En 20 día(s), 14 hora(s) y 5 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos

dc.contributor.advisorCadavid Restrepo, Gloria Ester
dc.contributor.authorPineda Galindo, Lina María
dc.contributor.educationalvalidatorSaldamando Benjumea, Clara Ines
dc.contributor.researchgroupMicrobiodiversidad y Bioprospecciónspa
dc.date.accessioned2024-10-18T13:12:17Z
dc.date.available2024-10-18T13:12:17Z
dc.date.issued2023
dc.descriptionIlustraciones, gráficos, mapasspa
dc.description.abstractLa búsqueda de microorganismos capaces de degradar insecticidas es necesaria en procesos de biorremediación. Para ello, los insectos plaga son un nicho alternativo al compartir una historia evolutiva de asociación con la microbiota intestinal, la cual cumple funciones vitales para el hospedero como la nutrición, defensa, desarrollo, y participa en la degradación de moléculas orgánicas naturales y sintéticas, incluyendo los insecticidas. En Colombia, las principales estrategias de control de insectos plaga incluyen el uso de insecticidas de síntesis química, sin embargo, su aplicación conlleva a la resistencia del insecto, tanto como a generar afectaciones en la salud del ser humano y a nivel ambiental. En este estudio se evaluó la capacidad de degradación de los insecticidas lambdacialotrina y metomil por cepas bacterianas provenientes del intestino de diferentes estadíos de desarrollo, del gusano cogollero, Spodoptera frugiperda de los biotipos maíz y arroz, desafiados naturalmente en campo a altas concentraciones de insecticidas, entre ellos la lambda-cialotrina y el metomil. De un total de 31 cepas bacterianas evaluadas, 11 de ellas toleraron alguno de los dos o los dos insecticidas evaluados. De éstas, dos cepas de Enterobacter tabaci del biotipo arroz (RLL1C7 y RLL2C5) crecieron en medio MM9 a 40 μg/mL con lambdacialotrina, Enterococcus casseliflavus (CYL2C2) obtenida del biotipo maíz) y Staphylococcus capitis (RE1C4 obtenida del biotipo arroz) crecieron en medio MM9 a 40 μg/mL con metomil. Enterococcus mundtii (CYL2C1 obtenida del biotipo maíz) creció en MM9 a 80 μg/mL de lambda-cialotrina y Enterococcus mundtii (RMA1C2 obtenida del biotipo arroz) en MM9 a 80 μg/mL con metomil. Por otro lado, Staphylococcus warneri (CE1C5 del biotipo maíz) y Enterococcus mundtii (RP1C1 del biotipo arroz) fueron capaces de crecer en medio mínimo MM9 a 160 μg/mL de lambda-cialotrina y Cellulomonas pakistanensis (CE2C6 obtenida del biotipo maíz) a 160 μg/mL de metomil. Por último, Leclercia adecarboxylata (CE1C3 obtenida del biotipo maíz) y Staphylococcus pasteuri (RLL1C6 obtenida del biotipo arroz) crecieron tanto en lambda-cialotrina como en metomil a 40 μg/mL en medio MM9. Todas estas cepas utilizaron los insecticidas mencionados como única fuente de carbono, implicando su capacidad de sobrevivir en presencia de los mismos. Por otro lado, análisis cromatográficos demuestran que a partir de la biodegradación mediada por Enterococcus mundtii (RP1C1, biotipo arroz) con lambda-cialotrina a 80 μg/mL en MM9 se lograron identificar metabolitos como fenol, ácido fenil acético, 3-fenoxibenzaldehído, éster metílico del ácido fenilacético, éster metílico del ácido 3-fenoxibenzoico, ácido 3-fenoxibenzoico, 3- fenoxibencenoacetonitrilo y α-hidroxi-3-fenoxibencenoacetonitrilo como producto de la degradación de este insecticida. Basado en la estructura de los metabolitos identificados, se propone una ruta metabólica de biodegradación para lambdacialotrina por E. mundtii. Con relación a la degradación del metomil, el análisis cromatográfico no fue concluyente pues se obtuvo degradación asociada tanto a la cepa evaluada como a los controles usados, por lo que se debe afinar el ensayo realizado. Este trabajo es un primer acercamiento a la comprensión del rol de las bacterias intestinales encontrada en plagas de importancia económica y su respuesta de resistencia a insecticidas, ya que a pesar de que la resistencia de S. frugiperda tiene una base genética, la microbiota puede contribuir en la respuesta del insecto. Es por esto que esta investigación demuestra que especies como E. mundtii presentan capacidad de tolerar y degradar el insecticida lambda-cialotrina in vitro y se convierte en una bacteria promisoria para evaluar su potencial biodegradador. (Tomado de la fuente)spa
dc.description.abstractThe search for microorganisms capable of degrading insecticides is necessary in bioremediation processes. For this purpose, pest insects are an alternative niche as they share an evolutionary history of association with the intestinal microbiota, which performs vital functions for the host such as nutrition, defense, development, and participates in the degradation of natural and synthetic organic molecules, including insecticides. In Colombia, the main insect pest control strategies include the use of chemically synthesized insecticides; however, their application leads to insect resistance, as well as to human and environmental health problems. This study evaluated the degradation capacity of the insecticides lambdacyhalothrin and methomyl by bacterial strains from the gut of different stages of development of the codling moth, Spodoptera frugiperda of corn and rice strains, naturally challenged in the field to high concentrations of insecticides, including lambda-cyhalothrin and methomyl. Out of a total of 31 bacterial strains evaluated,11 of them tolerated any of the insecticides tested: lambda-cyhalothrin and methomyl. Additionally, two strains of Enterobacter tabaci from the rice strain (RLL1C7 and RLL2C5) grew on MM9 medium at 40 μg/mL with lambda-cyhalothrin, Enterococcus casseliflavus (CYL2C2) obtained ¿ from the maize strain) and Staphylococcus capitis (RE1C4 obtained from the rice strain) grew on MM9 medium at 40 μg/mL with methomyl. Enterococcus mundtii (CYL2C1 obtained from the maize strain) grew in MM9 at 80 μg/mL lambda-cyhalothrin and Enterococcus mundtii (RMA1C2 obtained from the rice strain) in MM9 at 80 μg/mL with methomyl. On the other hand, Staphylococcus warneri (CE1C5 from the maize strain) and Enterococcus mundtii (RP1C1 from the rice strain) were able to grow in MM9 minimal medium at 160 μg/mL lambda-cyhalothrin and Cellulomonas pakistanensis (CE2C6 obtained from the maize strain) at 160 μg/mL methomyl. Finally, Leclercia adecarboxylata (CE1C3 obtained from the maize strain) and Staphylococcus pasteuri (RLL1C6 obtained from the rice strain) grew in both lambda-cyhalothrin and methomyl at 40 μg/mL in MM9 medium. All these strains used the above insecticides as their sole carbon source, implying their ability to survive in the presence of these insecticides. On the other hand, chromatographic analyses show that from the biodegradation mediated by Enterococcus mundtii (RP1C1, rice strain) with lambda-cyhalothrin at 80 μg/mL in MM9, it was possible to identify metabolites such as phenol, phenyl acetic acid, 3-phenoxybenzaldehyde, phenylacetic acid methyl ester, 3-phenoxybenzoic acid methyl ester, 3- phenoxybenzoic acid, 3-phenoxybenzeneacetonitrile and α-hydroxy-3- phenoxybenzeneacetonitrile as a degradation product of this insecticide. Based on the structure of the identified metabolites, a metabolic pathway of biodegradation for lambda-cyhalothrin by E. mundtii is proposed. Regarding the biodegradation of methomyl, the chromatographic analysis was not conclusive since degradation associated with both the strain evaluated and the controls used was obtained, so the test performed should be refined. This work is a first approach to the understanding of the role of the microbiota found in pests of economic importance and their resistance response to insecticides, because although the resistance of S. frugiperda has a genetic basis, the microbiota can contribute to the insect's response. Therefore, this research demonstrates that species such as E. mundtii have the ability to tolerate and degrade the insecticide lambda-cyhalothrin in vitro becomes a promising bacterium to evaluate its biodegradation potential.eng
dc.description.curricularareaBiotecnología.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.methodsPara la metodología se utilizaron métodos dependientes e independientes de cultivo, así como técnicas cromatográficasspa
dc.description.researchareaEl grupo de Microbiodiversidad y Bioprospección tiene la capacidad de investigar diferentes aspectos de la Microbiología, en su fundamentación básica y en sus aplicaciones biotecnológicas, con posibilidad de emplear los resultados al servicio de la sociedad.spa
dc.description.sponsorshipSistema de Investigación de la Universidad Nacional de Colombia – SIUN Códigos Hermes: 53792 y 57720.spa
dc.description.sponsorshipproyecto de MinCiencias titulado: “Bioprospección de la microbiota asociada a insectos plaga de cultivos de interés agrícola en Colombia: Spodoptera frugiperda (Biotipos Maíz y arroz) y Trips del aguacate para el desarrollo de alternativas de manejo de su control” (2019-2023)spa
dc.format.extent126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86987
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdelkader, A. A., Khalil, M. S., & Mohamed, M. S. M. (2022). Simultaneous biodegradation of λ-cyhalothrin pesticide and Vicia faba growth promotion under greenhouse conditions. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01383-0spa
dc.relation.referencesAcevedo, F. E., Peiffer, M., Tan, C. W., Stanley, B. A., Stanley, A., Wang, J., Jones, A. G., Hoover, K., Rosa, C., Luthe, D., & Felton, G. (2017). Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30(2), 127–137. https://doi.org/10.1094/MPMI-11-16-0240-Rspa
dc.relation.referencesÁlvarez Yepes, D. A. (2019). Controladores de los biotipos de arroz y maíz de Spodoptera frugiperda en especies de Meliaceae. Universidad Nacional de Colombiaspa
dc.relation.referencesAyres, J. S., & Schneider, D. S. (2012). Tolerance of infections. In Annual Review of Immunology (Vol. 30, pp. 271–294). https://doi.org/10.1146/annurev-immunol-020711-075030spa
dc.relation.referencesBadii, M. H., & Garza-Almanza, V. (2015). Resistencia en Insectos, Plantas y Microorganismos. Cultura Científica Y Tecnológica, (18). Recuperado a partir de https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/460spa
dc.relation.referencesBajkul, M. M., & Mahavidyalaya, M. (2019). Effect of Lambda-cyhalothrin (LCT) and toxicity on human with preventive measure. In Article in International Journal of Scientific and Engineering Research. https://www.researchgate.net/publication/342145139spa
dc.relation.referencesBerasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015-7186-9spa
dc.relation.referencesBezerra, A., Gonzales Rodrigues, J., Kanno, R., Amaral, F., Malaquias, J., Silva-Brandão, K., Consoli, F., & Omoto, C. (2021). Susceptibility monitoring and the molecular characterization of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to lambda-cyhalothrin and chlorpyrifos. https://doi.org/10.1101/2021.11.17.469006spa
dc.relation.referencesBhatt, P., Bhatt, K., Huang, Y., Lin, Z., & Chen, S. (2020). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. In Chemosphere (Vol. 244). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2019.125507spa
dc.relation.referencesBhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. In Critical Reviews in Biotechnology (Vol. 41, Issue 3, pp. 317–338). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2020.1853032spa
dc.relation.referencesBirolli, W. G., Dos Santos, A., Pilau, E., & Rodrigues-Filho, E. (2021). New Role for a Commercially Available Bioinsecticide: Bacillus thuringiensis Berliner Biodegrades the Pyrethroid Cypermethrin. Environmental Science and Technology, 55(8), 4792–4803. https://doi.org/10.1021/acs.est.0c06907spa
dc.relation.referencesBirolli, W. G., Arai, M. S., Nitschke, M., & Porto, A. L. M. (2019). The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium. Pesticide Biochemistry and Physiology, 156, 129–137. https://doi.org/10.1016/j.pestbp.2019.02.014spa
dc.relation.referencesBirolli, W. G., Borges, E. M., Nitschke, M., Romão, L. P. C., & Porto, A. L. M. (2016). Biodegradation Pathway of the Pyrethroid Pesticide Esfenvalerate by Bacteria from Different Biomes. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2968-yspa
dc.relation.referencesBirolli, W. G., Vacondio, B., Alvarenga, N., Seleghim, M. H. R., & Porto, A. L. M. (2018). Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere, 197, 651–660. https://doi.org/10.1016/j.chemosphere.2018.01.054spa
dc.relation.referencesBlanton, A. G., & Peterson, B. F. (2020). Symbiont-Mediated Insecticide Detoxification as an Emerging Problem in Insect Pests. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.547108spa
dc.relation.referencesBreckenridge, C. B., Holden, L., Sturgess, N., Weiner, M., Sheets, L., Sargent, D., Soderlund, D. M., Choi, J. S., Symington, S., Clark, J. M., Burr, S., & Ray, D. (2009). Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. NeuroToxicology, 30(SUPPL.). https://doi.org/10.1016/j.neuro.2009.09.002spa
dc.relation.referencesCalonge, M., Pérez Pertejo, Y., Ordóñez, C., Reguera, R., Balaña Fouce, R., & Ordóñez, D. (2002). Determinación de residuos de siete insecticidas organofosforados en frutas mediante cromatografía de gases con detector de nitrógeno fósforo y confirmación por espectrometría de masas. Revista de Toxicología.spa
dc.relation.referencesCano-Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.spa
dc.relation.referencesCano-Calle, D., R. E. Arango-Isaza, and C. I. Saldamando-Benjumea. (2015). Molecular identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCR-RFLP of the mitochondrial gene cytochrome oxydase I (COI) and a PCR of the gene FR (For Rice). Ann. Entomol. Soc. Am. 108: 172-180. https://doi.org/10.1093/aesa/sav001.spa
dc.relation.referencesCañas-Hoyos, N., Lobo-Echeverri, T. & Saldamando-Benjumea, C.I. (2017). Chemical composition of female sexual glands of Spodoptera frugiperda corn and rice strains from Tolima, Colombia. Southwestern Entomologist 42: 375–394. https://doi.org/10.3958/059.042.0207.spa
dc.relation.referencesCastañeda Molina, Y. del P. (2021). Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis.spa
dc.relation.referencesCastañeda-Molina Y, Marulanda-Moreno SM, Saldamando-Benjumea C, Junca H, Moreno-Herrera CX,Cadavid- Restrepo G. (2023). Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 11:e15916. https://doi.org/10.7717/peerj.15916spa
dc.relation.referencesCavichiolli De Oliveira, N. (2021). Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function.Escuela superior de agricultura Luiz de Queiroz. https://doi.org/10.11606/T.11.2021.tde-09092021-151537spa
dc.relation.referencesChen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., Zhou, J., He, F., Hu, M., & Zhang, L. H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 5. https://doi.org/10.1038/srep08784spa
dc.relation.referencesCheng, D., Chen, S., Huang, Y., Pierce, N. E., Riegler, M., Yang, F., Zeng, L., Lu, Y., Liang, G., & Xu, Y. (2019). Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathogens, 15(7). https://doi.org/10.1371/journal.ppat.1007942spa
dc.relation.referencesClaus, S. P., Guillou, H., & Ellero-Simatos, S. (2016). The gut microbiota: A major player in the toxicity of environmental pollutants? In npj Biofilms and Microbiomes (Vol. 2). Nature Publishing Group. https://doi.org/10.1038/npjbiofilms.2016.3spa
dc.relation.referencesColman, D. R., Toolson, E. C., & Takacs-Vesbach, C. D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 21(20), 5124–5137. https://doi.org/10.1111/j.1365-294X.2012.05752.xspa
dc.relation.referencesda Silva, D. M., Bueno, A. de F., Andrade, K., Stecca, C. dos S., Neves, P. M. O. J., & de Oliveira, M. C. N. (2017). Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola, 74(1), 18–31. https://doi.org/10.1590/1678-992x-2015-0160spa
dc.relation.referencesDantán González, E., & Salgado-Morales, R. (2021). El Hologenoma, una herramienta para el estudio de los problemas ambientales ocasionados por xenobióticos. Revista Del Centro de Investigación de La Universidad La Salle, 14(56), 17–36. https://doi.org/10.26457/recein.v14i56.2862spa
dc.relation.referencesde Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0174754spa
dc.relation.referencesDeshmukh, S., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., & Mota-Sanchez, D. (2020). Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize in India. Floria Entomologist. https://doi.org/10.1653/024.103.0211spa
dc.relation.referencesDevine, G. J., Eza, D., Ogusuku, E., & Furlong, M. J. (2008). Uso de insecticidas: Contexto y consecuencias ecológicas. In Rev Peru Med Exp Salud Publica (Vol. 25, Issue 1).spa
dc.relation.referencesDillon, R. J., & Dillon, V. M. (2004). The Gut Bacteria of Insects: Nonpathogenic Interactions. In Annual Review of Entomology (Vol. 49, pp. 71–92). https://doi.org/10.1146/annurev.ento.49.061802.123416spa
dc.relation.referencesdos Santos, K. B., Neves, P., Meneguim, A. M., dos Santos, R. B., dos Santos, W. J., Boas, G. V., Dumas, V., Martins, E., Praça, L. B., Queiroz, P., Berry, C., & Monnerat, R. (2009). Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biological Control, 50(2), 157–163. https://doi.org/10.1016/j.biocontrol.2009.03.014spa
dc.relation.referencesDowd, P. F., & Shen, S. K. (1990). The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomologia Experimentalis et Applicata, 56(3), 241–248. https://doi.org/10.1111/j.1570-7458.1990.tb01402.xspa
dc.relation.referencesElKraly, O. A., Awad, M., El-Saadany, H. M., Hassanein, S. E., Elrahman, T. A., & Elnagdy, S. M. (2023). Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation. Animal Microbiome, 5(1). https://doi.org/10.1186/s42523-023-00264-6spa
dc.relation.referencesEngel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025spa
dc.relation.referencesFAO. (2021) Mapa de la propagación mundial del gusano cogollero del maíz desde 2016. https://www.ippc.int/es/news/preparing-countries-to-keep-fall-armyworm-away-from-their-territories/spa
dc.relation.referencesFAO, & CABI. (n.d.). Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early Warning and Management. 2019.spa
dc.relation.referencesFonseca, I., & Quiñones, M. L. (2005). Resistencia a insecticidas en mosquitos Mecanismos, detección y vigilancia en salud pública. Revista Colombiana de Entomología, 107–115. https://doi.org/10.25100/socolen.v31i2.9429spa
dc.relation.referencesFrago, E., Dicke, M., & Godfray, H. C. J. (2012). Insect symbionts as hidden players in insect-plant interactions. In Trends in Ecology and Evolution https://doi.org/10.1016/j.tree.2012.08.013spa
dc.relation.referencesGao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. Arch Insect Biochem Physiol. (2022) Mar;109(3):E21869. doi: 10.1002/arch.21869. Epub 2022 Jan 28. PMID: 35088911.spa
dc.relation.referencesGavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. In Engineering in Life Sciences (Vol. 5, Issue 6, pp. 497–526). Wiley-VCH Verlag. https://doi.org/10.1002/elsc.200520098spa
dc.relation.referencesGiambó, F., Teodoro, M., Costa, C., & Fenga, C. (2021). Toxicology and microbiota: How do pesticides influence gut microbiota? a review. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 11). MDPI. https://doi.org/10.3390/ijerph18115510spa
dc.relation.referencesGichuhi, J., Sevgan, S., Khamis, F., Van Den Berg, J., Du Plessis, H., Ekesi, S., & Herren, J. K. (2020). Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ, 2020(3). https://doi.org/10.7717/peerj.8701spa
dc.relation.referencesGimenez, S., Abdelgaffar, H., Goff, G. Le, Hilliou, F., Blanco, C. A., Hänniger, S. Nam, K. (2020). Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology, 3, 664.spa
dc.relation.referencesGomes, S.I.F., Kielak, A.M., Hannula, S.E. et al. (2020a). Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. anim microbiome 2, 37. https://doi.org/10.1186/s42523-020-00055-3spa
dc.relation.referencesGomes, A. F. F., Omoto, C., & Cônsoli, F. L. (2020b). Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. Journal of Pest Science, 93(2), 833–851. https://doi.org/10.1007/s10340-020-01202-0spa
dc.relation.referencesGonzález Maldonado, M. B., Gurrola Reyes, J. N., & Chaírez Hernández, I. (2015). Productos biológicos para el control de Spodoptera frugiperda. Revista Colombiana de Entomología, 200–204.spa
dc.relation.referencesGutiérrez, M. C., Droguet, M., Carmen, M., Bouzán, G., & En Química, D. (2002). La cromatografía de gases y la espectrometría de masas: Identificación de compuestos causantes de mal olor. Universitat Politecnica de Catalunya. Boletín Intexter No 122.spa
dc.relation.referencesHafeez, M., Li, X., Zhang, Z., Huang, J., Wang, L., Zhang, J., Shah, S., Khan, M. M., Xu, F., Fernández-Grandon, G. M., Zaluchi, M. P., & Lu, Y. (2021). De novo transcriptomic analyses revealed some detoxification genes and related pathways responsive to Noposion Yihaogong® 5% ec (Lambda-cyhalothrin 5%) exposure in Spodoptera frugiperda third-instar larvae. Insects, 12(2), 1–16. https://doi.org/10.3390/insects12020132spa
dc.relation.referencesHaine, E. R., Moret, Y., Siva-jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. In Science (Vol. 322, Issue 5905, pp. 1198–1199). https://doi.org/10.1126/science.1166844spa
dc.relation.referencesHammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.spa
dc.relation.referencesHammer, T. J., & Bowers, M. D. (2015). Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 179(1), 1–14. https://doi.org/10.1007/s00442-015-3327-1spa
dc.relation.referencesHe, L.-M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin. https://doi.org/10.1007/978-0-387-77030-7_3spa
dc.relation.referencesHiguita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid- Restrepo GE, Moreno-Herrera CX. (2021). Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. Journal of Insect Science 21:10.111. https://doi.org/10.1093/jisesa/ieab076spa
dc.relation.referencesHladik, M. L., Smalling, K. L., & Kuivila, K. M. (2009). Methods of Analysis-Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. https://doi.org/10.1016/j.talanta.2009.11.050spa
dc.relation.referencesHou, J., Yu, J., Qin, Z., Liu, X., Zhao, X., Hu, X., Yu, R., Wang, Q., Yang, J., Shi, Y., & Chen, L. (2021). Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori). Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117531spa
dc.relation.referencesHu, W., Lu, Q., Zhong, G., Hu, M., & Yi, X. (2019). Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030477spa
dc.relation.referencesHuang, Y., Chen, S. F., Chen, W. J., Zhu, X., Mishra, S., Bhatt, P., & Chen, S. (2023). Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chemical Engineering Journal, 469. https://doi.org/10.1016/j.cej.2023.143863spa
dc.relation.referencesHuang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. In Molecules (Vol. 23, Issue 9). MDPI AG. https://doi.org/10.3390/molecules23092313spa
dc.relation.referencesHuttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., Fitzgerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., … White, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234spa
dc.relation.referencesICA. (2024). Productos Nacionales de Plaguicidas. Plaguicidas Químicos. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos.aspxspa
dc.relation.referencesJaenike, J. (2010). Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329(5988), 210–212. https://doi.org/10.1126/science.1187115spa
dc.relation.referencesJaramillo-Barrios, C. I., Varón-Devia, E. H., & Monje-Andrade, B. (2020). Economic injury level and action thresholds for Spodoptera frugiperda (J.e. smith) (Lepidoptera: Noctuidae) in maize crops. Revista Facultad Nacional de Agronomia Medellin, 73(1), 9065–9076. https://doi.org/10.15446/rfnam.v73n1.78824spa
dc.relation.referencesJiang, B., Zhang, N., Xing, Y., Lian, L., Chen, Y., Zhang, D., Li, G., Sun, G., & Song, Y. (2019). Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. Environmental Science and Pollution Research, 26(21), 21668–21681. https://doi.org/10.1007/s11356-019-05135-9spa
dc.relation.referencesJilani, S., Khan, M. A., & Altaf Khan, M. (2006). Biodegradation of Cypermethrin by pseudomonas in a batch activated sludge process 1*. J. Environ. Sci. Tech, 3(4), 371–380. https://doi.org/10.1007/bf03325946spa
dc.relation.referencesJing, T. Z., Qi, F. H., & Wang, Z. Y. (2020). Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00823-yspa
dc.relation.referencesJones, A. G., Mason, C. J., Felton, G. W., & Hoover, K. (2019). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39163-9spa
dc.relation.referencesKhan, M. M., Khan, A. H., Ali, M. W., Hafeez, M., Ali, S., Du, C., Fan, Z., Sattar, M., & Hua, H. (2021). Emamectin benzoate induced enzymatic and transcriptional alternation in detoxification mechanism of predatory beetle Paederus fuscipes (Coleoptera: Staphylinidae) at the sublethal concentration. Ecotoxicology, 30(6), 1227–1241. https://doi.org/10.1007/s10646-021-02426-1.spa
dc.relation.referencesKim, D. H., Han, S. A., Kim, H. N., Shin, B. C., & Park, Y. (2016). A Case of Methomyl-induced Acute Allergic Tubulointerstitial Nephritis (Vol. 27, Issue 4).spa
dc.relation.referencesKong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., & Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of Environmental Sciences (China), 25(11), 2257–2264. https://doi.org/10.1016/S1001-0742(12)60288-5spa
dc.relation.referencesKulkarni, A. G., & Kaliwal, B. B. (2018). Bioremediation of methomyl by Escherichia coli. In Methods in Pharmacology and Toxicology (Issue 9781493974245, pp. 75–86). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7425-2_4spa
dc.relation.referencesLeón García, I., Rodríguez Leyva, E., Ortega Arenas, L. D., & Solís Aguilar, J. F. (2012). Susceptibilidad de Spodoptera frugiperda a insecticidas asociada a césped en quintana roo, Mexico. Red de revistas científicas de América Latina. Agrociencias, vol. 46.spa
dc.relation.referencesLi, W., Jin, D., Shi, C., & Li, F. (2017). Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02138-9spa
dc.relation.referencesLiang, W. Q., Wang, Z. Y., Li, H., Wu, P. C., Hu, J. M., Luo, N., Cao, L. X., & Liu, Y. H. (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of Agricultural and Food Chemistry, 53(19), 7415–7420. https://doi.org/10.1021/jf051460kspa
dc.relation.referencesLin, Z., Pang, S., Zhou, Z., Wu, X., Li, J., Huang, Y., Zhang, W., Lei, Q., Bhatt, P., Mishra, S., & Chen, S. (2022). Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Journal of Hazardous Materials, 426. https://doi.org/10.1016/j.jhazmat.2021.127841spa
dc.relation.referencesLin, Z., Zhang, W., Pang, S., Huang, Y., Mishra, S., Bhatt, P., & Chen, S. (2020). Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. In Molecules (Vol. 25, Issue 3). MDPI AG. https://doi.org/10.3390/molecules25030738spa
dc.relation.referencesLiu, J., Hao, Z., Yang, S., Lin, Y., Zhong, H., & Jin, T. (2022). Insecticide resistance and its underlying synergism in field populations of Spodoptera frugiperda (J. E. Smith) from Hainan Island, China. Phytoparasitica, 50(4), 933–945. https://doi.org/10.1007/s12600-022-01004-3spa
dc.relation.referencesLiu, S., Yao, K., Jia, D., Zhao, N., Lai, W., & Yuan, H. (2012). A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems. Journal of Chromatographic Science, 50(6), 469–476. https://doi.org/10.1093/chromsci/bms030spa
dc.relation.referencesM. T. Madigan, J. M. Martinko, J. Parker. Brock. Biología de los Microorganismos. 12a (2009) Ed. Prentice Hall-Pearson Education.spa
dc.relation.referencesMajchrzak, T., Wojnowski, W., Lubinska-Szczygeł, M., Różańska, A., Namieśnik, J., & Dymerski, T. (2018). PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. In Analytica Chimica Acta (Vol. 1035, pp. 1–13). Elsevier B.V. https://doi.org/10.1016/j.aca.2018.06.056spa
dc.relation.referencesMarulanda-Moreno, S. M. (2022). Caracterización de la microbiota asociada a los biotipos de Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae). Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesMarulanda-Moreno, S. M., Saldamando-Benjumea, C. I., Vivero Gomez, R., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2024). Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ, 12, e17087. https://doi.org/10.7717/peerj.17087spa
dc.relation.referencesMason, C. J., St Clair, A., Peiffer, M., Gomez, E., Jones, A. G., Felton, G. W., & Hoover, K. (2020). Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PloS One, 15(3), e0229848. https://doi.org/10.1371/journal.pone.0229848spa
dc.relation.referencesMcCarthy, C. B., Cabrera, N. A., & Virla, E. G. (2015). Metatranscriptomic analysis of larval guts from field-collected and laboratory-reared Spodoptera frugiperda from the South American subtropical region. Genome Announcements, 3(4). https://doi.org/10.1128/genomeA.00777-15spa
dc.relation.referencesMcCoy, M. R., Yang, Z., Fu, X., Ahn, K. C., Gee, S. J., Bom, D. C., Zhong, P., Chang, D., & Hammock, B. D. (2012). Monitoring of total type II pyrethroid pesticides in citrus oils and water by converting to a common product 3-phenoxybenzoic acid. Journal of Agricultural and Food Chemistry, 60(20), 5065–5070. https://doi.org/10.1021/jf2051653spa
dc.relation.referencesMontllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress.spa
dc.relation.referencesMoreno-García, M., Condé, R., Bello-Bedoy, R., & Lanz-Mendoza, H. (2014). The damage threshold hypothesis and the immune strategies of insects. In Infection, Genetics and Evolution (Vol. 24, pp. 25–33). https://doi.org/10.1016/j.meegid.2014.02.010spa
dc.relation.referencesMorgan, J., Salcedo-Sora, J. E., Triana-Chavez, O., & Strode, C. (2022). Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. Journal of Medical Entomology, 59(1), 192–212. https://doi.org/10.1093/jme/tjab179spa
dc.relation.referencesMorillo, F., & Notz, A. (2001). Resistencia de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) a lambdacihalotrina y metomil. 16(2), 79–87.spa
dc.relation.referencesMorillo, F., & Notz, A. (2004). Efecto de lambdacihalotrina y metomil sobre la biología de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). 19(1), 7–14.spa
dc.relation.referencesMuthabathula, P., & Biruduganti, S. (2022). Analysis of Biodegradation of the Synthetic Pyrethroid Cypermethrin by Beauveria bassiana. Current Microbiology, 79(2). https://doi.org/10.1007/s00284-021-02744-xspa
dc.relation.referencesMuturi, E. J., Dunlap, C., Smartt, C. T., & Shin, D. (2021). Resistance to permethrin alters the gut microbiota of Aedes aegypti. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-93725-4spa
dc.relation.referencesNagoshi, R. N., & Meagher, R. (2003). Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. In Insect Molecular Biology (Vol. 12, Issue 5).spa
dc.relation.referencesNagoshi, R. N., Meagher, & Robert L. (n.d.). Behavior and distribution of the two fall armyworm host strains in Florida. 2004. https://doi.org/10.1653/0015spa
dc.relation.referencesNagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, NagoshiB Y, Mota-Sanchez D. (2020). Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Science Reports 0:1421 DOI 10.1038/s41598-020-58249-3.spa
dc.relation.referencesNavarro, S., Barba, A., & Camara, M. A. (1978). Determinación de insecticidas por cromatografía líquida de alta resolución (CLAR).spa
dc.relation.referencesNayyar N, Gracy RG, Ashika TR, Mohan G, Swathi RS, Mohan M, Chaudhary M,Bakthavatsalam N, Venkatesan T. (2021). Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Scientifc Reports 11:7760spa
dc.relation.referencesNIST/EPA/NIH Mass Spectral Database, S.R.D., 2011. SRD Program, National Institute of Standards and Technology, Gaithersburg, MD.spa
dc.relation.referencesOliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102spa
dc.relation.referencesOMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación 2019. http://apps.who.int/bookorders.spa
dc.relation.referencesOverton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. In Crop Protection (Vol. 145). Elsevier Ltd. https://doi.org/10.1016/j.cropro.2021.105641spa
dc.relation.referencesPais, P., Moyano, E., Puignou, L., & Galceran, M. T. (1997). Liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry as a routine method for the analysis of mutagenic amines in beef extracts. In Journal of Chromatography A (Vol. 778).spa
dc.relation.referencesPalmer-Brown, W., de Melo Souza, P. L., & Murphy, C. D. (2019). Cyhalothrin biodegradation in Cunninghamella elegans. Environmental Science and Pollution Research, 26(2), 1414–1421. https://doi.org/10.1007/s11356-018-3689-0spa
dc.relation.referencesPang, S., Lin, Z., Chen, W. J., Chen, S. F., Huang, Y., Lei, Q., Bhatt, P., Mishra, S., Chen, S., & Wang, H. (2023). High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. Journal of Hazardous Materials, 452. https://doi.org/10.1016/j.jhazmat.2023.131287spa
dc.relation.referencesParedes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. In Molecules (Vol. 26, Issue 18). MDPI. https://doi.org/10.3390/molecules26185587spa
dc.relation.referencesPashley Prowell, D., Mcmichael, M., & Ois Silvain, J. (2004). Multilocus Genetic Analysis of Host Use, Introgression, and Speciation in Host Strains of Fall Armyworm (Lepidoptera: Noctuidae). In Ann. Entomol. Soc. Am (Vol. 97, Issue 5). https://academic.oup.com/aesa/article/97/5/1034/63036spa
dc.relation.referencesPeña García, Y. (2016). Degradación microbiana de compuestos xenobióticos.spa
dc.relation.referencesPinto Carvajal, L. P. (2017). Alternativas para el tratamiento de aguas contaminadas por plaguicidas utilizadas en los cultivos de arroz en Colombia. Universidad Nacional Abierta y a Distancia.spa
dc.relation.referencesPodlesky, E., & Alfonso, G. (1994). Determinación de plaguicidas en muestras ambientales, biológicas y de alimentos.spa
dc.relation.referencesPolenogova, O. V., Noskov, Y. A., Yaroslavtseva, O. N., Kryukova, N. A., Alikina, T., Klementeva, T. N., Andrejeva, J., Khodyrev, V. P., Kabilov, M. R., Kryukov, V. Y., & Glupov, V. V. (2021). Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248704spa
dc.relation.referencesPoveda Arias, J. (2019). The microorganisms associated with insects and their application in agriculture. Revista Digital Universitaria, 20(1). https://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2spa
dc.relation.referencesRavula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. In Critical Reviews in Toxicology (Vol. 51, Issue 2, pp. 117–140). Taylor and Francis Ltd. https://doi.org/10.1080/10408444.2021.1879007spa
dc.relation.referencesRigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021a). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121spa
dc.relation.referencesRigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021b). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121spa
dc.relation.referencesRigolin, F., Leite, C., Birolli, W., Porto, A., & Seleghim, M. (2024). Biodegradation of the Pyrethroid Pesticide Gamma-Cyhalothrin by Fungi from a Brazilian Cave. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20240026spa
dc.relation.referencesRíos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. Journal of Economic Entomology, 104(5), 1698–1705. https://doi.org/10.1603/EC11079spa
dc.relation.referencesRíos-Díez, J. D., B. Siegfried, and C. I. Saldamando-Benjumea. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from Central Colombia to Cry1Ac and Cry1Ab. Southwest Entomol. 7: 281-293.spa
dc.relation.referencesRodríguez Martínez, C. & Zhurbenko, R. (2018). Manual de medios de cultivo. www.biocen.cuspa
dc.relation.referencesRomo Ibáñez, M. (2017). Actividad fenilvalerato esterasa en la buirilcolinesterasa humana. Universidad Miguel Hernández de Elche.spa
dc.relation.referencesROTAM. (2020). Ficha técnica Rotam Lash. https://croper.com/products/4957-insecticida-lash-216-sl-x-20-lt-rotamspa
dc.relation.referencesRoy, T., & Das, N. (2017). Isolation, characterization, and identification of two methomyl-degrading bacteria from a pesticide-treated crop field in West Bengal, India. Microbiology (Russian Federation), 86(6), 753–764. https://doi.org/10.1134/S0026261717060145spa
dc.relation.referencesRuiz Benitez, M. L. (2020). Cromatografía líquida de alto rendimiento (HPLC) y cromatografía de gases (CG).spa
dc.relation.referencesRupawate, P. S., Roylawar, P., Khandagale, K., Gawande, S., Ade, A. B., Jaiswal, D. K., & Borgave, S. (2023). Role of gut symbionts of insect pests: A novel target for insect-pest control. In Frontiers in Microbiology (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1146390spa
dc.relation.referencesSAAT AG. (2022). Ficha técnica Saat Lambada. https://www.saat-ag.com/wp-content/uploads/2023/03/Ficha_Tecnica_Saat_LAMBADAspa
dc.relation.referencesSaldamando-Benjumea, C. I., K. Estrada-Piedrahíta, M. I. Velásquez-Vélez, and R. I. Bailey. (2014). Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from central Colombia. J. Insect Behav. 27: 555-566.spa
dc.relation.referencesSampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. In Cell Host and Microbe (Vol. 17, Issue 5, pp. 565–576). Cell Press. https://doi.org/10.1016/j.chom.2015.04.011spa
dc.relation.referencesSantos-Amaya, O., Delgado-Restrepo O, Arguelles J, Aguilera-Garramuño E. (2009). Evaluación del comportamiento del complejo Spodoptera con la introducción de algodón transgénico al Tolima, Colombia. Revista Corpoica Ciencia y Tecnología Agropecuaria 10(1):24-32.spa
dc.relation.referencesSchneider, D. S., & Ayres, J. S. (2008). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. https://doi.org/10.1038/nri2432spa
dc.relation.referencesShu, B., Zou, Y., Yu, H., Zhang, W., Li, X., Cao, L., & Lin, J. (2021). Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07726-8spa
dc.relation.referencesSiddiqui, J. A., Fan, R., Naz, H., Bamisile, B. S., Hafeez, M., Ghani, M. I., Wei, Y., Xu, Y., & Chen, X. (2023). Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. In Frontiers in Physiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.1112278spa
dc.relation.referencesSiddiqui, J. A., Khan, M. M., Bamisile, B. S., Hafeez, M., Qasim, M., Rasheed, M. T., Rasheed, M. A., Ahmad, S., Shahid, M. I., & Xu, Y. (2022). Role of Insect Gut Microbiota in Pesticide Degradation: A Review. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.870462spa
dc.relation.referencesSiripattanakul-Ratpukdi, S., Vangnai, A. S., Sangthean, P., & Singkibut, S. (2014). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environmental Science and Pollution Research, 22(1), 320–328. https://doi.org/10.1007/s11356-014-3354-1spa
dc.relation.referencesStaetz, C. A. (2013). Directrices sobre la Prevención y Manejo de la Resistencia a los Plaguicidas. www.fao.org/publicationsspa
dc.relation.referencesStashenko, E. E., & René Martínez, J. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Industrial University of Santander.spa
dc.relation.referencesSuarez Ospina, D., & Morales Hernández, Y. (2018). Principios básicos de la cromatografía líquida de alto rendimiento para la separación y análisis de mezclas basic principles of high performance liquid chromatography for the separation and analysis of mixtures. América Revista Semilleros: Formación Investigativa, 4.spa
dc.relation.referencesTamimi, M., Qourzal, S., Assabbane, A., Chovelon, J. M., Ferronato, C., & Ait-Ichou, Y. (2006). Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products. Photochemical and Photobiological Sciences, 5(5), 477–482. https://doi.org/10.1039/b517105aspa
dc.relation.referencesTang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E. A., Andersen, G., Westermann, M., Heckel, D. G., & Boland, W. (2012). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0036978spa
dc.relation.referencesTodd, E. L., & Poole, R. W. (1980). Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera guenee from the Western Hemisphere 1. In ABSTRACT Ann. Entomol. Soc. Am (Vol. 73).spa
dc.relation.referencesUgwu, J. A., Liu, M., Sun, H., & Asiegbu, F. O. (2020). Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. Journal of Applied Entomology, 144(9), 764–776. https://doi.org/10.1111/jen.12821spa
dc.relation.referencesValbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286. https://doi.org/10.1016/j.jenvman.2021.112141spa
dc.relation.referencesVan Scoy, A. R., Yue, M., Deng, X., & Tjeerdema, R. S. (2013). Environmental fate and toxicology of methomyl. Reviews of Environmental Contamination and Toxicology, 222, 93–109. https://doi.org/10.1007/978-1-4614-4717-7_3spa
dc.relation.referencesVelásquez-Vélez, M. I., C. I. Saldamando-Benjumea, and J. D. Ríos- Díez. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera, Noctuidae) collected in corn and rice fields from Central Colombia. Ann. Entomol. Soc. Am. 104: 826-833.spa
dc.relation.referencesVélez Arango, A. M., Arango I., R. E., Villanueva M., D., Aguilera G., E., & Saldamando B., C. I. (2008). Identificación de biotipos de Spodoptera frugiperda (Lepidoptera: Noctuidae) mediante marcadores mitocondriales y nucleares. Revista Colombiana de Entomología.spa
dc.relation.referencesVisôtto, L. E., Oliveira, M. G. A., Ribon, A. O. B., Mares-Guia, T. R., & Guedes, R. N. C. (2009). Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environmental Entomology, 38(4), 1078–1085. https://doi.org/10.1603/022.038.0415spa
dc.relation.referencesWan, J., Huang, C., Li, C., Zhou, H. Xu, REN, Y. Lin, Li, Z. Yuan, Xing, L. Sheng, Zhang, B., Qiao, X., Liu, B., Liu, C. Hui, Xi, Y., Liu, W. Xue, Wang, W. Kai, Qian, W. Qiang, Mckirdy, S., & Wan, F. Hao. (2021). Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Journal of Integrative Agriculture (Vol. 20, Issue 3, pp. 646–663). Editorial Department of Scientia Agricultura Sinica. https://doi.org/10.1016/S2095-3119(20)63367-6spa
dc.relation.referencesWendeborn, S., Godineau, E., Mondière, R., Smejkal, T., & Smits, H. (2012). Chirality in Agrochemicals. In Comprehensive Chirality (Vol. 1, pp. 120–166). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095167-6.00102-6spa
dc.relation.referencesWorku, M., & Ebabuye, Y. (2019). Evaluation of efficacy of insecticides against the fall armyworm Spodoptera frugiperda. Indian Journal of Entomology, 81(1), 13. https://doi.org/10.5958/0974-8172.2019.00076.2spa
dc.relation.referencesXia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H., & You, M. (2017). Metagenomic Sequencing of Diamondback Moth Gut Microbiome Unveils Key Holobiont Adaptations for Herbivory. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00663spa
dc.relation.referencesXia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M. (2018). Gut microbiota mediate insecticide resistance in the Diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9(JAN). https://doi.org/10.3389/fmicb.2018.00025spa
dc.relation.referencesXie, S., Liu, J., Li, L., & Qiao, C. (2009). Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. Journal of Environmental Sciences, 21(1), 76–82. https://doi.org/10.1016/S1001-0742(09)60014-0spa
dc.relation.referencesYamamoto, S., & Harayama, S. (1995). PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. In Applied and environmental microbiology (Vol. 61, Issue 3).spa
dc.relation.referencesYingjie, Y., Qianru, C., Naila, I., Ping, Z., Changliang, J., Bin, L., & Yiqiang, L. (2022). Synergism in microbial communities facilitate the biodegradation of pesticides. In Microbial Syntrophy-mediated Eco-enterprising (pp. 259–273). Elsevier. https://doi.org/10.1016/B978-0-323-99900-7.00011-0spa
dc.relation.referencesYuning, L., Luyang, L., Xueming, C., Xianmei, Y., Jintian, L., & Benshui, S. (2022). The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-17278-wspa
dc.relation.referencesZhang, C., Yang, Z., Jin, W., Wang, X., Zhang, Y., Zhu, S., Yu, X., Hu, G., & Hong, Q. (2017). Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Letters in Applied Microbiology, 64(4), 289–296. https://doi.org/10.1111/lam.12715spa
dc.relation.referencesZhao, M., Lin, X., & Guo, X. (2022). The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. In Insects (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/insects13070583spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.lembBioremediación
dc.subject.lembBiodegradación
dc.subject.lembInsecticidas
dc.subject.lembMicroorganismos intestinales
dc.subject.lembInsectos útiles y perjudiciales
dc.subject.lembBacterias
dc.subject.proposalSpodoptera frugiperdaspa
dc.subject.proposalBacterias intestinalesspa
dc.subject.proposalBiotipo arroz y maízspa
dc.subject.proposalDegradación de insecticidasspa
dc.subject.proposalLambda-cialotrinaspa
dc.subject.proposalMetomilspa
dc.subject.proposalCromatografíaspa
dc.subject.proposalSpodoptera frugiperdaeng
dc.subject.proposalGut bacteriaeng
dc.subject.proposalRice and maize straineng
dc.subject.proposalIinsecticide degradationeng
dc.subject.proposalLambda-cyhalothrineng
dc.subject.proposalMethomyleng
dc.subject.proposalChromatographyeng
dc.titleEvaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticosspa
dc.title.translatedEvaluation of the degradation of the insecticides lambda-cyhalothrin and methomyl by intestinal bacteria from Spodoptera frugiperda as potential biodegraders of xenobiotic compoundseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticosspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015456655.2024.pdf
Tamaño:
2.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: