Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica

dc.contributor.advisorUrquiza Martínez, Mauricio
dc.contributor.authorBotero Buitrago, Jenny Alejandra
dc.contributor.orcidBotero Buitrago, Jenny [0000000199904648]spa
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2023-07-28T16:21:51Z
dc.date.available2023-07-28T16:21:51Z
dc.date.issued2023
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLas citoquinas son proteínas involucradas principalmente en la comunicación intercelular durante la respuesta inmune. Algunas citoquinas pueden inhibir el desarrollo y progresión de tumores, y estos efectos parecen estar relacionados con la modulación de la respuesta antitumoral. Estudios previos han identificado moléculas capaces de regular su expresión, entre ellas, un péptido derivado del sitio de unión de la glicoproteína gp85 del virus de Epstein-Barr a leucocitos humanos, denominado 11438. En este trabajo, se evaluó el efecto de este péptido y su análogo (33210) sobre la producción de citoquinas pro y antiinflamatorias, a nivel de ARNm y de proteína, en células mononucleares de sangre periférica (PBMCs) sanas, así como la inducción de cambios fenotípicos en esta población celular. Se determinó que los péptidos inducen un aumento en la expresión génica de citoquinas como IL-12B e IL-4, y que el péptido 33210 modificó el perfil de expresión de citoquinas a nivel de proteína al aumentar la producción de citoquinas inflamatorias como TNF-α, IL-8 e IL-6. Con relación a los marcadores de superficie de linfocitos y monocitos específicamente, se estableció una tendencia que indica que los péptidos modifican su expresión, indicando una regulación continua de la respuesta inmune. Estos resultados sugieren que los péptidos evaluados pueden actuar como moléculas promisorias para ayudar a la erradicación de células tumorales, en tanto inducen una activación de la respuesta inmune mediada por la expresión de citoquinas pro y antiinflamatorias. (Texto tomado de la fuente)spa
dc.description.abstractCytokines are proteins mainly involved in intercellular communication during the immune response. Some cytokines can inhibit the development and progression of tumors, and these effects seem to be related to the modulation of the antitumor response. Previous studies have identified molecules capable of regulating its expression, among them, a peptide derived from the binding site of the glycoprotein gp85 of the Epstein-Barr virus to human leukocytes, called 11438. In this work, the effect of this peptide was evaluated and its analogue (33210) on the production of pro- and anti-inflammatory cytokines, at the mRNA and protein level, in healthy peripheral blood mononuclear cells (PBMCs), as well as the induction of phenotypic changes in this cell population. It was determined that the peptides induce an increase in the gene expression of cytokines such as IL-12B and IL-4, and that peptide 33210 modified the cytokine expression profile at the protein level by increasing the production of inflammatory cytokines such as TNF-α, IL-8 and IL-6. Regarding the surface markers of lymphocytes and monocytes specifically, a trend was established indicating that the peptides modify their expression, indicating a continuous regulation of the immune response. These results suggest that the peptides evaluated may act as promising molecules to help eradicate tumor cells, while inducing an activation of the immune response mediated by the expression of pro- and anti-inflammatory cytokines.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaBioactividadspa
dc.format.extentxiv, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84357
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesShaw DM, Merien F, Braakhuis A, Dulson D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine. 2018;104(September 2017):136–42.spa
dc.relation.referencesBerraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Vol. 120, British Journal of Cancer. 2019. p. 6–15.spa
dc.relation.referencesYoung LS, Yap LF, Murray PG. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat Rev Cancer [Internet]. 2016;16(12):789–802. Available from: https://www.nature.com/articles/nrc.2016.92spa
dc.relation.referencesHeineman T, Gong M, Sample J, Kieff E. Identification of the Epstein-Barr virus gp85 gene. J Virol [Internet]. 1988;62(4):1101–7. Available from: https://jvi.asm.org/content/62/4/1101.longspa
dc.relation.referencesChen J, Rowe CL, Jardetzky TS, Longnecker R. The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio [Internet]. 2012;3(1):1–9. Available from: https://mbio.asm.org/content/3/1/e00290-11.longspa
dc.relation.referencesFrappier L. Epstein-Barr virus: Current Questions and Challenges. Tumour Virus Res [Internet]. 2021;12:200218. Available from: https://doi.org/10.1016/j.tvr.2021.200218spa
dc.relation.referencesEdson CM, Thorley-Lawson1 DA. Synthesis and Processing of the Three Major Envelope Glycoproteins of Epstein-Barr Virus. Vol. 46, Journal of Virology. 1983.spa
dc.relation.referencesBorza CM, Hutt-Fletcher LM. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med. 2002;8(6):594–9.spa
dc.relation.referencesKirschner AN, Omerović J, Popov B, Longnecker R, Jardetzky TS. Soluble Epstein-Barr Virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B-cell fusion but not in epithelial cell fusion. J Virol. 2006;80(19):9444–54.spa
dc.relation.referencesLi Q, Turk SM, Hutt-Fletcher LM. The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol. 1995;69(7):3987–94.spa
dc.relation.referencesWang X, Kenyon WJ, Li Q, Müllberg J, Hutt-Fletcher LM. Epstein-Barr Virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol. 1998;72(7):5552–8.spa
dc.relation.referencesChesnokova LS, Ahuja MK, Hutt-Fletcher LM. Epstein-Barr Virus Glycoprotein gB and gHgL can mediate fusion and entry in trans, and heat can act as a partial surrogate for gHgL and trigger a conformational change in gB. J Virol. 2014;88(21):12193–201.spa
dc.relation.referencesChesnokova LS, Hutt-Fletcher LM. Fusion of Epstein-Barr Virus with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8, and integrin binding triggers a conformational change in glycoproteins gHgL. J Virol. 2011;85(24):13214–23.spa
dc.relation.referencesUrquiza M, Suarez J, Lopez R, Vega E, Patino H, Garcia J, et al. Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Biochem Biophys Res Commun. 2004 Jun 18;319(1):221–9.spa
dc.relation.referencesPlata S LM, Oviedo L JF, Rincón Orozco B. Revisión sistemática: estrategias virales para la inducción de cáncer “virus de Epstein-Barr: latencia y mecanismos asociados a la oncogénesis viral.” Salud UIS. 2018;50(3):257–68.spa
dc.relation.referencesChen J, Sathiyamoorthy K, Zhang X, Schaller S, Perez White BE, Jardetzky TS, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus. Nat Microbiol [Internet]. 2018;3(2):172–80. Available from: http://dx.doi.org/10.1038/s41564-017-0081-7spa
dc.relation.referencesZhang H, Li Y, Wang HB, Zhang A, Chen ML, Fang ZX, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat Microbiol. 2018;3(2):164–71.spa
dc.relation.referencesBorza CM, Morgan AJ, Turk SM, Hutt-Fletcher LM. Use of gHgL for Attachment of Epstein-Barr Virus to Epithelial Cells Compromises Infection. J Virol. 2004;78(10):5007–14.spa
dc.relation.referencesHutt-Fletcher LM. Epstein-Barr Virus Entry. J Virol. 2007;81(15):7825–32.spa
dc.relation.referencesMasy E, Adriaenssens E, Montpellier C, Crépieux P, Mougel A, Quatannens B, et al. Human Monocytic Cell Lines Transformed In Vitro by Epstein-Barr Virus Display a Type II Latency and LMP-1-Dependent Proliferation. J Virol. 2002;76(13):6460–72.spa
dc.relation.referencesSavard M, Bélanger C, Tardif M, Gourde P, Flamand L, Gosselin J. Infection of primary human monocytes by Epstein-Barr Virus. J Virol. 2000;74(6):2612–9.spa
dc.relation.referencesOgembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg R, Tsokos GC, et al. Human complement receptor Type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013;3(2):1–23.spa
dc.relation.referencesTorii Y, Kawada J, Murata T, Yoshiyama H, Kimura H, Ito Y. Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS One. 2017;1–16.spa
dc.relation.referencesSaveria M, Montani G, Gonnella R, Vitillo M, Faggioni A, Santarelli R, et al. EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J Leukoc Biol. 2018;1–12.spa
dc.relation.referencesOda T, Imai S, Chiba S, Takada K. Epstein – Barr Virus Lacking Glycoprotein gp85 Cannot Infect B Cells and Epithelial Cells. 2000;58:52–8.spa
dc.relation.referencesMöhl BS, Schröter C, Klupp BG, Fuchs W, Mettenleiter TC, Jardetzky TS, et al. Comparative mutagenesis of Pseudorabies virus and Epstein-Barr Virus gH identifies a structural determinant within Domain III of gH required for surface expression and entry function. J Virol. 2016;90(5):2285–93.spa
dc.relation.referencesGuerreiro-Cacais AO, Li LQ, Donati D, Bejarano MT, Morgan A, Masucci MG, et al. Capacity of Epstein-Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol. 2004;85(10):2767–78.spa
dc.relation.referencesLi LQ, Liu D, Hutt-Fletcher L, Morgan A, Masucci MG, Levitsky V. Epstein-Barr virus inhibits the development of dendritic cells by promoting apoptosis of their monocyte precursors in the presence of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood. 2002;99(10):3725–34.spa
dc.relation.referencesParra López CA, Marchena DA, Urquiza Martínez M, Melo Cárdenas J, Vanegas M, Patarroyo Murillo ME. Abstracts for the 25th Annual Scientific Meeting of the International Society for Biological Therapy of Cancer. In: Journal of Immunotherapy [Internet]. 2010. p. 879. Available from: https://journals.lww.com/immunotherapy-journal/Citation/2010/10000/Abstracts_for_the_25th_Annual_Scientific_Meeting.13.aspxspa
dc.relation.referencesUrquiza M, Melo-Cardenas J, Guevara T, Echeverria I, Rodriguez IC, Vanegas M, et al. α-Helix peptides designed from EBV-gH protein display higher antigenicity and induction of monocyte apoptosis than the native peptide. Amino Acids. 2010;39(5):1507–19.spa
dc.relation.referencesAbbas AK, Lichtman AH, Pillai S. Inmunología Celular y Molecular. Octava Edi. Inc E, editor. Barcelona: Saunders; 2015. 537 p.spa
dc.relation.referencesMarshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy, Asthma Clin Immunol [Internet]. 2018;14(s2):1–10. Available from: https://doi.org/10.1186/s13223-018-0278-1spa
dc.relation.referencesMcDonald DR, Levy O. Innate Immunity. In: Clinical Immunology [Internet]. Fifth Edit. Elsevier Ltd; 2019. p. 39-53.e1. Available from: https://doi.org/10.1016/B978-0-7020-6896-6.00003-Xspa
dc.relation.referencesStunnenberg HG, Netea MG, Latz E, Xavier RJ, ONeill LAJ, Natoli G, et al. Trained immunity: A program of innate immune memory in health and disease. Science (80). 2016;352(6284):aaf1098–aaf1098.spa
dc.relation.referencesStenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines - A review. Anal Chim Acta [Internet]. 2015;853(1):95–115. Available from: http://dx.doi.org/10.1016/j.aca.2014.10.009spa
dc.relation.referencesSchirmer M, Kumar V, Netea MG, Xavier RJ. The causes and consequences of variation in human cytokine production in health. Curr Opin Immunol [Internet]. 2018;54:50–8. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L2000858704%0Ahttp://dx.doi.org/10.1016/j.coi.2018.05.012spa
dc.relation.referencesZhang J-M, An J. Cytokines, Inflammation, and Pain. Int Anesthesiol Clin. 2007;45(2):27–37.spa
dc.relation.referencesSeruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Vol. 8, Nature Reviews Cancer. 2008. p. 887–99.spa
dc.relation.referencesO’Shea JJ, Murray PJ. Cytokine Signaling Modules in Inflammatory Responses. Immunity. 2008;28(4):477–87.spa
dc.relation.referencesCytokines in the balance [Internet]. Vol. 20, Nature Immunology. 2019. Available from: https://doi.org/10.1038/s41590-019-0557-0spa
dc.relation.referencesTisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the Eye of the Cytokine Storm. Microbiol Mol Biol Rev [Internet]. 2012;76(1):16–32. Available from: http://mmbr.asm.org/cgi/doi/10.1128/MMBR.05015-11spa
dc.relation.referencesDinarello CA. Proinflammatory cytokines. Chest [Internet]. 2000;118(2):503–8. Available from: http://dx.doi.org/10.1378/chest.118.2.503spa
dc.relation.referencesRay A. Cytokines and their Role in Health and Disease: A Brief Overview. MOJ Immunol. 2016;4(2):1–9.spa
dc.relation.referencesShaikh PZ. Cytokines & their physiologic and pharmacologic functions in inflammation. Int J Pharm Life Sci. 2011;2(11):1247–63.spa
dc.relation.referencesTurner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Vol. 1843, Biochimica et Biophysica Acta - Molecular Cell Research. 2014. p. 2563–82.spa
dc.relation.referencesLuo Y, Zheng SG. Hall of fame among pro-inflammatory cytokines: Interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol. 2016;7(DEC):1–7.spa
dc.relation.referencesSpellberg B, Edwards JE. Type 1/type 2 immunity in infectious diseases. Clin Infect Dis. 2001;32(1):76–102.spa
dc.relation.referencesOpal SM, DePalo VA. Anti-inflammatory cytokines. Chest [Internet]. 2000;117(4):1162–72. Available from: http://dx.doi.org/10.1378/chest.117.4.1162spa
dc.relation.referencesWynn TA. Type 2 cytokines: Mechanisms and therapeutic strategies. Nat Rev Immunol [Internet]. 2015;15(5):271–82. Available from: http://dx.doi.org/10.1038/nri3831spa
dc.relation.referencesDeo SS, Mistry KJ, Kakade AM, Niphadkar P V. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India. 2010;27(2):66–71.spa
dc.relation.referencesHenry EK, Inclan-rico JM, Siracusa MC, State R. Type 2 cytokine responses: regulating immunity to helminth parasites and allergic inflammation. Curr Pharmacol Reports. 2017;3(6):346–59.spa
dc.relation.referencesGocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24(3):241–55.spa
dc.relation.referencesMitra S, Leonard WJ. Biology of IL-2 and its therapeutic modulation: Mechanisms and strategies. J Leukoc Biol. 2018;103(4):643–55.spa
dc.relation.referencesCote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, et al. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A. 2004;101(11):3880–5.spa
dc.relation.referencesWeaver LK, Behrens EM. Weathering the Storm: Improving Therapeutic Interventions for Cytokine Storm Syndromes by Targeting Disease Pathogenesis. Curr Treat Options Rheumatol. 2017;3(1):33–48.spa
dc.relation.referencesYiu HH, Graham AL, Stengel RF. Dynamics of a Cytokine Storm. PLoS One. 2012;7(10).spa
dc.relation.referencesRiddell SR. Adrenaline fuels a cytokine storm during immunotherapy. Vol. 564, Nature. 2018.spa
dc.relation.referencesMorris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol [Internet]. 2021;0123456789. Available from: http://dx.doi.org/10.1038/s41577-021-00547-6spa
dc.relation.referencesKang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med [Internet]. 2021;53(7):1116–23. Available from: http://dx.doi.org/10.1038/s12276-021-00649-0spa
dc.relation.referencesYang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther [Internet]. 2021;6(1):1–20. Available from: http://dx.doi.org/10.1038/s41392-021-00679-0spa
dc.relation.referencesBehrens EM, Koretzky GA. Cytokine Storm Syndrome Looking Toward the Precision Medicine Era. Arthritis Rheumatol. 2017;69(6):1135–43.spa
dc.relation.referencesXu HM. Th1 cytokine-based immunotherapy for cancer. Vol. 13, Hepatobiliary and Pancreatic Diseases International. Elsevier (Singapore) Pte Ltd; 2014. p. 482–94.spa
dc.relation.referencesAnusha A, Kumar S, Kaushik S, Jyoti A. Cancer immunotherapy. J Pharm Sci Res. 2017;9(5):662–6.spa
dc.relation.referencesConlon KC, Miljkovic MD, Waldmann TA. Cytokines in the Treatment of Cancer. J Interf Cytokine Res. 2019;39(1):6–21.spa
dc.relation.referencesChulpanova DS, Kitaeva K V., Green AR, Rizvanov AA, Solovyeva V V. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol. 2020;8(June).spa
dc.relation.referencesBriukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;0123456789.spa
dc.relation.referencesQiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther. 2021;15:2269–87.spa
dc.relation.referencesMcFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J. 2022.spa
dc.relation.referencesRiddy DM, Goy E, Delerive P, Summers RJ, Sexton PM, Langmead CJ. Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS One. 2018;13(5):1–19.spa
dc.relation.referencesATCC. U-937 (ATCC® CRL-1593.2TM) [Internet]. American Type Cell Collection. Available from: https://www.atcc.org/products/all/CRL-1593.2.aspxspa
dc.relation.referencesTang B, Li Z, Huang D, Zheng L, Li Q. Screening of a Specific Peptide Binding to VPAC1 Receptor from a Phage Display Peptide Library. PLoS One. 2013;8(1).spa
dc.relation.referencesInvitrogen. Hoechst Stains [Internet]. Journal of Histochemistry and Cytochemistry. 2005. p. 9–12. Available from: https://www.thermofisher.com/order/catalog/product/H3570#/H3570https://www.thermofisher.com/order/catalog/product/H3570#/H3570spa
dc.relation.referencesChang H-Y, Huang H-C, Huang T-C, Yang P-C, Wang Y-C, Juan H-F. Flow Cytometric Detection of Mitochondrial Membrane Potential. Bio-protocol [Internet]. 2013;3(8):e430. Available from: https://doi.org/10.21769/BioProtoc.430spa
dc.relation.referencesAdrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquy M, et al. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med. 2001;164(3):389–95.spa
dc.relation.referencesInvitrogen. TRIzol® Reagent User Guide [Internet]. ThermoFisher Scientific. 2020. p. 1–5. Available from: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdfspa
dc.relation.referencesChomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.spa
dc.relation.referencesYe J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(134):1–11.spa
dc.relation.referencesStothard P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotechniques. 2000;28(6):1102–4.spa
dc.relation.referencesBio-Rad Laboratories I. Real-Time PCR Applications Guide. 1st ed. 2006. 1–100 p.spa
dc.relation.referencesSánchez-Barinas CD, Vergara-Vanegas V, Gamboa-Hernández CM, Ocampo M, Cuello-Oliveros A, Patarroyo MA, et al. Peptide-pulsed dendritic cells’ immunomodulating effect regarding Mycobacterium tuberculosis growth in macrophages. Immunobiology. 2023;228(2).spa
dc.relation.referencesHajam IA, Dar PA, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial ghosts of Escherichia coli drive efficient maturation of bovine monocyte-derived dendritic cells. PLoS One. 2015;10(12):1–15.spa
dc.relation.referencesRuseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol. 2020;11:101–23.spa
dc.relation.referencesZaro JL, Vekich JE, Tran T, Shen W-C. Nuclear localization of Cell-Penetrating Peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Mol Pharm [Internet]. 2009;6(2):337–44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdfspa
dc.relation.referencesCartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther. 2002;9(3):157–67.spa
dc.relation.referencesZorova LD, Popkov VA, Plotnikov EY, Silachev DN, Irina B, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9.spa
dc.relation.referencesWen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Vol. 5, Future Medicinal Chemistry. Future Science Ltd London, UK ; 2013. p. 53–67.spa
dc.relation.referencesCottet-Rousselle C, Ronot X, Leverve X, Mayol JF. Cytometric assessment of mitochondria using fluorescent probes. Cytom Part A. 2011;79 A(6):405–25.spa
dc.relation.referencesÖzgen Ü, Savaşan S, Buck S, Ravindranath Y. Comparison of DiOC6(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Commun Clin Cytom. 2000;42(1):74–8.spa
dc.relation.referencesMathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46(1):126–38.spa
dc.relation.referencesNagy G, Koncz A, Perl A. T Cell Activation-Induced Mitochondrial Hyperpolarization Is Mediated by Ca 2+ - and Redox-Dependent Production of Nitric Oxide . J Immunol. 2003;171(10):5188–97.spa
dc.relation.referencesMarek N, Myśliwska J, Raczyńska K, Trzonkowski P. Membrane potential of CD4+ T cells is a subset specific feature that depends on the direct cell-to-cell contacts with monocytes. Hum Immunol. 2010;71(7):666–75.spa
dc.relation.referencesWidlansky ME, Wang J, Shenouda SM, Hagen TM, Smith AR, Kizhakekuttu TJ, et al. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl Res [Internet]. 2010;156(1):15–25. Available from: http://dx.doi.org/10.1016/j.trsl.2010.04.001spa
dc.relation.referencesChen J, Chernatynskaya A V., Li JW, Kimbrell MR, Cassidy RJ, Perry DJ, et al. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep [Internet]. 2017;7(1):1–11. Available from: http://dx.doi.org/10.1038/s41598-017-11056-9spa
dc.relation.referencesJones AE, Divakaruni AS. Macrophage activation as an archetype of mitochondrial repurposing. Mol Aspects Med. 2020;71(1):1–27.spa
dc.relation.referencesMills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol [Internet]. 2017;18(5):488–98. Available from: https://doi.org/10.1038/ni.3704spa
dc.relation.referencesErndt-Marino J, Hahn MS. Membrane potential controls macrophage activation. In: 10th World Biomaterials Congress [Internet]. Montreal: Frontiers in Bioengineering and Biotechnology; 2016. Available from: https://www.frontiersin.org/10.3389/conf.fbioe.2016.01.00360/event_abstractspa
dc.relation.referencesGergely P, Niland B, Gonchoroff N, Pullman R, Phillips PE, Perl A. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus 1. J Immunol [Internet]. 2002;169(2):1092–101. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdfspa
dc.relation.referencesStanilova SA, Miteva LD. Dynamics in expression of the IL-12 related cytokine transcripts of IL-12A, IL-12B and IL-23 after stimulation of human PBMC. Trakia J Sci. 2008;6(1):7–11.spa
dc.relation.referencesSun L, He C, Nair L, Yeung J, Egwuagu CE. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine. 2015;75(2):249–55.spa
dc.relation.referencesHochrein H, O’Keeffe M, Luft T, Vandenabeele S, Grumont RJ, Maraskovsky E, et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med. 2000;192(6):823–33.spa
dc.relation.referencesOppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.spa
dc.relation.referencesGadani, Sachin P; Cronk J. Interleukin-4: A Cytokine to Remember. J Immunol. 2013;189(9):4213–9.spa
dc.relation.referencesSmiley ST, Grusby MJ. Interleukin 4. In: Encyclopedia of Immunology. 1998. p. 1451–3.spa
dc.relation.referencesKriegel MA, Tretter T, Blank N, Schiller M, Gabler C, Winkler S, et al. Interleukin-4 supports interleukin-12-induced proliferation and interferon-γ secretion in human activated lymphoblasts and T helper type 1 cells. Immunology. 2006;119(1):43–53.spa
dc.relation.referencesGor DO, Rose NR, Greenspan NS. Th1-Th2: A Procrustean paradigm. Nat Immunol. 2003;4(6):503–5.spa
dc.relation.referencesKaliński P, Smits HH, Schuitemaker JHN, Vieira PL, van Eijk M, de Jong EC, et al. IL-4 Is a Mediator of IL-12p70 Induction by Human Th2 Cells: Reversal of Polarized Th2 Phenotype by Dendritic Cells. J Immunol. 2000;165(4):1877–81.spa
dc.relation.referencesJeannin P, Delneste Y, Life P, Gauchat J ‐F, Kaiserlian D, Bonnefoy J ‐Y. Interleukin‐12 increases interleukin‐4 production by established human ThO and Th2‐like T cell clones. Eur J Immunol. 1995;25(8):2247–52.spa
dc.relation.referencesNgkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and G iα dependent PI-3kinase signalling. J Inflamm. 2012;9:2–8.spa
dc.relation.referencesJanský L, Reymanová P, Kopecký J. Dynamics of Cytokine Production in Human Peripheral Blood Mononuclear Cells Stimulated by LPS or Infected by Borrelia. Physiol Res. 2003;52(5):593–8.spa
dc.relation.referencesWu Y, Yue B, Liu J. Lipopolysaccharide-induced cytokine expression pattern in peripheral blood mononuclear cells in childhood obesity. Mol Med Rep. 2016;14(6):5281–7.spa
dc.relation.referencesSaraiva M, Saraiva M, Vieira P, Vieira P, Vieira P, O’Garra A, et al. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217(1):1–19.spa
dc.relation.referencesNaing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, et al. Safety, Antitumor Activity, and Immune Activation of Pegylated Recombinant Human Interleukin-10 (AM0010) in Patients With Advanced Solid Tumors. J Clin Oncol [Internet]. 2016 Aug 15;34(29):3562–9. Available from: https://doi.org/10.1200/JCO.2016.68.1106spa
dc.relation.referencesLauw FN, Pajkrt D, Hack E, Kurimoto M, Van Deventer S, Van der Poll T. Proinflammatory Efects of IL-10 During Human Endotoxemia. J Immunol. 2000;165(5):2783–9.spa
dc.relation.referencesHunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol [Internet]. 2015;16(5):448–57. Available from: http://dx.doi.org/10.1038/ni.3153spa
dc.relation.referencesChomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1(6):510–4.spa
dc.relation.referencesTanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. 2014;6(Kishimoto 1989):1–16.spa
dc.relation.referencesGrivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Vol. 140, Cell. 2010. p. 883–99.spa
dc.relation.referencesGrivennikov SI, Karin M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. In: Annals of the Rheumatic Diseases. 2011.spa
dc.relation.referencesScott KA, Arnott CH, Robinson SC, Moore RJ, Thompson RG, Marshall JF, et al. TNF-α regulates epithelial expression of MMP-9 and integrin αvβ6 during tumour promotion. A role for TNF-α in keratinocyte migration? Oncogene. 2004;23(41):6954–66.spa
dc.relation.referencesBigatto V, De Bacco F, Casanova E, Reato G, Lanzetti L, Isella C, et al. TNF-α promotes invasive growth through the MET signaling pathway. Mol Oncol. 2015;9(2):377–88.spa
dc.relation.referencesMrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, et al. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A. 2019;116(32):16046–55.spa
dc.relation.referencesMoro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of inflammation in the process of T lymphocyte differentiation: Proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9(MAR).spa
dc.relation.referencesSilva-Filho JL, Caruso-Neves C, Pinheiro AAS. IL-4: An important cytokine in determining the fate of T cells. Biophys Rev. 2014;6(1):111–8.spa
dc.relation.referencesHamza T, Barnett JB, Li B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci. 2010;11(3):789–806.spa
dc.relation.referencesHashimoto M, Im SJ, Araki K, Ahmed R. Cytokine-mediated regulation of CD8 T-cell responses during acute and chronic viral infection. Cold Spring Harb Perspect Biol. 2019;11(1):1–17spa
dc.relation.referencesYi H-J, Lu G-X. Adherent and non-adherent dendritic cells are equivalently qualified in GM-CSF, IL-4 and TNF-α culture system. Cell Immunol. 2012;277(1–2):44–8.spa
dc.relation.referencesO’Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell Mol Life Sci [Internet]. 2015;72(22):4309–25. Available from: https://doi.org/10.1007/s00018-015-2005-0spa
dc.relation.referencesBlanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev [Internet]. 2008;19(1):41–52. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdfspa
dc.relation.referencesPatente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;10(JAN):1–18.spa
dc.relation.referencesKuhn S, Yang J, Ronchese F. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and antitumor responses after local immunotherapy. Front Immunol. 2015;6(NOV):1–14.spa
dc.relation.referencesStephens TA, Nikoopour E, Rider BJ, Leon-ponte M, Chau TA, Chaturvedi P, et al. Dendritic cell differentiation induced by a self-peptide derived from Apolipoprotein E. jo. 2008;181(10):6859–71.spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsAntígenos Nucleares del Virus de Epstein-Barrspa
dc.subject.decsEpstein-Barr Virus Nuclear Antigenseng
dc.subject.decsEnsayos de Selección de Medicamentos Antitumoralesspa
dc.subject.decsDrug Screening Assays, Antitumoreng
dc.subject.proposalCitoquinasspa
dc.subject.proposalPéptidosspa
dc.subject.proposalPerfil de expresiónspa
dc.subject.proposalInflamaciónspa
dc.subject.proposalCytokineseng
dc.subject.proposalPeptideseng
dc.subject.proposalExpression profileeng
dc.subject.proposalInflammationeng
dc.titleEfecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periféricaspa
dc.title.translatedEffect of peptides derived from the Epstein-Barr virus gp85 protein on the expression of cytokines in peripheral blood mononuclear cellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026297033.2023.pdf
Tamaño:
2.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: