elahi, S. M. (2018). Synthesis and optical properties of Co2+−doped ZnO network prepared by new precursors. Materials Research Express, 5 (6), 06515.spa
dc.relation.referencesAlagiri, M., Ponnusamy, S., & Muthamizchelvan, C. (2012). Synthesis and characterization of NiO nanoparticles by sol−gel method. Journal of Materials Science: Materials in Electronics, 23, 728–732.spa
dc.relation.referencesAlim, K. A., Fonoberov, A., Shamsa, M., & Balandin, A. A. (2005). Micro−raman investigation of optical phonons in ZnO nanocrystals. Journal of Applied Physics, 97 (12), 124313.spa
dc.relation.referencesAnsari, S. A., Khan, W., Chaman, M., & Naqvi, A. H. (2011). Synthesis, structural and optical properties of Cr doped ZnO nanoparticles. Asian Journal of Chemistry, 23 (12), 5622–5624.spa
dc.relation.referencesArguello, C. A., Rousseau, D. L., & Porto, S. P. (1969). First−order raman effect in wurtzite−type crystals. Physical Review, 181 (3), 1351–1363.spa
dc.relation.referencesBa-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., S.Takriff, M., & Sopian, K. (2013). The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol−gel technique. Journal of Alloys and Compounds, 550, 63–70.spa
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.spa
dc.relation.referencesBundesmann, C., Ashkenov, N., Schubert, M., Spemann, D., Butz, T., Kaidashev, E. M., Lorenz, M., & Grundmann, M. (2003). Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Applied Physics Letters, 83 (10), 1974–1976.spa
dc.relation.referencesCuscó, R., Alarcón-Lladó, E., Ibáñeez, J., Artús, L., Jiménez, J., Wang, B., & Callahan, M. J. (2007). Temperature dependence of Raman scattering in ZnO. Physical Review B - Condensed Matter and Materials Physics, 75 (16), 165202.spa
dc.relation.referencesDamen, T. C., Porto, S., & Tell, B. (1966). Raman Effect in Zinc Oxide. Physical Review, 142 (2), 570–573spa
dc.relation.referencesDevi, P. G., & Velu, A. S. (2016). Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co−precipitation method. Journal of Theoretical and Applied Physics, 10 (3), 233–240.spa
dc.relation.referencesEl Khalidi, Z., Hartiti, B., Siadat, M., Comini, E., Arachchige, H. M. M. M., Fadili, S., & Thevenin, P. (2019). Acetone sensor based on Ni doped ZnO nanostructures: Growth and sensing capability. Journal of Materials Science: Materials in Electronics, 30 (8), 7681–7690.spa
dc.relation.referencesElilarassi, R., & Chandrasekaran, G. (2010). Synthesis and optical properties of Ni−doped zinc oxide nanoparticles for optoelectronic applications. Optoelectronic Letters, 6 (1), 0006–0010.spa
dc.relation.referencesElilarassi, R., Rao, P. S., & Chandrasekaran, G. (2011). Diluted magnetic semiconductor properties in Zn1−xCuxO nanoparticles synthesized by sol gel route. Journal of Sol−Gel Science and Technology, 57 (1), 101–108.spa
dc.relation.referencesFerraro, J. R., Nakamoto, K., & Brown, C. W. (2003). Introductory Raman Spectroscopy. Elsevier.spa
dc.relation.referencesGhosh, C. K., Malkhandi, S., Mitra, M. K., & Chattopadhyay, K. K. (2008). Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. Journal of Physics D: Applied Physics, 41, 245113.spa
dc.relation.referencesGuo, S., Du, Z., & Dai, S. (2009). Analysis of Raman modes in Mn− doped ZnO nanoparticles. Physica Status Solidi B: basic solid state, 246 (10), 2329–2332.spa
dc.relation.referencesHassan, M. M., Khan, W., Mishra, P., Islam, S. S., & Naqvi, A. H. (2017). Enhancement in alcohol vapor sensitivity of Cr doped ZnO gas sensor. Materials Research Bulletin, 93, 391–400.spa
dc.relation.referencesJan, T., Iqbal, J., Ismail, M., Mansoor, Q., Mahmood, A., & Ahmad, A. (2014). Eradication of Multi− drug Resistant Bacteria by Ni Doped ZnO Nanorods: Structural, Raman and optical characteristics. Applied Surface Science, 308, 75–81.spa
dc.relation.referencesJin, C., Yu, T., Wu, Z., Chen, X., Wu, X., & Zhuge, L. (2012). Effect of growth temperature on characteristics of Cr−doped ZnO nanorods by magnetron sputtering. Applied Physics A: Materials Science & Processing, 109, 173–179.spa
dc.relation.referencesKefalas, E. T., Panagiotidis, P., Raptopoulu, C. P., Terzis, A., Mavromoustakos, T., & Salifoglou, A. (2005). Mononuclear titanium (IV) - citrate complexes from aqueous solutions: pH - specific synthesis and structural and spectroscopic studies in relevance to aqueous titanium (IV) - citrate speciation. Inorganic Chemistry, 44 (8), 2596–2605.spa
dc.relation.referencesKotsakis, N., Raptopoulou, C., Tangoulis, V., Terzis, A., Giapintzakis, J., Jakusch, T., Kiss, T., & Salifoglou, A. (2003). Correlations of synthetic, spectroscopic, structural, and speciation studies in the biologically relevant cobalt(II) − citrate system: The tale of the first aqueous dinuclear cobalt(II) − citrate complex. Inorganic Chemistry, 42 (1), 22–31.spa
dc.relation.referencesLi, J. M. (2010). Highly UV luminescent ZnO microtetrapod − on − nanowire hybrids. Nanotechnology, 21 (17), 175603.spa
dc.relation.referencesLi, X.-G., Dong, Y.-H., Xian, H., Hernández, W. Y., Meng, M., Zou, H.-H., Ma, A.-J., Zhang, T.-Y., Jiang, Z., Tsubaki, N., & Vernoux, P. (2011). De−NOx in alternative lean/rich atmospheres on La1−xSrxCoO3 perovskites. Energy & Environmental Science, 4 (9), 3351–3354.spa
dc.relation.referencesLi, Y., Li, Y., Zhu, M., Yang, T., Huang, J., & Jim, Y. H. H. (2010). Structure and magnetic properties of Cr−doped ZnO nanoparticles prepared under high magnetic field. Solid State Communications, 150 (15–16), 751–754.spa
dc.relation.referencesLiu, H., Yang, J., Hua, Z., Zhang, Y., Yang, L., Xiao, L., & Xie, Z. (2010). The structure and magnetic properties of Cu−doped ZnO prepared by sol−gel method. Applied Surface Science, 256 (13), 4162–4165.spa
dc.relation.referencesMcCluskey, M. D. (2000). Local vibrational modes of impurities in semiconductors. Applied Physics Reviews, 87 (8), 3593–3616.spa
dc.relation.referencesMiller, F. A., & Wilkins, C. H. (1952). Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Analytical Chemistry, 24 (8), 1253–1294.spa
dc.relation.referencesMote, V. D., Huse, V. R., & Dole, B. N. (2012). Synthesis and Characterization of Cr Doped ZnO Nanocrystals. World Journal of Condensed Matter Physics, 2, 208–211.spa
dc.relation.referencesMoussa, D., El-Said Bakeer, D., Awad, R., & Abdel-Gaber, A. (2017). Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conference Series, 869 (1), 012021.spa
dc.relation.referencesNakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds (6th ed.). John Wiley & Sons.spa
dc.relation.referencesNehru, L. C., Swaminathan, V., & Sanjeeviraja, C. (2012). Rapid synthesis of nanocrystalline ZnO by a microwave−assisted combustion method. Powder Technology, 226, 29–33.spa
dc.relation.referencesPal, B., Sarkar, D., & Giri, P. K. (2015). Structural, optical, and magnetic properties of Ni doped ZnO nanoparticles: Correlation of magnetic moment with defect density. Applied Surface Science, 356, 804–811.spa
dc.relation.referencesPandiyarajan, T., & Karthikeyan, B. (2012). Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles. Journal of Nanoparticle Research, 14 (1), 647.spa
dc.relation.referencesRaja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24.spa
dc.relation.referencesRajendran, M., & Rao, S. (1994). Formation of BaTiO3 from citrate precursor. Journal of solid state chemistry, 113, 239–247.spa
dc.relation.referencesRao, Y., Xu, H., Liang, Y., & Hark, S. (2011). Synthesis, microstructural and magnetic properties of Mn− doped ZnO nanowires. CrystEngComm, 13 (7), 2566–2570.spa
dc.relation.referencesRavichandrika, K., Kiranmagi, P., & Ravikumar, R. V. S. S. N. (2011). Synthesis, characterization and antibacterial activity of ZnO nanoparticles. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 336–338.spa
dc.relation.referencesReddy, A. J., Kokila, M., Nagabhushana, H., Rao, J., Shivakumara, C., Nagabhushana, B., & Chakradhar, R. (2011). EPR, thermo and photoluminescence properties of ZnO nanopowders. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 81 (1), 59–63.spa
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Chadakhar, R. P. S., Shivakumara, C., Rao, J. L., & Nagabhushana, B. M. (2011). Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis. Journal of Alloys and Compounds, 509 (17), 5349–5355.spa
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., & Chakradhar, R. P. S. (2011). Combustion synthesis, characterization and raman studies of ZnO nanopowders. Spectrochimica Acta A: Molecular and biomolecular spectroscopy, 81 (1), 53–58.spa
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Sharma, S. C., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., & Chakradhar, R. P. (2012). Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles. Materials Chemistry and Physics, 133 (2-3), 876–883.spa
dc.relation.referencesRusso, V., Ghidelli, M., Gondoni, P., Casari, C. S., & Li Bassi, A. (2014). Multi−wavelength Raman scattering of nanostructured Al−doped zinc oxide. Journal of Applied Physics, 115 (7), 073508.spa
dc.relation.referencesSánchez Zeferino, R., Barboza Flores, M., & Pal, U. (2011). Photoluminescence and raman scattering in Ag−doped ZnO nanoparticles. Journal of Applied Physics, 109 (1), 014308.spa
dc.relation.referencesSaravanan, R., Santhi, K., Sivakumar, N., Narayanan, V., & Stephen, A. (2012). Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. Materials Characterization, 67, 10–16.spa
dc.relation.referencesŠćepanović ,M., Grujić-Brojčin, M., Vojisavljević, K., Bernik, S., & Srećković, T. (2010). Raman study of structural disorder in ZnO nanopowders. Journal of Raman Spectroscopy, 41 (9), 914–921.spa
dc.relation.referencesSilverstein, R. M., & Webster, F. X. (1997). Spectrometric identification of organic compounds (6th ed.). John Wiley & Sons.spa
dc.relation.referencesSingh, J., Chanda, A., Gupta, S., Shukla, P., & Chandra, V. (2016). Effect of cobalt doping on structural and optical properties of ZnO nanoparticles. AIP Conference Proceedings, 1731, 050091.spa
dc.relation.referencesSingh, S., Kumar, E. S., & Rao, M. S. R. (2008). Microstructural, optical and electrical properties of Cr−doped ZnO. Scripta Materalia, 58 (10), 866–869.spa
dc.relation.referencesSmith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. Taylor & Francis.spa
dc.relation.referencesSrinivasulu, T., Saritha, K., & Reddy, K. R. (2017). Synthesis and Characterization of Fe−doped ZnO Thin Films Deposited by Chemical Spray Pyrolysis. Modern Electronic Materials, 3 (2), 76–85.spa
dc.relation.referencesVan Werde, K., Mondelaers, D., Vanhoyland, G., Nelis, D., Van Bael, M. K., Mullens, J., & Van Poucke, L. C. (2002). Thermal descomposition of the ammonium zinc acetate citrate precursor for aqueous chemical solution deposition of ZnO. Journal of Materials Science, 37 (1), 81– 88.spa
dc.relation.referencesVijayalakshmi, K., & Sivaraj, D. (2015). Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Advances, 5 (84), 68461–68469.spa
dc.relation.referencesVinod, R., Bushiri, M. J., Achary, S. R., & V. Muñoz − Sanjosé. (2015). Quenching and blue shift of UV emission intensity of hydrothermally grown ZnO:Mn nanorods. Materials Science and Engineering B: Advanced functional solid − state materials, 191, 1–6.spa
dc.relation.referencesWang, W., Zhang, X., Chen, F., Ma, C., Chen, C., Liu, Q., Liao, D., & Li, L. (2005). Homo − and hetero − metallic manganese citrate complexes: Syntheses, crystal structures and magnetic properties. Polyhedron, 24 (13), 1656–1668spa
dc.relation.referencesWei-Chen, L., Wei-Gang, G., Li-Hua, W., Xiu-Ling, M., Shen-Chang, X., & Zhang-Jing, Z. (2014). Synthesis, crystal structure and characterization of a new zinc citrate complex. Chinese Journal of Structural Chemistry, 33 (4), 591–596.spa
dc.relation.referencesXiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006). Photoluminescence and FTIR study of ZnO nanoparticles: The impurity and defect perspective. Physica Status Solidi (c), 3 (10), 3577–3581.spa
dc.relation.referencesYadav, H. K., Sreenivas, K., Gupta, V., & Katiyar, R. S. (2009). Structural studies and Raman spectroscopy of forbidden zone boundary phonons in Ni − doped ZnO ceramics. Journal of Raman spectroscopy, 40, 381–386.spa
dc.relation.referencesZhao, J., Wang, L., Yan, X., Y.Yang, Lei, Y., Zhou, J., Huang, Y., Gu, Y., & Zhang, Y. (2011). Structure and photocatalytic activity of Ni− doped ZnO nanorods. Materials Research Bulletin, 46 (8), 1207–1210.spa
dc.relation.referencesZhong, H., Wang, X., Cheng, Z., Li, W., & Xu, W. (2006). Effect on Mn+ ion implantation on the Raman spectra of ZnO. Journal of Applied Physics, 99 (10), 103905.spa
dc.relation.referencesZia, A., Shah, N. A., Ahmed, S., & Khan, E. U. (2014). The influence of cobalt on the physical properties of ZnO nanostructures. Physica Scripta, 89, 105802.spa
dc.relation.referencesZolfaghari, M. (2019). Propose for raman mode position for Mn− doped ZnO nanoparticles. Physica B: condensed matter, 555, 1–8.spa
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.spa
dc.relation.referencesAcosta−Humánez, F., Cogollo Pitalúa, R., & Almanza, O. (2013). Electron paramagnetic resonance in Zn1−xCoxO. Journal of Magnetism and Magnetic Materials, 329, 39–42.spa
dc.relation.referencesAcosta−Humánez, F., Magon, C. J., Montes−Vides, L., & Almanza, O. (2021). Structural, Optical and EPR Study of Zn1−xFexO Nanocrystals. Journal of Low Temperature Physics, 202 (1–2), 29–47.spa
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.spa
dc.relation.referencesAcosta−Humánez, F., Vargas−Hernández, C., & Almanza, O. (2014). Effect of sintering temperature on the structure and mean crystallite size of Zn1−xCoxO (x = 0.01 − 0.05) samples. Superficies y Vacío, 27 (2), 43–48.spa
dc.relation.referencesAnsari, S. A., Khan, W., Chaman, M., & Naqvi, A. H. (2011). Synthesis, structural and optical properties of Cr doped ZnO nanoparticles. Asian Journal of Chemistry, 23 (12), 5622–5624.spa
dc.relation.referencesAryanto, D., Marwoto, P., Sudir, T., Wismogroho, A. S., & Sugianto. (2019). Growth of a−axis−oriented Al−doped ZnO thin film on glass substrate using unbalanced DC magnetron sputtering. Journal of Physics: Conference Series, 1191, 012031.spa
dc.relation.referencesAtomistic Simulation Group in the Materials Department of Imperial College. (2018). Database of ionic radii. http://abulafia.mt.ic.ac.uk/shannon/ptable.phpspa
dc.relation.referencesBarrett, C. S., & Massalski, T. B. (1980). Structure of metals. Crystallographic Methods, Principles, and Data (3rd ed.). Pergamon Press.spa
dc.relation.referencesBöttcher, R., Lorenz, M., Pöppl, A., Spemann, D., & Grundmann, M. (2015). Local zincblende coordination in heteroepitaxial wurtzite Zn1−xMgxO:Mn thin films with 0.01 ≤ x ≤ 0.04 identified by electron paramagnetic resonance. Journal of Materials Chemistry C, 3 (45), 11918–11929.spa
dc.relation.referencesBuchheit, R., F. Acosta-Humánez, F., & Almanza, O. (2016). Electron paramagnetic resonance in Cu−doped ZnO. International Journal of Modern Physics B, 30 (11), 1650066.spa
dc.relation.referencesBuchheit, R., Acosta−Humanez, F., & Almanza, O. (2016). Structural, EPR and optical studies on Cu−doped ZnO nanoparticles synthesized by the sol−gel method at different calcination temperatures. Revista Cubana de Fisica, 33 (1), 4–11.spa
dc.relation.referencesCaglar, Y. (2013). Sol−gel derived nanostructure undoped and cobalt doped ZnO: Structural, optical and electrical studies. Journal of alloys and compounds, 560, 181–188.spa
dc.relation.referencesCaglar, Y., Ilican, S., & Caglar, M. (2017). FESEM, XRD and DRS studies of electrochemically deposited boron doped ZnO films. Materials Science- Poland, 35 (4), 824–829.spa
dc.relation.referencesColeman, V. A., & Jagadish, C. (2006). Basic Properties and Applications of ZnO. In C. Jagadish & S. J. Pearton (Eds.), Zinc oxide bulk. thin films and nanostructures. Elsevier.spa
dc.relation.referencesEsteve Cano, V. J. (Ed.). (2014). El método Rietveld (2.a ed.). Universitat Jaume Ispa
dc.relation.referencesFucke, K., & Steed, J. W. (2010). X−ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates. Water, 2 (3), 333–350.spa
dc.relation.referencesG. −C. Wang & T. −M. Lu. (2014). RHEED Transmission Mode and Pole Figures. Thin Film and Nanostructure Texture Analysis. Springer.spa
dc.relation.referencesGaudon, M., Toulemonde, O., & Demourgues, A. (2007). Green coloration of Co-doped ZnO explained from structural refinement and bond Considerations. Inorganic Chemistry, 46 (26), 10996–11002.spa
dc.relation.referencesGonzález Swacki, N., & Swacka, T. (2010). Basic elements of crystallography. Pan Stanford Publishing.spa
dc.relation.referencesInternational Centre for Diffraction Data. (2004). PDF−2 Database.spa
dc.relation.referencesIrshad, K., Khan, M. T., & Murtaza, A. (2018). Synthesis and characterization of transition−metals−doped ZnO nanoparticles by sol−gel auto−combustion method. Physica B: condensed matter, 543, 1–6.spa
dc.relation.referencesKhorsand Zak, A., Abd. Majid, W. H., Abrishami, M. E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sciences, 13 (1), 251–256.spa
dc.relation.referencesKim, Y., Page, K., & Seshadri, R. (2007). Synchrotron x−ray study of polycrystalline wurtzite Zn1−xMgxO (0 ≤ x ≤ 0.15): Evolution of crystal structure and polarization. Applied physics letters, 90 (10), 101904.spa
dc.relation.referencesKisi, E., & Elcombe, M. M. (1989). u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta crystallographica C, 45 (12), 1867–1870.spa
dc.relation.referencesKittel, C. (2005). Introduction to Solid State Physics (8th ed.). John Wiley & Sons.spa
dc.relation.referencesLeszczynski, M., Suski, T., Perlin, P., Teisseyre, H., Gregory, I., Bockowski, M., Jun, J., Pororwski, S., Pakula, K., Baranowski, J. M., Foxon, C. T., & Cheng, T. S. (1996). Lattice parameters gallium nitride. Applied physics letters, 69 (1), 73–75.spa
dc.relation.referencesLorenz, M., Böttcher, R., Friedländer, S., Pöppl, A., Spemann, D., & Grundmann, M. (2014). Local lattice distortions in oxygen deficient Mn−doped ZnO thin films, probed by electron paramagnetic resonance. Journal of Materials Chemistry C, 2 (25), 4947–4956.spa
dc.relation.referencesMartinez Lozano, G. (2007). Análisis de parámetros microestructurales: tamaño de cristalita y microdeformación de Compuestos Tipo Hidrotalcita de Cobalto [Tesis de maestría]. Instituto Politécnico Nacional.spa
dc.relation.referencesMorkoç, H., & Ozgür, Ü. (Eds.). (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley.spa
dc.relation.referencesMoussa, D., El-Said Bakeer, D., Awad, R., & Abdel-Gaber, A. (2017). Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conference Series, 869 (1), 012021.spa
dc.relation.referencesOrtega Toro, R. (2015). Development and characterization of corn starch films by blending with more hydrophobic compounds [Doctoral dissertation, UNIVERSITAT POLITECNICA DE VALÈNCIA].spa
dc.relation.referencesPecharsky, V. K., & Zavalij, P. K. (2009). Fundamentals of powder diffraction and structure characterization (2nd ed.). Springer.spa
dc.relation.referencesRaja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24.spa
dc.relation.referencesRamakanth, K. (2007). Basics of X-ray diffraction and its application. I. K. International Publishing House Pvt. Ltd.spa
dc.relation.referencesRietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2 (2), 65–71.spa
dc.relation.referencesRodríguez−Carvajal, J. (2018). Fullprof Suite software: Crystallographic tools for Rietveld, profile matching and integrated intensity refinements for X−ray and/or neutron data. https: / / www.ill.eu/sites/fullprof/index.htmlspa
dc.relation.referencesRodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192 (1-2), 55–69.spa
dc.relation.referencesRodríguez-Carvajal, J. (2001). Recent Developments of the program Fullprof. Commission on Powder Diffraction (IUCr) Newsletter, 26, 12–19.spa
dc.relation.referencesRodríguez-Carvajal, J., & Roisnel, T. (1998). Fullprof.98 and winPLOTR: new Windows 95/NT applications. Diffraction Commission for Powder Diffraction (IUCR), 20, 35–36.spa
dc.relation.referencesRogers, K. D., & Daniels, P. (2002). An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials, 23 (12), 2577–2585.spa
dc.relation.referencesRoisnel, T., & Rodríguez-Carvajal, J. WinPLOTR: a Windows tool for powder diffraction patterns analysis (R. Delhez & E. Mittenmeijer, Eds.). In: Materials Science Forum, 7th European Powder diffraction conference (EPDIC 7) (R. Delhez & E. Mittenmeijer, Eds.). Ed. by Delhez, R., & Mittenmeijer, E. 2000, 118–123.spa
dc.relation.referencesRomero, R., Leinen, D., Dalchiele, E. A., J. R. Ramos−Barrado, & Martín, F. (2006). The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al−doped ZnO thin films obtained by spray pyrolysis. Thin solid films, 515 (4), 1942–1949.spa
dc.relation.referencesSardela, M. R. (2014). X−ray diffraction and reflectivity. In M. Sardela (Ed.), Practical materials characterization. Springer.spa
dc.relation.referencesShalini, S., & Balamurugan, D. (2016). Ambient temperature operated acetaldehyde vapour detection of spray deposited cobalt doped zinc oxide thin film. Journal of Colloid and Interface Science, 466, 352–359.spa
dc.relation.referencesShannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta crystallographica A, 32, 751–767.spa
dc.relation.referencesSrinivasulu, T., Saritha, K., & Reddy, K. R. (2017). Synthesis and Characterization of Fe−doped ZnO Thin Films Deposited by Chemical Spray Pyrolysis. Modern Electronic Materials, 3 (2), 76–85.spa
dc.relation.referencesSuranarayana, C., & Norton, M. G. (1998). X−ray diffraction: A practical approach. Springer.spa
dc.relation.referencesT. Prasada Rao & Santhoshkumar, M. (2009). Highly oriented (100) ZnO thin films by spray pyrolysis. Applied Surface Science, 255, 7212–7215.spa
dc.relation.referencesWarren, B. E. (1990). X-Ray Diffraction. Dover Publications Inc.spa
dc.relation.referencesYang, Z.-Y. (2009). Local structure distortion and spin Hamiltonian parameters of oxide−diluted magnetic semiconductor Mn−doped ZnO. Chinese Physics B, 18 (3), 1253–1258.spa
dc.relation.referencesYoung, R. A. (Ed.). (2002). The Rietveld Method. Oxford University Press.spa
dc.relation.referencesZhang, Z., Zhou, F., & Lavernia, E. J. (2003). On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metallurgical and Materials Transactions A, 34, 1349–1355.spa
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.spa
dc.relation.referencesAhmed, S. A. (2017). Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics, 7, 604–610.spa
dc.relation.referencesAltintas Yildirim, O., Arslan, H., & Sönmezoglu, S. (2016). Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts. Applied Surface Science, 390, 111–121.spa
dc.relation.referencesBabu, B., Manjari, V. P., Aswani, T., Rao, G. T., Stella, R. J., & Ravikumar, R. V. (2014). Structural, optical and magnetic properties of Cr3+ doped ZnO nanopowder. Indian Journal of Physics, 88 (7), 683–690.spa
dc.relation.referencesBaer, D. R., & Thevuthasan, S. (2010). Characterization of Thin Films and Coatings. In P. Martin (Ed.), Handbook of deposition technologies for films and coatings (3rd). Elsevier Ltd.spa
dc.relation.referencesBalti, I., Mezni, A., Dakhlaoui-Omrani, A., Léone, P., Viana, B., Brinza, O., Smiri, L. S., & Jouini, N. (2011). Comparative study of Ni- and Co-substituted ZnO nanoparticles: Synthesis, optical, and magnetic properties. Journal of Physical Chemistry C, 115 (32), 15758–15766.spa
dc.relation.referencesBecerra, A. M., & Castro-Luna, A. E. (2005). An investigation on the presence of NiAl2O4 in a stable Ni on alumina catalyst for dry reforming. Journal of Chilean Chemical Society, 50 (2), 465–469.spa
dc.relation.referencesBehera, D., & Acharya, B. S. (2008). Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy. Journal of Luminescence, 128 (10), 1577–1586.spa
dc.relation.referencesBiroju, R. K., & Giri, P. K. (2017). Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub−band gap excitation. Journal of Applied Physics, 122 (4), 044302.spa
dc.relation.referencesBuchheit, R., Acosta−Humanez, F., & Almanza, O. (2016). Structural, EPR and optical studies on Cu−doped ZnO nanoparticles synthesized by the sol−gel method at different calcination temperatures. Revista Cubana de Fisica, 33 (1), 4–11.spa
dc.relation.referencesChandra, S., & Kumar, R. (2004). Synthesis and spectral studies on mononuclear complexes of chromium(III) and manganese(II) with 12−membered tetradentate N2O2 , N2S2 and N4 donor macrocyclic ligands. Transition Metal Chemistry, 29 (3), 269–275.spa
dc.relation.referencesChauhan, R., Kumar, A., & Chaudhary, R. P. (2012). Structures and optical properties of Zn1−xNixO nanoparticles by coprecipitation method. Research on Chemical Intermediates, 38 (7), 1483–1493.spa
dc.relation.referencesEl-Hagary, M., Shaaban, E. R., Moustafa, S. H., & Gad, G. M. A. (2019). Variations of energy band gap and magnetic properties upon quantum confinement effects on the Cr doped ZnO nanoparticles. Materials Research Express, 6, 015030.spa
dc.relation.referencesElilarassi, R., & Chandrasekaran, G. (2011a). Microstructural and photoluminescence properties of Co-doped ZnO films fabricated using a simple solution growth method. Materials Science in Semiconductor Processing, 14 (2), 179–183.spa
dc.relation.referencesElilarassi, R., & Chandrasekaran, G. (2011b). Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 22 (7), 751–756.spa
dc.relation.referencesFabbiyola, S., Kennedy, L. J., Aruldoss, U., Bououdina, M., Dakhel, A. A., & JudithVijaya, J. (2015). Synthesis of Co-doped ZnO nanoparticles via co-precipitation: Structural, optical and magnetic properties. Powder Technology, 286, 757–765.spa
dc.relation.referencesGaldámez-Martinez, A., Santana, G., Güell, F., Martínez-Alanis, P. R., & Dutt, A. (2020). Photoluminescence of ZnO nanowires: A review. Nanomaterials, 10 (5), 1–23.spa
dc.relation.referencesGaudon, M., Toulemonde, O., & Demourgues, A. (2007). Green coloration of Co-doped ZnO explained from structural refinement and bond Considerations. Inorganic Chemistry, 46 (26), 10996–11002.spa
dc.relation.referencesGu, Y., Kuskovsky, I. L., Yin, M., O’Brien, S., & Neumark, G. F. (2004). Quantum confinement in ZnO nanorods. Applied Physics Letters, 85 (17), 3833–3835.spa
dc.relation.referencesHapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy (2nd). Cambridge University Press.spa
dc.relation.referencesHe, R., Tang, B., Ton-That, C., Phillips, M., & Tsuzuki, T. (2013). Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. Journal of Nanoparticle Research, 15 (11), 2030(1–8).spa
dc.relation.referencesHeitz, R., Hoffmann, A., & Broser, I. (1992). Fe3+ center in ZnO. Physical Review B, 45 (16), 8977–8988.spa
dc.relation.referencesHuang, L., Hao, Y., & Hu, M. (2018). Optical and magnetic properties of Co−doped ZnO synthesized by magnetic assisted hydrothermal method. Materials Science in Semiconductor Processing, 74, 303–308.spa
dc.relation.referencesHur, T. B., Jeen, G. S., Hwang, Y. H., & Kim, H. K. (2003). Photoluminescence of polycrystalline ZnO under different annealing conditions. Journal of Applied Physics, 94 (9), 5787–5790.spa
dc.relation.referencesHusairi, F. S., Azlinda, A., Rusop, M., & Abdullah, S. (2013). Photoluminescence properties of Zinc Oxide nanostructures on different substrates obtained by an immersion method. Microelectronic Engineering, 108, 145–149.spa
dc.relation.referencesJimenez, J., & Tomm, J. W. (2016). Spectroscopic Analysis of Optoelectronic Semiconductors. Springer.spa
dc.relation.referencesKayani, Z. N., Abbas, E., Saddiqe, Z., Riaz, S., & Naseem, S. (2018). Photocatalytic, antibacterial, optical and magnetic properties of Fe-doped ZnO nano-particles prepared by sol-gel. Materials Science in Semiconductor Processing, 88, 109–119.spa
dc.relation.referencesKhokhra, R., Bharti, B., Lee, H. N., & Kumar, R. (2017). Visible and UV photo−detection in ZnO nanostructured thin films via simple tuning of solution method. Scientific Reports, 7 (1), 1–14.spa
dc.relation.referencesKhorsand Zak, A., Razali, R., Abd Majid, W. H., & Darroudi, M. (2011). Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. International Journal of Nanomedicine, 6 (1), 1399–1403.spa
dc.relation.referencesKlingshirn, C. (2005). Semiconductor Optics. Springer.spa
dc.relation.referencesKnutsen, K. E., Galeckas, A., Zubiaga, A., Tuomisto, F., Farlow, G. C., Svensson, B. G., & Kuznetsov, A. Y. (2012). Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation. Physical Review B - Condensed Matter and Materials Physics, 86 (12), 1–5.spa
dc.relation.referencesKortüm, G. (1969). Reflectance spectroscopy. Principles, Methods, Applications. Springer-Verlag.spa
dc.relation.referencesLakshmana Rao, J., Narendra, G. L., & Lakshman, S. V. (1990). Optical absorption spectra of cobalt(II) and nickel(II) ions in lead acetate glasses. Polyhedron, 9 (12), 1475–1477.spa
dc.relation.referencesLee, E. C., Kim, Y. S., Jin, Y. G., & Chang, K. J. (2001). First-principles study of the compensation mechanism in N-doped ZnO. Physica B: Condensed Matter, 308-310, 912–915.spa
dc.relation.referencesLi, X., Chen, T. P., Liu, P., Liu, Y., & Leong, K. C. (2013). Effects of free electrons and quantum confinement in ultrathin ZnO films: a comparison between undoped and Al-doped ZnO. Optics Express, 21 (12), 14131(1–8).spa
dc.relation.referencesLiang, B. B., Hou, L. P., Zou, S. Y., Zhang, L., Guo, Y. C., Liu, Y. T., Farooq, M. U., Shi, L. J., Liu, R. B., & Zou, B. S. (2018). The aggregation of Fe3+ and their d−d radiative transitions in ZnSe:Fe3+ nanobelts by CVD growth. RSC Advances, 8 (6), 3133–3139.spa
dc.relation.referencesLin, B., Fu, Z., & Jia, Y. (2001). Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 79 (7), 943–945.spa
dc.relation.referencesLoan, T. T., Long, N. N., & Ha, L. H. (2009). Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method. Journal of Physics D: Applied Physics, 42 (6), 065412.spa
dc.relation.referencesMa, Q., Lv, X., Wang, Y., & Chen, J. (2016). Optical and photocatalytic properties of Mn doped flower−like ZnO hierarchical structures. Optical Materials, 60, 86–93.spa
dc.relation.referencesMachado, I. E. C., Prado, L., Gomes, L., Prison, J. M., & Martinelli, J. R. (2004). Optical properties of manganese in barium phosphate glasses. Journal of Non-Crystalline Solids, 348, 113–117.spa
dc.relation.referencesMcCluskey, M. D. (2018). Defects in ZnO. In J. Stehr, I. Buyanova, & W. Chen (Eds.), Defects in advanced electronic materials and novel low dimensional structures. Elsevier Ltd.spa
dc.relation.referencesMehedi Hassan, M., Khan, W., Azam, A., & Naqvi, A. H. (2015). Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. Journal of Industrial and Engineering Chemistry, 21, 283–291.spa
dc.relation.referencesMoussa, D., El-Said Bakeer, D., Awad, R., & Abdel-Gaber, A. (2017). Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conference Series, 869 (1), 012021.spa
dc.relation.referencesMurphy, A. B. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91 (14), 1326–1337.spa
dc.relation.referencesNorberg, N. S., Kittilstved, K. R., Amonette, J. E., Kukkadapu, R. K., Schwartz, D. A., & Gamelin, D. R. (2004). Synthesis of Colloidal Mn2+:ZnO Quantum Dots and High−TC Ferromagnetic Nanocrystalline Thin Films. Journal of the American Chemical Society, 126 (30), 9387–9398.spa
dc.relation.referencesOzgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., & Morkoç (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98 (4), 041301.spa
dc.relation.referencesPankove, J. I. (1971). Optical processes in semiconductors. Dover Publications Inc.spa
dc.relation.referencesPudukudy, M., & Yaakob, Z. (2015). Facile Synthesis of Quasi Spherical ZnO Nanoparticles with Excellent Photocatalytic Activity. Journal of Cluster Science, 26 (4), 1187–1201.spa
dc.relation.referencesPushpa, N., & Kokila, M. K. (2017). Effect of cobalt doping on structural, thermo and photoluminescent properties of ZnO nanopowders. Journal of Luminescence, 190, 100–107.spa
dc.relation.referencesRaja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24spa
dc.relation.referencesRyba-Romanowski, W., Go lab, S., Pisarski, W. A., Podsiad la, D., & Czapla, Z. (1997). Optical spectroscopy of a chromium doped (CH3)2NH2Al(SO4)2⋅ 6 H2O single crystal in the ferroelectric phase. Chemical Physics Letters, 264 (3-4), 323–326spa
dc.relation.referencesSchwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M., & Gamelin, D. R. (2003). Magnetic Quantum Dots: Synthesis, Spectroscopy, and Magnetism of Co2+− and Ni2+−Doped ZnO Nanocrystals. Journal of the American Chemical Society, 125 (43), 13205–13218.spa
dc.relation.referencesSegets, D., Gradl, J., Taylor, R. K., & Vassilev, V. (2009). Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility. ACS Nano, 3 (7), 1703–1710.spa
dc.relation.referencesShatnawi, M., Alsmadi, A. M., Bsoul, I., Salameh, B., Mathai, M., Alnawashi, G., Alzoubi, G. M., Al-Dweri, F., & Bawa’aneh, M. S. (2016). Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. Journal of Alloys and Compounds, 6, 244–252.spa
dc.relation.referencesSherman, D. M., & Waite, T. D. (1985). Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70 (11-12), 1262–1269.spa
dc.relation.referencesSun, J. H., Dong, S. Y., Feng, J. L., Yin, X. J., & Zhao, X. C. (2011). Enhanced sunlight photocatalytic performance of Sn−doped ZnO for Methylene Blue degradation. Journal of Molecular Catalysis A: Chemical, 335 (1-2), 145–150.spa
dc.relation.referencesSun, Q., Berkelbach, T. C., McClain, J. D., & G. K.-L. Chan. (2017). Gaussian and plane−wave mixed density fitting for periodic systems. The Journal of Chemical Physics, 147 (16), 164119.spa
dc.relation.referencesTakagahara, T., & Takeda, K. (1992). Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B, 46 (23), 15578–15581.spa
dc.relation.referencesTalib, R. A., Abdullah, M. J., Mohammad, S. M., Ahmed, N. M., & Allam, N. K. (2016). ZnO Nanorods/Polyaniline-Based Inorganic/Organic Heterojunctions for Enhanced Light Sensing Applications. ECS Journal of Solid State Science and Technology, 5 (3), P142–P14spa
dc.relation.referencesTanaka, A., Onari, S., & Arai, T. (1992). Raman scattering from CdSe microcrystals embedded in a germanate glass matrix. Physical Review B, 45 (12), 6587–6592.spa
dc.relation.referencesTaran, M. N., Koch-Müller, M., & Feenstra, A. (2009). Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures. American Mineralogist, 94 (11-12), 1647–1652.spa
dc.relation.referencesTarwal, N. L., Gurav, K. V., Prem Kumar, T., Jeong, Y. K., Shim, H. S., Kim, I. Y., Kim, J. H., Jang, J. H., & Patil, P. S. (2014). Structure, X-ray photoelectron spectroscopy and photoluminescence investigations of the spray deposited cobalt doped ZnO thin films. Journal of Analytical and Applied Pyrolysis, 106, 26–32.spa
dc.relation.referencesThapa, D., Huso, J., Morrison, J. L., Corolewski, C. D., McCluskey, M. D., & Bergman, L. (2016). Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films. Optical Materials, 58, 382–389.spa
dc.relation.referencesTürkyılmaz, Ş. Ş, Güy, N., & Özacar, M. (2017). Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry, 341, 39–50.spa
dc.relation.referencesVempati, S., Mitra, J., & Dawson, P. (2012). One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Research Letters, 7, 1–10.spa
dc.relation.referencesVempati, S., Shetty, A., Dawson, P., Nanda, K. K., & Krupanidhi, S. B. (2012). Solution-based synthesis of cobalt-doped ZnO thin films. Thin Solid Films, 524, 137–143.spa
dc.relation.referencesVolbers, N., Zhou, H., Knies, C., Pfisterer, D., Sann, J., Hofmann, D. M., & Meyer, B. K. (2007). Synthesis and characterization of ZnO:Co2+ nanoparticles. Applied Physics A: Materials Science and Processing, 88 (1), 153–155.spa
dc.relation.referencesWiens, A. E., Copan, A. V., & Schaefer, H. F. (2019). Multi−fidelity Gaussian process modeling for chemical energy surfaces. Chemical Physics Letters: X, 3, 100022.spa
dc.relation.referencesWu, B., Li, J., & Li, Q. (2019). Preparation and photoluminescence behavior of Mn−doped nano−ZnO. Optik, 188, 205–211.spa
dc.relation.referencesWu, X., Wei, Z., Zhang, L., Wang, X., Yang, H., & Jiang, J. (2014). Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. Journal of Nanomaterials, 2014, 792102.spa
dc.relation.referencesXia, H., Wang, J., Wang, H., Zhang, J., Zhang, Y., & Xu, T. (2006). Optical spectroscopy and crystal−field strength of Cr3+ in various solid matrixes. Rare Metals, 25 (1), 51–57.spa
dc.relation.referencesXu, P. S., Sun, Y. M., Shi, C. S., Xu, F. Q., & Pan, H. B. (2003). The electronic structure and spectral properties of ZnO and its defects. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 199, 286–290.spa
dc.relation.referencesYu, P. P., & Cardona, M. (2010). Fundamentals of semiconductors: physics and materials properties (4th). Springer.spa
dc.relation.referencesZak, A. K., Abrishami, M. E., Majid, W. H., Yousefi, R., & Hosseini, S. M. (2011). Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceramics International, 37 (1), 393–398.spa
dc.relation.referencesZak, A. K., Majid, W. H., Darroudi, M., & Yousefi, R. (2011). Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Materials Letters, 65 (1), 70–73.spa
dc.relation.referencesZhou, D., & Kittilstved, K. R. (2015). Control over Fe3+ speciation in colloidal ZnO nanocrystals. Journal of Materials Chemistry C, 3 (17), 4352–4358.spa
dc.relation.referencesAbragam, A., & Bleaney, B. (1970). Electron paramagnetic resonance of transition ions (W. Marshall & D. H. Wilkinson, Eds.). Clarendon Press - Oxford.spa
dc.relation.referencesAçkgöz, M., Drahus, M. D., Ozarowski, A., Van Tol, J., Weber, S., & Erdem, E. (2014). Local coordination of Fe3+ in ZnO nanoparticles: Multi−frequency electron paramagnetic resonance (EPR) and Newman superposition model analysis. Journal of Physics Condensed Matter, 26, 15583.spa
dc.relation.referencesAcosta Humánez, M. F. (2014). Estudio por resonancia paramagnética electrónica de nanopartículas de óxido de zinc dopadas con cobalto [Tesis de maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesAcosta Humánez, M. F., Montes Vides, L. A., & Almanza-Montero, O. A. (2016). Sol−gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. DYNA, 83 (195), 224–228.spa
dc.relation.referencesAcosta−Humánez, F., Cogollo Pitalúa, R., & Almanza, O. (2013). Electron paramagnetic resonance in Zn1−xCoxO. Journal of Magnetism and Magnetic Materials, 329, 39–42.spa
dc.relation.referencesAcosta−Humánez, F., Magon, C. J., Montes−Vides, L., & Almanza, O. (2021). Structural, Optical and EPR Study of Zn1−xFexO Nanocrystals. Journal of Low Temperature Physics, 202 (1–2), 29–47.spa
dc.relation.referencesAcosta−Humánez, F., Montes−Vides, L., & Almanza, O. (2019). Structural, Optical and EPR Study of Mn−Doped ZnO Nanocrystals. Journal of Low Temperature Physics, 195 (5-6), 391–402.spa
dc.relation.referencesAlaria, J., Bouloudenine, M., Schmerber, G., Colis, S., Dinia, A., Turek, P., & Bernard, M. (2006). Pure paramagnetic behavior in Mn-doped ZnO semiconductors. Journal of Applied Physics, 99 (8), 54–56.spa
dc.relation.referencesBaranov, P. G., Romanov, N. G., Bundakova, A. P., Orlinskii, S. B., Donegá, C. D. M., & Schmidt, J. (2016). Electronic Structure of ZnO Quantum Dots Studied by High-Frequency EPR, ESE, ENDOR and ODMR Spectroscopy. Materials Today: Proceedings, 3 (3), 816–824.spa
dc.relation.referencesBaranov, P. G., Orlinskii, S. B., de Mello Donegá, C., & Schmidt, J. (2010). High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots. Applied Magnetic Resonance, 39 (1), 151–183.spa
dc.relation.referencesBencini, A., Bertini, I., Canti, G., Gatteschi, D., & Luchinat, C. (1981). The epr spectra of the inhibitor derivatives of cobalt carbonic anhydrase. Journal of Inorganic Biochemistry, 14 (1), 81–93.spa
dc.relation.referencesBertini, I., Luchinat, C., & Piccioli, M. (2001). Paramagnetic probes in metalloproteins. In T. L. James, V. Dötsch, & U. Schmitz (Eds.), Nuclear Magnetic Resonance of Biological Macromolecules - Part B (Vol. 339). Elsevier Masson SAS.spa
dc.relation.referencesBöttcher, R., Lorenz, M., Pöppl, A., Spemann, D., & Grundmann, M. (2015). Local zincblende coordination in heteroepitaxial wurtzite Zn1−xMgxO:Mn thin films with 0.01 ≤ x ≤ 0.04 identified by electron paramagnetic resonance. Journal of Materials Chemistry C, 3 (45), 11918–11929.spa
dc.relation.referencesBramley, R., & Strach, S. J. (1983). Electron Paramagnetic Resonance Spectroscopy at Zero Magnetic Field. Chemical Reviews, 83 (1), 49–82.spa
dc.relation.referencesČerný, V. (1992). Experimental and theoretical reasons for inclusion of fourth −order terms into spin hamiltonian of glasses doped by d5 impurities with 6A1 ground states. Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 65 (3), 401–420.spa
dc.relation.referencesCoey, J. M. D. (2009). Magnetism and Magnetic Materials. Cambridge University Press.spa
dc.relation.referencesÇolak, S., & Artürk, C. (2017). Synthesis and Characterization of Undoped and Doped (Mn,Cu,Co) ZnO Nanoparticles: An EPR study. In A. K. Shukla (Ed.), EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Springer.spa
dc.relation.referencesJanotti, A., & Van De Walle, C. G. (2007). Native point defects in ZnO. Physical Review B - Condensed Matter and Materials Physics, 76 (16), 165202.spa
dc.relation.referencesJayakumar, O. D., Salunke, H. G., Kadam, R. M., Mohapatra, M., Yaswant, G., & Kulshreshtha, S. K. (2006). Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology, 17 (5), 1278–1285.spa
dc.relation.referencesKarunakaran, C., Balamurugan, M., & Karthikeyan, M. (2018). Applications of Electron Paramagnetic Resonance. Elsevier Inc.spa
dc.relation.referencesLimaye, M. V., Singh, S. B., Das, R., Poddar, P., & Kulkarni, S. K. (2011). Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: Microwave-assisted synthesis. Journal of Solid State Chemistry, 184 (2), 391–400.spa
dc.relation.referencesLorenz, M., Böttcher, R., Friedländer, S., Pöppl, A., Spemann, D., & Grundmann, M. (2014). Local lattice distortions in oxygen deficient Mn−doped ZnO thin films, probed by electron paramagnetic resonance. Journal of Materials Chemistry C, 2 (25), 4947–4956.spa
dc.relation.referencesMabbs, F. E., & Collison, D. (Eds.). (1992). Electron Paramagnetic Resonance of d Transition Metal Compounds. Elsevier.spa
dc.relation.referencesMcCluskey, M. D. (2018). Defects in ZnO. In J. Stehr, I. Buyanova, & W. Chen (Eds.), Defects in advanced electronic materials and novel low dimensional structures. Elsevier Ltd.spa
dc.relation.referencesMisra, S. K. (2006). New Methods of Simulation of Mn(II) EPR Spectra: Single Crystal, Polycrystalline and Amorphous (Biological) Materials. In C. J. Bender & L. J. Berliner (Eds.), Biological Magnetic Resonance. Computational and Instrumental Methods in EPR. Springer.spa
dc.relation.referencesMisra, S. K., Andronenko, S. I., Thurber, A., Punnoose, A., & Nalepa, A. (2014). An X− and Q−band Fe3+ EPR study of nanoparticles of magnetic semiconductor Zn1−xFexO. Journal of Magnetism and Magnetic Materials, 363, 82–87.spa
dc.relation.referencesPoole, C. P. (1983). Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques (2nd). John Wiley & Sons.spa
dc.relation.referencesPoole, C. P., & Farach, H. A. (1987). Theory of magnetic resonance (2nd ed.). John Wiley & Sons, Inc.spa
dc.relation.referencesPopa, A., Toloman, D., Raita, O., Biris, A. R., Borodi, G., Mustafa, T., Watanabe, F., Biris, A. S., Darabont, A., & Giurgiu, L. M. (2011). Co doped ZnO semiconductor materials: Structural, morphological and magnetic properties. Central European Journal of Physics, 9 (6), 1446– 1451.spa
dc.relation.referencesRaita, O., Popa, A., Toloman, D., Stan, M., Darabont, A., & Giurgiu, L. (2011). Co2+ ions in ZnO powders as seen by magnetic resonance. Applied Magnetic Resonance, 40 (2), 245–250.spa
dc.relation.referencesReddy, A. J., Kokila, M. K., Nagabhushana, H., Sharma, S. C., Rao, J. L., Shivakumara, C., Nagabhushana, B. M., & Chakradhar, R. P. (2012). Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles. Materials Chemistry and Physics, 133 (2-3), 876–883.spa
dc.relation.referencesSahu, I. D., McCarrick, R. M., & Lorigan, G. A. (2013). Use of electron paramagnetic resonance to solve biochemical problems. Biochemistry, 52 (35), 5967–5984.spa
dc.relation.referencesShukla, A. K. (Ed.). (2017). EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Springer.spa
dc.relation.referencesStehr, J. E., Meyer, B. K., & Hofmann, D. M. (2010). Magnetic Resonance of Impurities, Intrinsic Defects and Dopants in ZnO. Applied Magnetic Resonance, 39 (1), 137–150.spa
dc.relation.referencesStoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, 178, 42–55.spa
dc.relation.referencesSudhakar Reddy, B., Gopal, N. O., Narasimhulu, K. V., Linga Raju, C., Rao, J. L., & Reddy, B. C. (2005). EPR and optical absorption spectral studies on Mn2+ ions doped in potassium thiourea bromide single crystals. Journal of Molecular Structure, 751 (1-3), 161–167.spa
dc.relation.referencesTelser, J. (2018). EPR Interactions - Zero-field Splittings. In D. Goldfarb & S. Stoll (Eds.), Epr spectroscopy: Fundamentals and methods. John Wiley & Sons, Ltd.spa
dc.relation.referencesTelser, J. (2006). A perspective on applications of ligand-field analysis: Inspiration from electron paramagnetic resonance spectroscopy of coordination complexes of transition metal ions. Journal of the Brazilian Chemical Society, 17 (8), 1501–1515.spa
dc.relation.referencesToloman, D., Mesaros, A., Popa, A., Raita, O., Silipas, T. D., Vasile, B. S., Pana, O., & Giurgiu, L. M. (2013). Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures. Journal of Alloys and Compounds, 551, 502–507.spa
dc.relation.referencesVlasenko, L. S. (2010). Magnetic Resonance Studies of Intrinsic Defects in ZnO: Oxygen Vacancy. Applied Magnetic Resonance, 39 (1), 103–111.spa
dc.relation.referencesWeil, J. A., & Bolton, J. R. (2007). Electron Paramagnetic Resonance. Elementary Theory and Practical Applications (2nd). John Wiley &; Sons, Inc.spa
dc.relation.referencesWertz, J. E., & Bolton, J. R. (1986). Electron Spin Resonance. Elementary Theory and Practical Applications. Chapman and Hall.spa
dc.relation.referencesZhou, D., & Kittilstved, K. R. (2015). Control over Fe3+ speciation in colloidal ZnO nanocrystals. Journal of Materials Chemistry C, 3 (17), 4352–4358.spa
dc.relation.referencesChiu, Y. H., Chang, T. F. M., Chen, C. Y., Sone, M., & Hsu, Y. J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts, 9 (5), 430.spa
dc.relation.referencesChorkendorff, I., & Niemantsverdriet, J. W. (2003). Concepts of Modern Catalysis and Kinetics (Vol. 2005). Wiley-VCH.spa
dc.relation.referencesDi Mauro, A., Fragalà, M. E., Privitera, V., & Impellizzeri, G. (2017). ZnO for application in photocatalysis: From thin films to nanostructures. Materials Science in Semiconductor Processing, 69, 44–51.spa
dc.relation.referencesElaziouti, A., Laouedj, N., & Ahmed, B. (2011). ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. Journal of Chemical Engineering & Process Technology, 2, 2–10.spa
dc.relation.referencesErdemoğlu, S., Aksu, S. K., Sayilkan, F., Izgi, B., Asiltürk, M., Sayilkan, H., Frimmel, F., & Güçer, Å. (2008). Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC − MS. Journal of Hazardous Materials, 155 (3), 469–476.spa
dc.relation.referencesFox, M. A., & Dulay, M. T. (1993). Heterogeneous Photocatalysis. Chemical Reviews, 93 (1), 341– 357spa
dc.relation.referencesGaya, U. I. (2014). Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer.spa
dc.relation.referencesGüy, N., & Özacar, M. (2016). The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation. International Journal of Hydrogen Energy, 41 (44), 20100–20112.spa
dc.relation.referencesHerrmann, J. M., Guillard, C., & Pichat, P. (1993). Heterogeneous photocatalysis : an emerging technology for water treatment. Catalysis Today, 17 (1-2), 7–20.spa
dc.relation.referencesHunger, K. (Ed.). (2003). Industrial Dyes. Chemistry, Properties, Applications. Wiley-VCH.spa
dc.relation.referencesLachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39 (1), 75–90.spa
dc.relation.referencesLam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination and Water Treatment, 41 (1-3), 131–169spa
dc.relation.referencesLeskovac, V. (2003). Comprehensive Enzyme Kinetics. Kluwer Academic Publishers.spa
dc.relation.referencesLi, Y., Li, X., Li, J., & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2−coated activated carbon and kinetic study. Water Research, 40 (6), 1119–1126.spa
dc.relation.referencesMa, H., Wang, M., Yang, R., Wang, W., Zhao, J., Shen, Z., & Yao, S. (2007). Radiation degradation of Congo Red in aqueous solution. Chemosphere, 68 (6), 1098–1104.spa
dc.relation.referencesNadjia, L., Abdelkader, E., & Ahmed, B. (2011). Photodegradation study of Congo Red in Aqueous Solution using ZnO/UV-A: Effect of pH And Band Gap of other Semiconductor Groups. Journal of Chemical Engineering & Process Technology, 2 (2), 1–7.spa
dc.relation.referencesOhtani, B. (2010). Photocatalysis A to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11 (4), 157– 178.spa
dc.relation.referencesRamirez-Canon, A., Medina-Llamas, M., Vezzoli, M., & Mattia, D. (2018). Multiscale design of ZnO nanostructured photocatalysts. Physical Chemistry Chemical Physics, 20 (9), 6648–6656.spa
dc.relation.referencesSamadi, M., Zirak, M., Naseri, A., Khorashadizade, E., & Moshfegh, A. Z. (2015). Recent progress on doped ZnO nanostructures for visible − light photocatalysis. Thin Solid Films, 605, 2–19.spa
dc.relation.referencesSaravanan, R., Gupta, V. K., Narayanan, V., & Stephen, A. (2013). Comparative study on photocatalytic activity of ZnO prepared by different methods. Journal of Molecular Liquids, 181, 133–141.spa
dc.relation.referencesThomas, M., Naikoo, G. A., Sheikh, M. U. D., Bano, M., & Khan, F. (2016). Effective photocatalytic degradation of Congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 327, 33–43.spa
dc.relation.referencesTürkyılmaz, Ş. Ş, Güy, N., & Özacar, M. (2017). Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry, 341, 39–50.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc530 - Físicaspa
dc.subject.lembEspectroscopia atómicaspa
dc.subject.lembAtomic spectroscopyeng
dc.subject.lembEspectroscopia de rayos xspa
dc.subject.lembX-ray spectroscopyeng
dc.subject.proposalAtomic absorption spectroscopy (AAS)eng
dc.subject.proposalChemical kineticseng
dc.subject.proposalCongo red (CR)eng
dc.subject.proposalElectron paramagnetic resonance (EPR)eng
dc.subject.proposalFourier transform infrared spectroscopy (FTIR)eng
dc.subject.proposalMetal-doped ZnOeng
dc.subject.proposalNanoparticleseng
dc.subject.proposalPhotocatalysiseng
dc.subject.proposalPhotoluminiscence spectroscopy (PLS)eng
dc.subject.proposalRaman spectroscopyeng
dc.subject.proposalScanning electron microscopy (SEM)eng
dc.subject.proposalSol-gel methodeng
dc.subject.proposalUltraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS)eng
dc.subject.proposalWurtziteeng
dc.subject.proposalX-ray diffraction (XRD)eng
dc.subject.proposalX-ray fluorescence (XRF)eng
dc.subject.proposalZnOeng
dc.titleNanopartículas de Óxido de Zinc Dopadas con Co, Cr, Fe, Mn y Ni. Propiedades Y Aplicación En La Degradación Fotocatalítica De Compuestos Orgánicos Contaminantesspa
dc.title.translatedZinc Oxide Nanoparticles Doped with Co, Cr, Fe, Mn and Ni. Properties and Application in Photocatalytic Degradation of Polluting Organic Compoundseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDatasetspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria Colciencias (ahora MinCiencias) No. 647 de 2014spa
oaire.awardtitleNanopartículas De Óxido De Zinc Dopadas Con Co, Cr, Fe, Mn y Ni. Propiedades Y Aplicación En La Degradación Fotocatalítica De Compuestos Orgánicos Contaminantesspa
oaire.fundernameDepartamento Administrativo de Ciencia y Tecnología e Innovaciónspa
oaire.fundernameDirección de Invesitgación y Extensión Sede Bogotá (DIEB) - Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1064976808.2022.pdf
Tamaño:
16.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: