Estudio de polaritones triónicos en sistemas de pozos cuánticos semiconductores inmersos en campos magnéticos

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.advisorRodríguez Rey, Boris Anghelo
dc.contributor.authorUrquijo Rodríguez, Andrés Felipe
dc.contributor.cvlacUrquijo Rodríguez, Andrés Felipe [0001459741]
dc.contributor.googlescholarUrquijo Rodríguez, Andrés Felipe [RFDnw_cAAAAJ&hl]
dc.contributor.orcidUrquijo Rodríguez, Andrés Felipe [0000-0002-1429-6047]
dc.contributor.researchgroupSuperconductividad y Nanotecnología
dc.date.accessioned2026-01-23T19:22:18Z
dc.date.available2026-01-23T19:22:18Z
dc.date.issued2025
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEn esta tesis se estudian los efectos de un campo magnético externo aplicado en la dirección perpendicular a un sistema microcavidad-pozo cuántico. En este sistema es posible acceder a los estados de excitón y de trión negativo en el semiconductor, los cuales interactúan fuertemente con el modo de menor energía de la cavidad, permitiendo la formación de polaritones excitónicos, triónicos o híbridos excitón-trión, dependiendo del mecanismo de excitación externa. La formulación teórica empleada consiste en un modelo finito de primeros principios que incorpora de manera exacta la interacción de Coulomb entre los portadores de carga y su acoplamiento con el modo de luz de la cavidad. Adicionalmente, los efectos decoherentes que afectan al sistema, tales como el escape de fotones de la cavidad, las pérdidas por emisión espontánea y los mecanismos de bombeo incoherente, se modelan mediante la ecuación maestra en la forma de Lindblad. En este sistema se estudian principalmente los siguientes problemas: (i) la diagonalización exacta del Hamiltoniano del sistema para investigar las autoenergías, los autoestados de los excitones, triones y polaritones; (ii) el análisis de los espectros de fotoluminiscencia y funciones de correlación de segundo orden en el caso disipativo; (iii) el escalamiento de la energía del sistema y el comportamiento del número promedio de fotones en un régimen multiexcitónico, mediante el método variacional de Hartree-Fock-Bogoliubov; y (iv) el desarrollo de un protocolo de control cuántico basado en pulsos fotónicos ultracortos y en el campo magnético como parámetros externos, con el fin de sintetizar compuertas cuánticas de qubits y qudits de cuatro niveles en el sistema físico propuesto. El trabajo se organiza en varias etapas complementarias de análisis. En primer lugar (véase capítulo 4), se estudiaron las propiedades de la interacción de Coulomb en pozos cuánticos y su modificación bajo campos magnéticos externos, mostrando que la competencia entre la longitud magnética y el ancho del pozo genera una reducción de la amplitud efectiva de interacción de Coulomb con respecto a los sistemas bidimensionales. Este comportamiento afecta directamente la estructura de las autoenergías y autoestados de excitones y triones. Se encontró que, debido a la competencia entre las energías de ciclotrón, las energías de Zeeman y la interacción de Coulomb, las energías de estas cuasipartículas experimentan un corrimiento hacia el azul conforme aumenta el campo aplicado. En el caso de los triones, el campo magnético permite ajustar la simetría de espín de su estado base, lo que posibilita el cambio desde un singlete brillante en regiones de bajo campo magnético hasta un triplete oscuro en el régimen de alto campo. En general, se observó que la reconfiguración inducida por el campo externo modifica las amplitudes efectivas de interacción de cada cuasipartícula con el modo fotónico, favoreciendo el acoplamiento excitón-fotón sobre el acoplamiento trión-fotón. Con el propósito de comparar con los resultados experimentales obtenidos por Finkelstein et al., en una segunda etapa se analizaron los procesos disipativos relevantes que afectan al sistema (véase capítulo 5). Se estudió la evolución temporal de la matriz de densidad mediante la solución de la ecuación maestra en la forma de Lindblad, y se determinaron los espectros de fotoluminiscencia de estado estacionario, así como las funciones de correlación de segundo orden de la luz emitida. Los resultados revelaron que el bombeo selectivo de excitones y triones induce una transferencia coherente de población entre estas cuasipartículas a través del modo óptico compartido. Este comportamiento está mediado por el acoplamiento indirecto, el cual es modulado por constantes efectivas de interacción radiación-materia que dependen del campo magnético. Asimismo, se encontró que dicho campo actúa como un parámetro de control para ajustar la composición fraccional de los estados polaritónicos, mediante el corrimiento no lineal de las energías de las componentes de materia asociadas a estos estados y la modificación de las amplitudes de interacción. Estos mecanismos permiten también sintonizar la emisión del sistema en un régimen de laseo de polaritones sin inversión de población. Finalmente, se demostró la posibilidad de observar el régimen de bloqueo fotónico convencional mediante la sintonización del campo, lo que posiciona a los polaritones triónicos como candidatos para la generación de fuentes cuánticas de un solo fotón. En una tercera etapa (capítulo 6), se exploró el régimen multiexcitónico del sistema utilizando la teoría de campo medio de Hartree-Fock-Bogoliubov. En este régimen, la densidad de polaritones es alta y los efectos de muchos cuerpos se vuelven dominantes. Se mostró que el campo magnético permite controlar tanto la energía de los excitones como el número de fotones en el modo óptico de la cavidad. Además, se encontró que las energías del sistema completo escalan linealmente con el número de polaritones, evidenciando un régimen débil de interacción polaritón-polaritón. Finalmente, en el capítulo 7, se abordó el problema del control cuántico en arquitecturas excitón–trión–fotón. Se propuso un protocolo teórico para la síntesis de compuertas cuánticas mediante la sintonización de los parámetros de pulsos fotónicos gaussianos (tales como su amplitud, posición central y ancho) junto con la intensidad de un campo magnético, aplicados al sistema como parámetros de control externo. Mediante un algoritmo de optimización, se implementaron de manera dinámica compuertas de un qubit y de un qudit de cuatro niveles, alcanzando fidelidades del 99.9% para el qubit y del 99.6% para el qudit, lo que demuestra que los polaritones triónicos pueden funcionar no solo como una fuente de luz controlable, sino también como una plataforma para el desarrollo de dispositivos cuánticos programables. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis investigates the effects of an external magnetic field applied perpendicular to a quantum well–microcavity system. Within this framework, it is possible to access exciton and negative trion states in the semiconductor, which strongly couple to the lowest-energy cavity mode, enabling the formation of excitonic, trionic, or exciton–trion hybrid polaritons, depending on the mechanism of external excitation. The theoretical approach relies on a finite, first-principles model that exactly incorporates the Coulomb interaction between charge carriers and their coupling to the cavity photon mode. In addition, decoherence effects that impact the system, such as photon leakage through the cavity mirrors, spontaneous emission losses, and incoherent pumping mechanisms, are modeled using the Lindblad master equation formalism. Within this system, the following problems are addressed: (i) exact diagonalization of the Hamiltonian to study the eigenenergies and eigenstates of excitons, trions, and polaritons; (ii) analysis of photoluminescence spectra and second-order correlation functions in the dissipative regime; (iii) scaling of the system energy and the behavior of the average photon number in the multiexcitonic regime using the Hartree–Fock–Bogoliubov variational method; and (iv) the development of a quantum control protocol based on ultrashort photonic pulses and the magnetic field as external control parameters, aimed at synthesizing quantum gates for qubits and four-level qudits in the proposed physical system. The work is organized into complementary stages of analysis. First (see chapter 4), the Coulomb interaction in quantum wells and its modification under external magnetic fields are examined, showing that the competition between magnetic length and well width leads to a reduction in the effective Coulomb interaction amplitude compared to purely two-dimensional systems. This behavior directly influences the structure of exciton and trion eigenenergies and eigenstates. It is found that, due to the interplay between cyclotron energy, Zeeman energy, and Coulomb interaction, the energies of these quasiparticles undergo a blue shift as the applied field increases. For trions, the magnetic field allows tuning of the spin symmetry of the ground state, enabling a transition from a bright singlet at low fields to a dark triplet at high fields. In general, the field-induced reconfiguration modifies the effective interaction amplitudes of each quasiparticle with the photon mode, favoring exciton–photon coupling over trion–photon coupling. To compare with experimental results reported by Finkelstein et al., a second stage (see chapter 5) analyzes the relevant dissipative processes affecting the system. The time evolution of the density matrix is studied through the solution of the Lindblad master equation, yielding steady-state photoluminescence spectra and second-order correlation functions of the emitted light. Results show that selective pumping of excitons or trions induces coherent population transfer between these quasiparticles via the shared optical mode. This behavior is mediated by indirect coupling, modulated by effective light–matter interaction constants dependent on the magnetic field. It is further shown that the magnetic field acts as a control parameter to tune the fractional composition of polariton states through nonlinear shifts in the energies of their matter components and modifications of their interaction amplitudes. These mechanisms also enable tuning of the system emission toward a polariton lasing regime without population inversion. Finally, the possibility of observing conventional photon blockade by field tuning is demonstrated, positioning trionic polaritons as candidates for single-photon quantum light sources. In a third stage (see chapter 6), the multiexcitonic regime is explored using the Hartree–Fock–Bogoliubov mean-field theory. In this regime, polariton density is high and many-body effects become dominant. It is shown that the magnetic field enables control over both exciton energy and the photon number in the cavity mode. Furthermore, the system energies scale linearly with the number of polaritons, revealing a weakly interacting polariton–polariton regime. Finally, in chapter 7, the problem of quantum control in exciton–trion–photon architectures is addressed. A theoretical protocol is proposed for the synthesis of quantum gates through the tuning of Gaussian photonic pulse parameters (amplitude, central position, and width), together with the intensity of an applied magnetic field as external control parameters. Using an optimization algorithm, single-qubit and four-level qudit gates were dynamically implemented, achieving fidelities of 99.9% for qubits and 99.6% for qudits. These results demonstrate that trionic polaritons can function not only as controllable light sources but also as a platform for the development of programmable quantum devices.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en ciencias - Física
dc.description.notesMención meritoriaspa
dc.description.researchareaFísica teórica de la materia condensada
dc.format.extent130 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89312
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Física
dc.relation.referencesGleb Finkelstein, Hadas Shtrikman, y Israel Bar-Joseph. Negatively and positively charged excitons in GaAs/AlxGa1¡xAs quantum wells. Phys. Rev. B , 53:0, 1996.
dc.relation.referencesSurendra B. Anantharaman, Kiyoung Jo, y Deep Jariwala. Exciton photonics: from fundamental science to applications. ACS Nano, 15(8):12628-12654, Aug 2021.
dc.relation.referencesSanjib Ghosh y Timothy C. H. Liew. Quantum computing with exciton-polariton condensates. Npj Quantum Information, 6(1):16, Feb 2020.
dc.relation.referencesJ. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. Szymanska, R. André, J. Staehli, V. Savona, P. Littlewood, B. Deveaud, y Le Si Dang. Bose-Einstein condensation of exciton polaritons. Nature, 443(7110):409-14, 2006.
dc.relation.referencesHui Deng, Hartmut Haug, y Yoshihisa Yamamoto. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys., 82:1489-1537, 2010.
dc.relation.referencesJang Won Kang, Bokyung Song, Wenjing Liu, Seong Ju Park, Ritesh Agarwal, y Chang Hee Cho. Room temperature polariton lasing in quantum heterostructure nanocavities. Science Advances, 5(4):0, apr 2019.
dc.relation.referencesG. C. La Rocca. Polariton lasing. Nature Photonics, 4(6):343-345, jun 2010.
dc.relation.referencesAlberto Amo, Jérôme Lefrère, Simon Pigeon, Claire Adrados, Cristiano Ciuti, Iacopo Carusotto, Romuald Houdré, Elisabeth Giacobino, y Alberto Bramati. Superfluidity of polaritons in semiconductor microcavi- ties. Nature Physics, 5(11):805-810, sep 2009
dc.relation.referencesD. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, y D. Sanvitto. All-optical polariton transistor. Nature Communications, 4(1):1-8, apr 2013.
dc.relation.referencesVinod M. Menon, Lev I. Deych, y Alexander A. Lisyansky. Nonlinear optics: Towards polaritonic logic circuits. Nature Photonics, 4(6):345-346, jun 2010.
dc.relation.referencesT. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, y P. G. Savvidis. Polariton condensate transistor switch. Phys. Rev. B , 85:235102, Jun 2012.
dc.relation.referencesD. Caputo, E. S. Sedov, D. Ballarini, M. M. Glazov, A. V. Kavokin, y D. Sanvitto. Magnetic control of polariton spin transport. Communications Physics, 2(1):165, 2019.
dc.relation.referencesMateusz Król, Rafal Mirek, Katarzyna Lekenta, Jean Guy Rousset, Daniel Stephan, Michal Nawrocki, Michal Matuszewski, Jacek Szczytko, Wojciech Pacuski, y Barbara Pietka. Spin polarized semimagnetic exciton-polariton condensate in magnetic field. Scientific Reports, 8(1):6694, dec 2018.
dc.relation.referencesKankan Cong, Yongrui Wang, Ji-Hee Kim, G. Timothy Noe, Stephen A. McGill, Alexey Belyanin, y Junichiro Kono. Superfluorescence from photoexcited semiconductor quantum wells: magnetic field, temperature, and excitation power dependence. Phys. Rev. B , 91:235448, Jun 2015
dc.relation.referencesB. Pietka, D. Zygmunt, M. Król, M. R. Molas, A. A. L. Nicolet, F. Morier-Genoud, J. Szczytko, J. Lusakowski, P. Zieeba, I. Tralle, P. St¦¦pnicki, M. Matuszewski, M. Potemski, y B. Deveaud. Magnetic field tuning of exciton-polaritons in a semiconductor microcavity. Phys. Rev. B , 91:75309, Feb 2015.
dc.relation.referencesGiovanni Pizzi, Francesca Carosella, Gérald Bastard, y Robson Ferreira. Magnetic field control of intersubband polaritons in narrow-gap semiconductors. Phys. Rev. B , 83:245318, Jun 2011.
dc.relation.referencesJ S Rojas-Arias, B A Rodríguez, y H Vinck-Posada. Magnetic control of dipolaritons in quantum dots. Journal of Physics: Condensed Matter , 28(50):505302, oct 2016
dc.relation.referencesD. D. Solnyshkov, M. M. Glazov, I. A. Shelykh, A. V. Kavokin, E. L. Ivchenko, y G. Malpuech. Magnetic field effect on polarization and dispersion of exciton-polaritons in planar microcavities. Phys. Rev. B, 78:165323, Oct 2008.
dc.relation.referencesN.E. Kaputkina, Yu.E. Lozovik, y M. Willander. Influence of the magnetic field on formation and spectrum of the exciton-polariton in a microcavity. Physica B: Condensed Matter, 378-380:1049 1050, 2006. Proceedings of the International Conference on Strongly Correlated Electron Systems.
dc.relation.referencesV. P. Kochereshko, D. V. Avdoshina, P. Savvidis, S. I. Tsintzos, Z. Hatzopoulos, A. V. Kavokin, L. Besombes, y H. Mariette. On the condensation of exciton polaritons in microcavities induced by a magnetic field. Semiconductors, 50(11):1506-1510, Nov 2016.
dc.relation.referencesMateusz Król, Katarzyna Lekenta, Rafal Mirek, Karolina empicka, Daniel Stephan, Karol Nogajewski, Maciej R. Molas, Adam Babinski, Marek Potemski, Jacek Szczytko, y Barbara Pietka. Valley polarization of exciton-polaritons in monolayer wse2 in a tunable microcavity. Nanoscale, 11:9574-9579, 2019.
dc.relation.referencesR. P. A. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan, F. Withers, A. Catanzaro, P. M. Walker, F. A. Benimetskiy, M. S. Skolnick, A. I. Tartakovskii, I. A. Shelykh, y D. N. Krizhanovskii. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nature Communications, 11(1):3589, Jul 2020.
dc.relation.referencesRonen Rapaport, E. Cohen, Arza Ron, Evegeny Linder, y L. N. Pfeiffer. Negatively charged polaritons in a semiconductor microcavity. Phys. Rev. B, 63:235310, May 2001.
dc.relation.referencesO. Kyriienko, D. N. Krizhanovskii, y I. A. Shelykh. Nonlinear quantum optics with trion polaritons in 2d monolayers: conventional and unconventional photon blockade. Phys. Rev. Lett., 125:197402, Nov 2020.
dc.relation.referencesKok Wee Song, Salvatore Chiavazzo, y Oleksandr Kyriienko. Microscopic theory of nonlinear phase space filling in polaritonic lattices. Phys. Rev. Res., 6:23033, Apr 2024.
dc.relation.referencesN. Lundt, M. Klaas, E. Sedov, M. Waldherr, H. Knopf, M. Blei, S. Tongay, S. Klembt, T. Taniguchi, K. Watanabe, U. Schulz, A. Kavokin, S. Höfling, F. Eilenberger, y C. Schneider. Magnetic-field-induced splitting and polarization of monolayer-based valley exciton polaritons. Phys. Rev. B , 100:121303, Sep 2019.
dc.relation.referencesAndrejs Kudlis, Ivan Aleksandrov, Zaur Alisultanov, Kalman Varga, Ivan Shelykh, y Vanik Shahnazaryan.Theory of magnetotrion-polaritons in transition metal dichalcogenide monolayers. Npj 2D Materials and Applications, 8(1):77, Nov 2024.
dc.relation.referencesPaul Harrison. Quantum Wells, Wires and Dots. Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, 2nd edition, 2005.
dc.relation.referencesA David y B Miller. Optical physics of quantum wells. In Quantum Dynamics of Simple Systems, pages 239-266. CRC Press, 2020.
dc.relation.referencesJasprit Singh. Electronic and optoelectronic properties of semiconductor structures. Cambridge University Press, 2007.
dc.relation.referencesHartmut Haug y Stephan W Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. WORLD SCIENTIFIC, 5th edition, 2009.
dc.relation.referencesCharles Kittel. Introduction to Solid State Physics. Wiley, 8th edition, 2004.
dc.relation.referencesV. Savona, Z. Hradil, A. Quattropani, y P. Schwendimann. Quantum theory of quantum-well polaritons in semiconductor microcavities. Phys. Rev. B , 49:8774-8779, 1994.
dc.relation.referencesMackillo Kira y Stephan Koch. Semiconductor Quantum Optics. Cambridge University Press, 2012.
dc.relation.referencesA. D'Andrea y R. Del Sole. Wannier-mott excitons in semi-infinite crystals: wave functions and normal incidence reflectivity. Phys. Rev. B , 25:3714-3730, 1982.
dc.relation.referencesA Kavokin, J Baumberg, G Malpuech, y F Laussy. Microcavities. Oxford University Press, 2007.
dc.relation.referencesM Romanelli, C Leyder, J-Ph Karr, A Baas, E Giacobino, y A Bramati. Towards quantum correlated polariton modes in semiconductor microcavities. Journal of Optics B: Quantum and Semiclassical Optics, 7(12):0, nov 2005.
dc.relation.referencesYoshihisa Yamamoto, Francesco Tassone, y Hui Cao. Semiconductor cavity quantum electrodynamics. Springer, 2000.
dc.relation.referencesHui Deng, Hartmut Haug, y Yoshihisa Yamamoto. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys., 82:1489-1537, 2010.
dc.relation.referencesH Huag y S Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, 4th edition, 2004.
dc.relation.referencesYing Wu y Xiaoxue Yang. Strong-coupling theory of periodically driven two-level systems. Phys. Rev. Lett., 98:13601, 2007.
dc.relation.referencesJean Paul Blaizot y Gorges Ripka. Quantum Theory of Finite Systems. MIT Press, 1st edition, 1986.
dc.relation.referencesM Kira, F Jahnke, y S W Koch. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys Rev Lett , 81:3263-3266, 1998.
dc.relation.referencesM. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, y H. M. Gibbs. Quantum theory of nonlinear semiconductor microcavity luminescence explaining "boser" experiments. Phys. Rev. Lett., 79:5170-5173, 1997.
dc.relation.referencesM. Kira y S.W. Koch. Many-body correlations and excitonic effects in semiconductor spectroscopy. Progress in Quantum Electronics, 30(5):155-296, 2006.
dc.relation.referencesM. Kira y S. W. Koch. Cluster-expansion representation in quantum optics. Phys. Rev. A, 78:22102, 2008.
dc.relation.referencesM. Sánchez-Barquilla, R. E. F. Silva, y J. Feist. Cumulant expansion for the treatment of light-matter interactions in arbitrary material structures. The Journal of Chemical Physics, 152(3):34108, 2020.
dc.relation.referencesC. Weisbuch, M. Nishioka, A. Ishikawa, y Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69:3314-3317, Dec 1992.
dc.relation.referencesR. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, y M. Ilegems. Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments. Phys. Rev. Lett., 73:2043-2046, Oct 1994.
dc.relation.referencesJ. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, y A. Forchel. Strong coupling in a single quantum dot semiconductor microcavity system. Nature, 432(7014):197-200, Nov 2004.
dc.relation.referencesBarbara Pietka, D Zygmunt, Mateusz Krol, Jacek Szczytko, J Lusakowski, Maciej Molas, A A. L. Nicolet, Piotr Stepnicki, P Zieba, Igor Tralle, Francois Morier-Genoud, Michal Matuszewski, M Potemski, y Benoit Deveaud. Magnetic field tuning of exciton polaritons in a semiconductor microcavity. Phys. Rev. B , 91:0, 2014.
dc.relation.referencesT A Fisher, A M Afshar, M S Skolnick, y D M Whittaker. Vacuum rabi coupling enhancement and zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field. Phys Rev B , 53:469-472, 1996.
dc.relation.referencesD. M. Whittaker, T. A. Fisher, A. M. Afshar, M. S. Skolnick, P. Kinsler, J. S. Roberts, G. Hill, y M. A. Pate. Vacuum rabi splitting in semiconductor microcavities with applied electric and magnetic fields. Il Nuovo Cimento D , 17:1781-1786, 1995.
dc.relation.referencesR. Mirek, M. Krol, K. Lekenta, J.-G. Rousset, M. Nawrocki, M. Kulczykowski, M. Matuszewski, J. Szczytko, W. Pacuski, y B. Pietka. Angular dependence of giant zeeman effect for semimagnetic cavity polaritons. Phys. Rev. B , 95:85429, 2017.
dc.relation.referencesT. Espinosa-Ortega y T. C. H. Liew. Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B , 87:195305, 2013.
dc.relation.referencesA. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, y A. Bramati. Exciton-polariton spin switches. Nature Photonics, 4(6):361-366, 2010.
dc.relation.referencesR. Johne, I. A. Shelykh, D. D. Solnyshkov, y G. Malpuech. Polaritonic analogue of datta and das spin transistor. Phys. Rev. B , 81:125327, 2010.
dc.relation.referencesJ. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdré, U. Oesterle, y R. P. Stanley. From fermi's golden rule to the vacuum rabi splitting: magnetopolaritons in a semiconductor optical microcavity. Phys. Rev. Lett., 74:3967-3970, 1995.
dc.relation.referencesA. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, y A. Forchel. Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B , 84:165325, 2011.
dc.relation.referencesIsrael Bar-Joseph. Trions in gaas quantum wells. Semiconductor Science and Technology , 20(6):0, may 2005.
dc.relation.referencesY. Chang, S. Shiau, y M. Combescot. Crossover from trion-hole complex to exciton-polaron in n-doped two-dimensional semiconductor quantum wells. Phys. Rev. B , 98:235203, 2018.
dc.relation.referencesJuan I. Climente, Andrea Bertoni, y Guido Goldoni. Photoluminescence spectroscopy of trions in quantum dots: a theoretical description. Phys. Rev. B , 78:155316, 2008.
dc.relation.referencesA. Thilagam. Two-dimensional charged-exciton complexes. Phys. Rev. B , 55:7804-7808, 1997.
dc.relation.referencesO. Witham, R. J. Hunt, y N. D. Drummond. Stability of trions in coupled quantum wells modeled by two-dimensional bilayers. Phys. Rev. B, 97:75424, 2018.
dc.relation.referencesMurray A. Lampert. Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett., 1:450-453, 1958.
dc.relation.referencesH. Buhmann, L. Mansouri, J. Wang, P. H. Beton, N. Mori, L. Eaves, M. Henini, y M. Potemski. Electron concentration-dependent quantum-well luminescence: evidence for a negatively charged exciton. Phys. Rev. B , 51:7969-7972, 1995.
dc.relation.referencesA. J. Shields, M. Pepper, M. Y. Simmons, y D. A. Ritchie. Spin-triplet negatively charged excitons in gaas quantum wells. Phys. Rev. B , 52:7841-7844, 1995.
dc.relation.referencesK. Kheng, R. T. Cox, Merle Y. d' Aubigné, Franck Bassani, K. Saminadayar, y S. Tatarenko. Observation of negatively charged excitons X- in semiconductor quantum wells. Phys. Rev. Lett., 71:1752-1755, 1993.
dc.relation.referencesB. Stébé y A. Ainane. Ground state energy and optical absorption of excitonic trions in two dimensional semiconductors. Superlattices and Microstructures, 5(4):545-548, 1989.
dc.relation.referencesM. T. Portella-Oberli, V. Ciulin, J. H. Berney, B. Deveaud, M. Kutrowski, y T. Wojtowicz. Interacting many-body systems in quantum wells: evidence for exciton-trion-electron correlations. Phys. Rev. B , 69:235311, 2004.
dc.relation.referencesR. Kaur, A.J. Shields, J.L. Osborne, M.Y. Simmons, D.A. Ritche, y M. Pepper. Electron density dependence of the excitonic absorption thresholds of gaas quantum wells. Physica status solidi (a), 178(1):465-470, 2000.
dc.relation.referencesR. Rapaport, R. Harel, E. Cohen, Arza Ron, E. Linder, y L. N. Pfeiffer. Negatively charged quantum well polaritons in a GaAs/AlAs microcavity: an analog of atoms in a cavity. Phys. Rev. Lett., 84:1607-1610, 2000.
dc.relation.referencesChatterjee S. et al. Kallatt S., Das S. Interlayer charge transport controlled by exciton-trion coherent coupling. Npj 2D Mater Appl 3 , 15, 2019.
dc.relation.referencesDaniele Sanvitto, Fabio Pulizzi, Andrew J. Shields, Peter C. M. Christianen, Stuart N. Holmes, Michelle Y. Simmons, David A. Ritchie, Jan C. Maan, y Michael Pepper. Observation of charge trans-port by negatively charged excitons. Science, 294:837-839, 2001.
dc.relation.referencesV. Ciulin, P. Kossacki, S. Haacke, J.-D. Ganière, B. Deveaud, A. Esser, M. Kutrowski, y T. Wojtowicz. Radiative behavior of negatively charged excitons in cdte-based quantum wells: a spectral and temporal analysis. Phys. Rev. B , 62:0, 2000.
dc.relation.referencesAxel Esser, Erich Runge, Roland Zimmermann, y Wolfgang Langbein. Photoluminescence and radiative lifetime of trions in gaas quantum wells. Phys. Rev. B , 62:8232-8239, 2000.
dc.relation.referencesK. Siantidis, V. M. Axt, y T. Kuhn. Dynamics of exciton formation for near band-gap excitations. Phys. Rev. B , 65:35303, 2001.
dc.relation.referencesC. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, y P. Schwendimann. Exciton formation rates in GaAs/AlxGa1-xAs quantum wells. Phys. Rev. B , 55:1333-1336, 1997.
dc.relation.referencesJ. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M. T. Portella-Oberli, y B. Deveaud. Determination of the exciton formation in quantum wells from time-resolved interband luminescence. Phys. Rev. Lett., 93:137401, 2004.
dc.relation.referencesE. Vanelle, M. Paillard, X. Marie, T. Amand, P. Gilliot, D. Brinkmann, R. Lévy, J. Cibert, y S. Tatarenko. Spin coherence and formation dynamics of charged excitons in CdTe/Cd1-x-yMgxZnyTe quantum wells. Phys. Rev. B , 62:2696-2705, 2000.
dc.relation.referencesF. J. Teran, L. Eaves, L. Mansouri, H. Buhmann, D. K. Maude, M. Potemski, M. Henini, y G. Hill. Trion formation in narrow gaas quantum well structures. Phys. Rev. B , 71:161309, 2005.
dc.relation.referencesC. R. L. P. N. Jeukens, P. C. M. Christianen, J. C. Maan, D. R. Yakovlev, W. Ossau, V. P. Kochereshko, T. Wojtowicz, G. Karczewski, y J. Kossut. Dynamical equilibrium between excitons and trions in cdte quantum wells in high magnetic fields. Phys. Rev. B, 235318, 2002.
dc.relation.referencesM. T. Portella-Oberli, J. Berney, L. Kappei, F. Morier-Genoud, J. Szczytko, y B. Deveaud-Plédran. Dynamics of trion formation in In xGa 1¡xAs quantum wells. Phys. Rev. Lett., 102:96402, 2009.
dc.relation.referencesJ. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M. T. Portella-Oberli, y B. Deveaud. Determination of the exciton formation in quantum wells from time-resolved interband luminescence. Phys. Rev. Lett., 93:137401, 2004.
dc.relation.referencesShmuel Glasberg, Gleb Finkelstein, Hadas Shtrikman, y Israel Bar-Joseph. Comparative study of the negatively and positively charged excitons in gaas quantum wells. Phys. Rev. B , 59:0, 1999.
dc.relation.referencesA. J. Shields, M. Pepper, M. Y. Simmons, y D. A. Ritchie. Spin-triplet negatively charged excitons in gaas quantum wells. Phys. Rev. B , 52:7841-7844, 1995.
dc.relation.referencesD. M. Whittaker y A. J. Shields. Theory of X- at high magnetic fields. Phys. Rev. B , 56:15185-15194, 1997.
dc.relation.referencesA. B. Dzyubenko y A. Yu. Sivachenko. Charged magnetoexcitons in two-dimensions: magnetic translations and families of dark states. Phys. Rev. Lett., 84:4429-4432, 2000.
dc.relation.referencesT. Vanhoucke, M. Hayne, M. Henini, y V. V. Moshchalkov. High-field zeeman contribution to the trion binding energy. Phys. Rev. B , 65:41307, 2002.
dc.relation.referencesGleb Finkelstein, Hadas Shtrikman, y Israel Bar-Joseph. Shakeup processes in the recombination spectra of negatively charged excitons. Phys. Rev. B , 53:12593-12596, 1996.
dc.relation.referencesK. J. Nash, M. S. Skolnick, M. K. Saker, y S. J. Bass. Many body shakeup in quantum well luminescence spectra. Phys. Rev. Lett., 70:3115-3118, 1993.
dc.relation.referencesF. Tassone y Y. Yamamoto. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B , 59:10830-10842, 1999.
dc.relation.referencesC. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, y P. Schwendimann. Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells. Phys. Rev. B , 58:7926-7933, 1998.
dc.relation.referencesM. T. Portella-Oberli, V. Ciulin, J. H. Berney, B. Deveaud, M. Kutrowski, y T. Wojtowicz. Interacting many-body systems in quantum wells: evidence for exciton-trion-electron correlations. Phys. Rev. B , 69:235311, 2004.
dc.relation.referencesMonique Combescot y Shiue-Yuan Shiau. Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics. Oxford University Press, 12 2015.
dc.relation.referencesA. Esser, R. Zimmermann, y E. Runge. Theory of trion spectra in semiconductor nanostructures. Physica status solidi (b), 227(2):317-330, 2001.
dc.relation.referencesPawel Hawrylak. Optical properties of a two-dimensional electron gas: evolution of spectra from excitons to fermi-edge singularities. Phys. Rev. B , 44:3821-3828, Aug 1991.
dc.relation.referencesMonique Combescot y Jérôme Tribollet. Trion oscillator strength. Solid State Communications, 128(6):273-277, 2003.
dc.relation.referencesR. Rapaport, R. Harel, E. Cohen, Arza Ron, E. Linder, y L. N. Pfeiffer. Negatively charged quantum well polaritons in a GaAs/AlAs microcavity: an analog of atoms in a cavity. Phys. Rev. Lett., 84:1607-1610, Feb 2000.
dc.relation.referencesAbhishek Sharma y Amit Kumar. A survey on quantum key distribution. In 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), volumen 1, 1-4. 2019.
dc.relation.referencesPascale Senellart, Glenn Solomon, y Andrew White. High-performance semiconductor quantum-dot single-photon sources. Nature Nanotechnology , 12(11):1026-1039, 2017.
dc.relation.referencesXinyun Liang, Zhenglu Duan, Qin Guo, Cunjin Liu, Shengguo Guan, y Yi Ren. Conventional and unconventional photon blockade effects in an atom-cavity system. Arxiv preprint , 2019.
dc.relation.referencesA. Imamolu, H. Schmidt, G. Woods, y M. Deutsch. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 79:1467-1470, 1997.
dc.relation.referencesJ. Kim, O. Benson, H. Kan, y Y. Yamamoto. A single-photon turnstile device. Nature, 397(6719):500-503, 1999.
dc.relation.referencesA. Verger, C. Ciuti, y I. Carusotto. Polariton quantum blockade in a photonic dot. Phys. Rev. B , 73:193306, 2006.
dc.relation.referencesH. Flayac y V. Savona. Unconventional photon blockade. Phys. Rev. A, 96:53810, 2017.
dc.relation.referencesK. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, y H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature, 436(7047):87-90, Jul 2005.
dc.relation.referencesAndrei Faraon, Ilya Fushman, Dirk Englund, Nick Stoltz, Pierre Petroff, y Jelena Vu£kovic. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Physics, 4(11):859863, 2008.
dc.relation.referencesA. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, y A. A. Houck. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett., 107:53602, 2011.
dc.relation.referencesT. C. H. Liew y V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 104:183601, 2010.
dc.relation.referencesA. Y. Cho. Advances in molecular beam epitaxy (mbe). Journal of Crystal Growth, 111(1):1-13, 1991.
dc.relation.referencesKazuhito Furuya y Yasuyuki Miyamoto. Gainasp/inp organometallic vapor phase epitaxy for research and fabrication of devices. International Journal of High Speed Electronics and Systems, 01(03n04):347-367, 1990.
dc.relation.referencesGleb Finkelstein, Hadas Shtrikman, y Israel Bar-Joseph. Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys. Rev. Lett., 74:976-979, Feb 1995.
dc.relation.referencesA. Manassen, E. Cohen, Arza Ron, E. Linder, y L. N. Pfeiffer. Exciton and trion spectral line shape in the presence of an electron gas in gaas/alas quantum wells. Phys. Rev. B , 54:10609-10613, Oct 1996.
dc.relation.referencesP. Dawson, I. Galbraith, A. I. Kucharska, y C. T. Foxon. Low-power, all-optical nonlinear absorption in asymmetric double quantum wells. Applied Physics Letters, 58(25):2889-2891, 06 1991.
dc.relation.referencesP. Dawson y M. J. Godfrey. Recombination dynamics of spatially separated electron-hole plasmas in gaas/alas mixed type-i/type-ii quantum well structures. Phys. Rev. B , 68:115326, Sep 2003.
dc.relation.referencesBoris Anghelo Rodriguez y Augusto Gonzalez. Spin polarization and magnetoluminescence of confined electron-hole systems. Phys. Rev. B , 63:205324, May 2001.
dc.relation.referencesP Eastham. Nanophotonics I: quantum theory of microcavities. Course Notes, Trinity Collegue Dublin, 2010.
dc.relation.referencesY Yamamoto, F Tassone, y H Cao. Semiconductor Cavity Quantum Electrodynamics. Springer, 1st edition, 2000.
dc.relation.referencesR. E. Slusher y C. Weisbuch. Optical microcavities in condensed matter systems. Solid State Communications, 92(1):149-158, 1994.
dc.relation.referencesPochi Yeh. Optical Waves in Layered Media. Wiley, 2007.
dc.relation.referencesAnmon Yariv y Pochi Yeh. Photonics, Optical Electronics in Modern Communications. Oxford University Press, 2007.
dc.relation.referencesC Cohen-Tannoudji y J Dupont-Roc. Photons and Atoms. Wiley, 1989.
dc.relation.referencesM. Goppert-Mayer. Elementary processes with two quantum transitions. Ann. Phys., 18:466-479, 1933.
dc.relation.referencesS Swain. Master equation derivation of quantum regression theorem. Journal of Physics A: Mathematical and General , 14(10):2577, oct 1981.
dc.relation.referencesH. P. Breuer y F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 1st edition, 2002.
dc.relation.referencesDaniel Manzano. A short introduction to the lindblad master equation. AIP Advances, 10(2):25106, 02 2020.
dc.relation.referencesR Prasankumar y A Taylor. Optical Techniques For Solid-State Materials Characterization. CRC Press, 1st edition, 2012.
dc.relation.referencesC. W. Gardiner y P. Zoller. Quantum Noise. Springer Verlag, 1st edition, 2004.
dc.relation.referencesCarlos Andrés Vera, Herbert Vinck-Posada, y Augusto González. Polariton lasing in a multilevel quantum dot strongly coupled to a single photon mode. Phys. Rev. B , 80:125302, Sep 2009.
dc.relation.referencesP. Ring y P. Schuck. The Nuclear Many-Body Problem . Physics and astronomy online library. Springer, 2004.
dc.relation.referencesClaude Cohen-Tannoudji, Bernard Diu, y Franck Laloë. Quantum mechanics. Wiley, New York, NY, 1977. Trans. of : Mécanique quantique. Paris : Hermann, 1973.
dc.relation.referencesWalid Younes, Daniel Marc Gogny, y Jean-François Berger. A microscopic theory of fission dynamics based on the generator coordinate method . Lecture notes in physics, volume 950. Springer, Cham, Switzerland, 2019.
dc.relation.referencesHaruki Kasuya y Kenichi Yoshida. Hartree fock bogoliubov theory for odd-mass nuclei with a time-odd constraint and application to deformed halo nuclei. Progress of Theoretical and Experimental Physics, 2021(1):13-1, 11 2020.
dc.relation.referencesJavid A. Sheikh y Peter Ring. Symmetry-projected hartree fock bogoliubov equations. Nuclear Physics A, 665(1):71-91, 2000.
dc.relation.referencesXuejun Zhu, P. B. Littlewood, Mark S. Hybertsen, y T. M. Rice. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett., 74:1633-1636, Feb 1995.
dc.relation.referencesD. Andronikov, V. Kochereshko, A. Platonov, T. Barrick, S. A. Crooker, y G. Karczewski. Singlet and triplet trion states in high magnetic fields: photoluminescence and reflectivity spectra of modulation-doped CdTe∕Cd0.7 Mg 0.3 Te quantum wells. Phys. Rev. B , 72:165339, Oct 2005.
dc.relation.referencesP. Redlinski. Binding energy of negative trions in a cdte quantum well at high magnetic fields. Journal of Applied Physics, 99(6):63702, 03 2006.
dc.relation.referencesPawel Redlinski y Jacek Kossut. Negative trions in cdte quantum wells in the presence of a magnetic field a numerical study. Semiconductor Science and Technology , 17(3):237, feb 2002.
dc.relation.referencesAsher Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413 1415, Aug 1996.
dc.relation.referencesH.P. Breuer y F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2002.
dc.relation.referencesV. Savona, L.C. Andreani, P. Schwendimann, y A. Quattropani. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Communications, 93(9):733-739, 1995.
dc.relation.referencesG. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, y A. Scherer. Vacuum rabi splitting in semiconductors. Nature Physics, 2(2):81-90, Feb 2006.
dc.relation.referencesHerbert Vinck-Posada, Boris A. Rodriguez, y Augusto Gonzalez. Micropillar resonator in a magnetic field: zero and finite temperature cases. Superlattices and Microstructures, 43(5):500 506, 2008. Proceedings of the 7th International Conference on Physics of Light-Matter Coupling in Nanostructures.
dc.relation.referencesYu-Hong Han, Cong Cao, Li Zhang, Xin Yi, Pan-Pan Yin, Ling Fan, y Ru Zhang. High-fidelity hybrid universal quantum controlled gates on photons and quantum-dot spins. International Journal of Theoretical Physics, 60(3):1136-1149, Mar 2021.
dc.relation.referencesJi-Zhen Liu, Hai-Rui Wei, y Ning-Yang Chen. A heralded and error-rejecting three-photon hyper-parallel quantum gate through cavity-assisted interactions. Scientific Reports, 8(1):1885, Jan 2018.
dc.relation.referencesHai-Rui Wei y Fu-Guo Deng. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express, 22(1):593-607, Jan 2014.
dc.relation.referencesBo-Yang Xia, Cong Cao, Yu-Hong Han, y Ru Zhang. Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside single-sided optical microcavities. Laser Physics, 28(9):95201, jul 2018.
dc.relation.referencesPing Dong y Zhuo-Liang Cao. Quantum computation with quantum-dot spin qubits inside a cavity. Physics Letters A, 373(17):1527-1530, 2009.
dc.relation.referencesJ. Barrat, A. Tzortzakakis, M. Niu, X. Zhou, G. Paschos, D. Petrosyan, y P. Savvidis. Qubit analog with polariton superfluid in an annular trap. Science Advances, 10, 2024.
dc.relation.referencesLuciano S. Ricco, Ivan A. Shelykh, y Alexey Kavokin. Qubit gate operations in elliptically trapped polariton condensates. Scientific Reports, 14(1):4211, Feb 2024.
dc.relation.referencesO. Kyriienko y T. C. H. Liew. Exciton-polariton quantum gates based on continuous variables. Phys. Rev. B , 93:35301, Jan 2016.
dc.relation.referencesEmmanuel Paspalakis y John Boviatsis. Ultrashort electromagnetic pulse control of intersubband quantum well transitions. Nanoscale Research Letters, 7(1):478, Aug 2012.
dc.relation.referencesAntonio de Freitas, L. Sanz, y José M. Villas-Bôas. Coherent control of the dynamics of a single quantum-dot exciton qubit in a cavity. Phys. Rev. B , 95:115110, Mar 2017.
dc.relation.referencesC. A. Jiménez-Orjuela, H. Vinck-Posada, y José M. Villas-Bôas. Dark excitons in a quantum-dot cavity system under a tilted magnetic field. Phys. Rev. B , 96:125303, 2017.
dc.relation.referencesJ. A. Nelder y R. Mead. A simplex method for function minimization. The Computer Journal , 7(4):308-313, 01 1965.
dc.relation.referencesMonique Combescot. Trions in first and second quantizations. The European Physical Journal B - Condensed Matter and Complex Systems, 33(3):311-320, Jun 2003.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.subject.ddc530 - Física::535 - Luz y radiación relacionada
dc.subject.lembTeoría del excitón
dc.subject.lembExciton theory
dc.subject.proposalExcitónspa
dc.subject.proposalTriónspa
dc.subject.proposalQubiteng
dc.subject.proposalControl Cuánticospa
dc.subject.proposalPolaritónspa
dc.subject.proposalExcitoneng
dc.subject.proposalTrioneng
dc.subject.proposalQuditeng
dc.subject.proposalQuantum Controleng
dc.subject.proposalPolaritoneng
dc.subject.wikidataQubiteng
dc.subject.wikidataCúbitspa
dc.subject.wikidataPolaritónspa
dc.subject.wikidataPolaritoneng
dc.titleEstudio de polaritones triónicos en sistemas de pozos cuánticos semiconductores inmersos en campos magnéticosspa
dc.title.translatedStudy of trion polaritons in quantum well systems immersed in magnetic fieldseng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_16ec

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis.pdf
Tamaño:
7.37 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: