Evaluación de las interacciones de metabolitos polifenólicos obtenidos de Solanum tuberosum sobre la actividad antiagregante plaquetario del ácido acetil salicílico

dc.contributor.advisorGuerrero Pabon, Mario Franciscospa
dc.contributor.authorMoreno Tristancho, Angelica Natalispa
dc.contributor.researchgroupGrupo de Investigaciones en Farmacología Molecular (Farmol)spa
dc.date.accessioned2024-01-29T19:25:16Z
dc.date.available2024-01-29T19:25:16Z
dc.date.issued2023-12
dc.descriptionilustraciones (principalmente a color), diagramasspa
dc.description.abstractLa combinación de terapias es una estrategia efectiva en el ámbito clínico, ya que mejora la respuesta farmacológica y reduce el riesgo de efectos secundarios. Se investigó el efecto antiagregante de los polifenoles ácido cafeico (AC) y ácido clorogénico (ACG) de Solanum tuberosum, junto con ácido acetilsalicílico (ASA), en plasma rico en plaquetas. Los resultados mostraron efectos dependientes de la concentración de AC y ACG, así como de ASA. Se observó una interacción sinérgica con AC y una disminución en la efectividad antiagregante con ACG. Se necesitan estudios adicionales para determinar las concentraciones óptimas y posibles efectos sinérgicos de estos compuestos combinados con ASA. La combinación de terapias es una estrategia efectiva en el ámbito clínico, ya que mejora la respuesta farmacológica y reduce el riesgo de efectos secundarios. Se investigó el efecto antiagregante de los polifenoles ácido cafeico (AC) y ácido clorogénico (ACG) de Solanum tuberosum, junto con ácido acetilsalicílico (ASA), en plasma rico en plaquetas. Los resultados mostraron efectos dependientes de la concentración de AC y ACG, así como de ASA. Se observó una interacción sinérgica con AC y una disminución en la efectividad antiagregante con ACG. Se necesitan estudios adicionales para determinar las concentraciones óptimas y posibles efectos sinérgicos de estos compuestos combinados con ASA. (Texto tomado de la fuente)spa
dc.description.abstractCombination therapy is a therapeutic strategy that can be highly effective in the clinical setting, since drugs used in association can improve the pharmacological response and, at the same time, make it possible to reduce doses and the risk of possible side effects (Yang et al., 2014). Considering this approach, it is appropriate to investigate or explore new therapeutic options that contribute to decrease the impact of thrombotic diseases on public health. Therapies based on natural sources could offer active metabolites that, when interacting synergistically, provide new possibilities for combination therapies at the pharmacological level. In this study, the antiaggregation effect of the polyphenols previously identified in Solanum tuberosum, caffeic acid and chlorogenic acid, in the absence and in combination with increasing concentrations of acetylsalicylic acid (ASA), was analyzed against the agonist arachidonic acid (AA), in platelet-rich plasma from healthy volunteers, using the Born spectrophotometric technique, which is based on the kinetics of platelet aggregation analyzed by turbidimetry (Born, 1962). The aggregometer allowed observing the changes in light transmission in the blood plasma after incubation with the test reagents and the platelet aggregation-inducing agent arachidonic acid (AA), so that the increase in the percentage of platelet aggregation was evident by the increase in light transmission through the cell, due to the platelets aggregating and settling at the bottom of the vessel. Considering that caffeic acid and chlorogenic acid are active metabolites with antiplatelet aggregation activity present in Solanum tuberosum, in this work we proposed to study the possible interactions that they exert when combined with the reference drug, acetylsalicylic acid, one of the most widely used agents in clinical practice. The objective was to determine whether they could exert coadjuvant effects as antiaggregants, which could eventually be useful in the therapy or prevention of atherothrombotic disorders. The results, under the experimental conditions set in this work, showed concentration- dependent effects of caffeic acid and chlorogenic acid, with effective concentrations 50 (IC50) of 1x10-3 and 3,4x10-4 M, respectively, while with ASA, in the range of concentrations tested, an antiaggregant effect was observed that decreases with increasing concentration (from 5,5x10-5 to 1,6x10-3M), which is consistent with its mechanism of action, antiaggregant at low concentrations and proaggregant at higher concentrations. When examining the interaction of caffeic acid (in the concentration range 1.5 - 3.0x10-4 M) with ASA (5.5x10-6M), an increase in the antiaggregation effect was observed that decreased with concentration, while the interaction of chlorogenic acid (in the range 2.26x10-4 - 5.6x10-3 M) with ASA (5.5x10-6M) did not show an increase in the antiaggregation effect, but rather a dose-dependent decrease. In conclusion, concentration-dependent antiaggregation effects are confirmed with the polyphenolic compounds caffeic acid and chlorogenic acid, a dose-dependent decreasing antiaggregation effect of ASA, and an interaction suggesting synergistic effect with caffeic acid; however, the sample size and concentration range need to be expanded to identify the appropriate range of concentrations of these compounds that exert possible synergistic effects when combined with ASA.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Farmacologíaspa
dc.description.researchareaFarmacología experimental Cardiovascularspa
dc.format.extent80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85491
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.referencesAlan D Michelson. (2013). Platelets (Alan D Michelson, Marco Cattaneo, Adrew relinger, & Peter Newman, Eds.; 3rd ed., Vol. 3)spa
dc.relation.referencesBadimon, L., & Vilahur, G. (2013). Antiagregación plaquetaria Mecanismos de acción de los diferentes agentes antiplaquetarios. In Rev Esp Cardiol Supl (Vol. 13). https://www.revespcardiol.org/?ref=1917747156spa
dc.relation.referencesBermejo, E. (2017). Plaquetas. Hematología, 10-18. http://www.sah.org.ar/revista/numeros/vol21/extra/06-Vol%2021-extra.pdfspa
dc.relation.referencesBuitrago, D. (2012). Estudio de los mecanismos antihipertensivos y antiagregantes plaquetarios de los metabolitos secundarios obtenidos de Solanum tuberosum. [Tesis doctoral]. Bogotá, D. C.: Universidad Nacional de Colombia. Borda,D.C. (2020). Evaluación del efecto sobre la agregación plaquetaria de una dieta enriquecida en cáscara de papa. [Tesis maestrpia]. Bogotá, D. C.: Universidad Nacional de Colombia.spa
dc.relation.referencesBuitrago, D., Puebla, P., & Guerrero, M. (2019). Antiplatelet activity of metabolites isolated from Solanum tuberosum. Latin American Journal of Pharmacy, 38(8), 1575-1581.spa
dc.relation.referencesBuitrago, D., Ramos, G., Rincón, J., & Guerrero, M. (2007). Actividad antiagregante del extracto etanólico de Solanum tuberosum en plaquetas humanas. Vitae, 14(1), 49- 54. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121- 40042007000100007spa
dc.relation.referencesChen, Y., Yuan, Y., & Li, W. (2018). Sorting machineries: How platelet-dense granules differ from α-granules. In Bioscience Reports (Vol. 38, Issue 5). Portland Press Ltd. https://doi.org/10.1042/BSR20180458spa
dc.relation.referencesChou, T. C. (2010). Drug combination studies and their synergy quantification using the chou-talalay method. In Cancer Research (Vol. 70, Issue 2, pp. 440–446). https://doi.org/10.1158/0008-5472.CAN-09-1947spa
dc.relation.referencesde Alencar Silva, A., Pereira-de-Morais, L., Rodrigues da Silva, R. E., de Menezes Dantas, D., Brito Milfont, C. G., Gomes, M. F., Araújo, I. M., Kerntopf, M. R., Alencar de Menezes, I. R., & Barbosa, R. (2020). Pharmacological screening of the phenolic compound caffeic acid using rat aorta, uterus and ileum smooth muscle. Chemico- Biological Interactions, 332. https://doi.org/10.1016/j.cbi.2020.109269spa
dc.relation.referencesFAO,. (2008.). RESEÑA DE FIN DE AÑO AÑO INTERNACIONAL DE LA PAPA 2008. Roma, Italia . https://www.fao.org/3/i0500s/i0500s.pdfspa
dc.relation.referencesDi Veroli, G. Y., Fornari, C., Wang, D., Mollard, S., Bramhall, J. L., Richards, F. M., & Jodrell, D. I. (2016). Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 32(18), 2866–2868. https://doi.org/10.1093/bioinformatics/btw230spa
dc.relation.referencesENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 21 December 2020 REVISED CONSENSUS DOCUMENT ON COMPOSITIONAL CONSIDERATIONS FOR NEW VARIETIES OF POTATO (Solanum tuberosum): Key Food and Feed Nutrients, Toxicants, Allergens, Anti-nutrients and Other Plant Metabolites Series on the Safety of Novel Foods and Feeds No. 33 JT03470054 OFDE. (2021)spa
dc.relation.referencesFernando, G. L., & Frade, R. (2008). Manual de trombosis y terapia antitrombótica (V. J. Aldrete, Ed.; Vol. 1).spa
dc.relation.referencesFuentes, E., Caballero, J., Alarcón, M., Rojas, A., & Palomo, I. (2014). Chlorogenic acid inhibits human platelet activation and thrombus formation. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0090699spa
dc.relation.referencesGhoshal, K., & Bhattacharyya, M. (2014). Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. In The Scientific World Journal (Vol. 2014). ScientificWorld Ltd. https://doi.org/10.1155/2014/781857spa
dc.relation.referencesGoodman, & Gilman. (2012). Las bases farmacológicas de la terapéutica (L. Bruton, B. Chabner, & Bjorn Knollman, Eds.; 12th ed.)spa
dc.relation.referencesGremmel, T., Frelinger, A. L., & Michelson, A. D. (2016). Platelet physiology. In Seminars in Thrombosis and Hemostasis (Vol. 42, Issue 3, pp. 191–204). Thieme Medical Publishers, Inc. https://doi.org/10.1055/s-0035-1564835spa
dc.relation.referencesGuadalupe Sánchez-Arias, A., Bobadilla-Serrano, M. E., Dimas-Altamirano, B., Gómez- Ortega, M., & González-González, G. (n.d.). Enfermedad cardiovascular: primera causa de morbilidad en un hospital de tercer nivel Heart diseases: the leading cause of morbidity in a third-level hospital. www.medigraphic.com/revmexcardiolwww.medigraphic.org.mxspa
dc.relation.referencesJm, C. (2017.). Fisiología de la hemostasia. Introducción general Normal haemostasis. Introduction. (Vol. 21. 4–6). https://www.sah.org.ar/revistasah/numeros/vol21/extra/04-Vol%2021-extra.pdfspa
dc.relation.referencesLi, Y., Shi, W., Li, Y., Zhou, Y., Hu, X., Song, C., Ma, H., Wang, C., & Li, Y. (2008). Neuroprotective effects of chlorogenic acid against apoptosis of PC12 cells induced by methylmercury. Environmental Toxicology and Pharmacology, 26(1), 13–21. https://doi.org/10.1016/j.etap.2007.12.008spa
dc.relation.referencesHarrison, P. (2005). Platelet function analysis. Blood Reviews, 19(2), 111–123. https://doi.org/10.1016/j.blre.2004.05.002spa
dc.relation.referencesLim, T. K., & Lim, T. K. (2016). Solanum tuberosum. Edible Medicinal and Non-Medicinal Plants, 12–93. https://doi.org/10.1007/978-3-319-26065-5_2spa
dc.relation.referencesLinden, M., Frelinger, A., Barnard, M., Przyklenk, K., Furman, M., & Michelson, A. (2004). Application of flow cytometry to platelet disorders. Seminars in Thrombosis and Hemostasis, 30(5), 501-511. https://doi.org/10.1055/s-2004-835671 Machlus, K. R., & Italiano, J. E. (2013). The incredible journey: From megakaryocyte development to platelet formation. In Journal of Cell Biology (Vol. 201, Issue 6, pp. 785–796). https://doi.org/10.1083/jcb.201304054spa
dc.relation.referencesLinden, M., Frelinger, A., Barnard, M., Przyklenk, K., Furman, M., & Michelson, A. (2004). Application of flow cytometry to platelet disorders. Seminars in Thrombosis and Hemostasis, 30(5), 501-511. https://doi.org/10.1055/s-2004-835671 Machlus, K. R., & Italiano, J. E. (2013). The incredible journey: From megakaryocyte development to platelet formation. In Journal of Cell Biology (Vol. 201, Issue 6, pp. 785–796). https://doi.org/10.1083/jcb.201304054spa
dc.relation.referencesMinisterio de Salud. (1993). Resolución 8430 del 4 de octubre de 1993. [Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud]. Bogotá, D. C., Colombia. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCI ON-8430-DE-1993.PDFspa
dc.relation.referencesMiao, M., & Xiang, L. (2020). Pharmacological action and potential targets of chlorogenic acid. In Advances in Pharmacology (Vol. 87, pp. 71–88). Academic Press Inc. https://doi.org/10.1016/bs.apha.2019.12.002spa
dc.relation.referencesPark, J. B. (2015). Potential Effects of Chlorogenic Acids on Platelet Activation. In Coffee in Health and Disease Prevention (pp. 709–717). Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00079-6spa
dc.relation.referencesPavlíková, N. (2023). Caffeic Acid and Diseases—Mechanisms of Action. In International Journal of Molecular Sciences (Vol. 24, Issue 1). MDPI. https://doi.org/10.3390/ijms24010588spa
dc.relation.referencesRubenstein, D. A., & Yin, W. (2018). Platelet-activation mechanisms and vascular remodeling. Comprehensive Physiology, 8(3), 1117–1156. https://doi.org/10.1002/cphy.c170049spa
dc.relation.referencesSolla, I., Bembibre, L., & Freire, J. (2011). Manejo del Síndrome coronario agudo en Urgencias de Atención Primaria. Cadernos de Atención Primaria, 18(1), 49-55. https://www.agamfec.com/wp/wp-content/uploads/2014/07/18_1_actua_1.pdfspa
dc.relation.referencesTang, J., Wennerberg, K., & Aittokallio, T. (2015). What is synergy? The Saariselk� agreement revisited. In Frontiers in Pharmacology (Vol. 6, Issue SEP). Frontiers Media S.A. https://doi.org/10.3389/fphar.2015.00181spa
dc.relation.referencesTom, E. N. L., Girard-Thernier, C., & Demougeot, C. (2016). The Janus face of chlorogenic acid on vascular reactivity: A study on rat isolated vessels. Phytomedicine, 23(10), 1037–1042. https://doi.org/10.1016/j.phymed.2016.06.012spa
dc.relation.referencesTyszka-Czochara, M., Bukowska-Strakova, K., Kocemba-Pilarczyk, K. A., & Majka, M. (2018). Caffeic acid targets AMPK signaling and regulates tricarboxylic acid cycle anaplerosis while metformin downregulates HIF-1α-induced glycolytic enzymes in human cervical squamous cell carcinoma lines. Nutrients, 10(7). https://doi.org/10.3390/nu10070841spa
dc.relation.referencesUlrich-Merzenich, G. S. (2014). Combination screening of synthetic drugs and plant derived natural products-Potential and challenges for drug development. In Synergy (Vol. 1, Issue 1, pp. 59–69). Elsevier GmbH. https://doi.org/10.1016/j.synres.2014.07.011spa
dc.relation.referencesVan der Meijden, P. E. J., & Heemskerk, J. W. M. (2019). Platelet biology and functions: new concepts and clinical perspectives. In Nature Reviews Cardiology (Vol. 16, Issue 3, pp. 166–179). Nature Publishing Group. https://doi.org/10.1038/s41569-018-0110- 0spa
dc.relation.referencesVan der Meijden, P. E. J., & Heemskerk, J. W. M. (2019). Platelet biology and functions: new concepts and clinical perspectives. In Nature Reviews Cardiology (Vol. 16, Issue 3, pp. 166–179). Nature Publishing Group. https://doi.org/10.1038/s41569-018-0110- 0spa
dc.relation.referencesYang, Y., Zhang, Z., Li, S., Ye, X., Li, X., & He, K. (2014). Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. In Fitoterapia (Vol. 92, pp. 133–147). https://doi.org/10.1016/j.fitote.2013.10.010spa
dc.relation.referencesYeung, J., Li, W., & Holinstat, M. (2018). Platelet signaling and disease: Targeted therapy for thrombosis and other related diseases. Pharmacological Reviews, 70(3), 526–548. https://doi.org/10.1124/pr.117.014530spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsSolanum tuberosumspa
dc.subject.decsÁcido clorogénicospa
dc.subject.decsChlorogenic acideng
dc.subject.decsInhibidores de agregación plaquetariaspa
dc.subject.decsPlatelet aggregation inhibitorseng
dc.subject.decsAspirinaspa
dc.subject.decsAspirineng
dc.subject.decsInteracciones farmacológicasspa
dc.subject.decsDrug interactionseng
dc.subject.decsTerapia trombolítica-Efectos adversosspa
dc.subject.decsThrombolytic therapy -Adverse effectseng
dc.subject.decsÁcidos cafeicosspa
dc.subject.decsCaffeic acidseng
dc.subject.proposalSolanum tuberosumother
dc.subject.proposalantiagregante plaquetariospa
dc.subject.proposalsinergiaspa
dc.subject.proposalácido clorogénicospa
dc.subject.proposalácido cafeicospa
dc.subject.proposalácido acetilsalicílicospa
dc.subject.proposalplatelet antiaggreganteng
dc.subject.proposalsynergyeng
dc.subject.proposalchlorogenic acideng
dc.subject.proposalcaffeic acideng
dc.subject.proposalacetylsalicylic acideng
dc.titleEvaluación de las interacciones de metabolitos polifenólicos obtenidos de Solanum tuberosum sobre la actividad antiagregante plaquetario del ácido acetil salicílicospa
dc.title.translatedEvaluation of the interactions of polyphenolic metabolites obtained from Solanum tuberosum on the antiplatelet activity of acetylsalicyliceng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053586975.2023.pdf
Tamaño:
1.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: