Definición de un procedimiento orientado a la evaluación técnica de la arquitectura de red IoT definida por software

dc.contributor.advisorCangrejo Aljure, Libia Denisse
dc.contributor.advisorDelgado Fernández, Tatiana
dc.contributor.authorVásquez Rodríguez, Jimmy Alexander
dc.contributor.researchgroupANGeoScspa
dc.date.accessioned2023-01-26T16:38:05Z
dc.date.available2023-01-26T16:38:05Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractDe cara al desarrollo alcanzado en los últimos años en el cual paradigmas como Internet de las Cosas plantean retos en diferentes niveles tecnológicos, las redes de datos evolucionaron, haciéndose programables, más autónomas y con la posibilidad de prescindir de infraestructuras de hardware dedicadas. Surgieron así las redes Definidas por Software, SDN´s, mostrando beneficios relevantes para el despliegue de diversas soluciones y en particular para entornos IoT. Los entornos IoT demandan redes, programables, interoperables, escalables, seguras y que garanticen el cumplimiento de estándares de calidad del servicio. Todas estas demandas representan desafíos para las redes de datos, que han sido abordados en modelos de SDN, con la capacidad de gestionar eficientemente la información de los objetos IoT, garantizando aspectos como la seguridad, la calidad en los datos y la interoperabilidad. Por tanto, la idea de desarrollar un procedimiento de evaluación técnica sensible a parámetros técnicos de las arquitecturas IoT es un método que enriquece la toma de estas decisiones. Esta propuesta provee un procedimiento para la selección estructurada, definido en cuatro etapas, a saber, el análisis conceptual, el modelamiento del método de evaluación técnica, la comparación de los criterios y la validación de las alternativas, procedimiento orientado a la identificación de la mejor solución tecnológica. (Texto tomado de la fuente)spa
dc.description.abstractIn view of the development achieved in recent years in which paradigms such as the Internet of Things pose challenges at different technological levels, data networks have evolved, becoming programmable, more autonomous and with the possibility of dispensing with dedicated hardware infrastructures. Thus, Software Defined Networks, SDNs, emerged, showing relevant benefits for the deployment of various solutions and in particular for IoT environments. IoT environments demand networks that are programmable, interoperable, scalable, secure and that guarantee compliance with service quality standards. All these demands represent challenges for data networks, which have been addressed in SDN models, with the ability to efficiently manage the information of IoT objects, guaranteeing aspects such as security, data quality and interoperability. Therefore, the idea of developing a technical evaluation procedure sensitive to technical parameters of IoT architectures is a method that enriches the making of these decisions. This proposal provides a procedure for the structured selection, defined in four stages, namely, the conceptual analysis, the modeling of the technical evaluation method, the comparison of the criteria and the validation of the alternatives, a procedure aimed at identifying the best technological solution.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Telecomunicacionesspa
dc.description.methods• Metodología de Investigación Mixta • Metodología de Investigación Interdisciplinaria (MIR) • Metodología de revisión sistemática de la literatura (SLR) • Metodología del proceso analítico jerárquico (AHP)spa
dc.description.researchareaRedes definidas por softwarespa
dc.description.researchareaInternet de las Cosasspa
dc.description.researchareaTelecomunicacionesspa
dc.format.extent111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83143
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicacionesspa
dc.relation.referencesAggarwal, S., & Kumar, N. (2019). Fog Computing for 5G-Enabled Tactile Internet: Research Issues, Challenges, and Future Research Directions. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01430-4spa
dc.relation.referencesAhmed, A. I. A., Gani, A., Hamid, S. H. A., Abdelmaboud, A., Syed, H. J., Habeeb Mohamed, R. A. A., & Ali, I. (2019). Service management for iot: Requirements, taxonomy, recent advances and open research challenges. IEEE Access, 7, 155472–155488. https://doi.org/10.1109/ACCESS.2019.2948027spa
dc.relation.referencesAhmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., & Vasilakos, A. v. (2017). The role of big data analytics in Internet of Things. Computer Networks, 129, 459–471. https://doi.org/10.1016/j.comnet.2017.06.013spa
dc.relation.referencesAlaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 88, 10–28. https://doi.org/10.1016/j.jnca.2017.04.002spa
dc.relation.referencesAl-Hubaishi, M. (2019). Integrating SDN-Enabled Wireless Sensor Networks Into the Internet. http://www.iotlab.sakarya.edu.trhttp://www.iotlab.spa
dc.relation.referencesAnadiotis, A.-C. G., Morabito, G., Palazzo, S., & Member, S. (2016). An SDN-Assisted Framework for Optimal Deployment of MapReduce Functions in WSNs; An SDN-Assisted Framework for Optimal Deployment of MapReduce Functions in WSNs. IEEE Transactions on Mobile Computing, 15. https://doi.org/10.1109/TMC.2015.2496582spa
dc.relation.referencesAndrew Lerner. (2021). SD-BRANCH Gartner 2021. Hype Cycle for Enterprise Networking, 2020 . https://blogs.gartner.com/andrew-lerner/2020/07/09/sd-branch/spa
dc.relation.referencesBaktir, A. C., Ozgovde, A., & Ersoy, C. (2017). How Can Edge Computing Benefit from Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Communications Surveys and Tutorials, 19(4), 2359–2391. https://doi.org/10.1109/COMST.2017.2717482spa
dc.relation.referencesBello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62. https://doi.org/10.1016/j.adhoc.2016.06.010spa
dc.relation.referencesBera, S., Misra, S., & Vasilakos, A. v. (2017). Software-Defined Networking for Internet of Things: A Survey. IEEE INTERNET OF THINGS JOURNAL, 4(6). https://doi.org/10.1109/JIOT.2017.2746186spa
dc.relation.referencesBERNAT, R. (2015). OpenDaylight SDN controller platform. Tesis.spa
dc.relation.referencesBiolchini, J., Gomes Mian, P., Candida Cruz Natali, A., & Horta Travassos, G. (2005). Systematic Review in Software Engineering.spa
dc.relation.referencesBizanis, N., & Kuipers, F. A. (2016). SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access, 4, 5591–5606. https://doi.org/10.1109/ACCESS.2016.2607786spa
dc.relation.referencesBoer, S. J. de (Sirp J. (1989). Decision methods and techniques in methodical engineering design. https://books.google.com/books/about/Decision_methods_and_techniques_in_metho.html?hl=es&id=VnmxAAAACAAJspa
dc.relation.referencesBojacá Acosta, Jorge. (2004). XYZ investigación pedagógica. Estado del arte. Semilleros. Logos-editspa
dc.relation.referencesBorgia, E. (2014). The internet of things vision: Key features, applications and open issues. Computer Communications, 54, 1–31. https://doi.org/10.1016/j.comcom.2014.09.008spa
dc.relation.referencesBröring, A., Seeger, J., Papoutsakis, M., Fysarakis, K., & Caracalli, A. (2020). Networking-aware IoT application development. Sensors (Switzerland), 20(3). https://doi.org/10.3390/s20030897spa
dc.relation.referencesCenteno, A. G., Manuel, C., Vergel, R., & Calderón, C. A. (2014). Controladores SDN , elementos para su selección y evaluación. Revista Telem@tica, 13(3), 10–20.spa
dc.relation.referencesChen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2017). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682spa
dc.relation.referencesChica Pedraza, G. (2012). Estudio y Analisis de la Viabilidad de la Implementacion de Tecnologıa PLT UNAL. Tesis Universidad Nacional de Colombia.spa
dc.relation.referencesCitrix Systems. (2015). sdn-role-of-application-delivery-network-services-citrix. Citrix Systems, Incspa
dc.relation.referencesČolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17–39. https://doi.org/10.1016/j.comnet.2018.07.017spa
dc.relation.referencesCreswell, J. W., & Garrett, A. L. (2008). The “movement” of mixed methods research and the role of educators. In South African Journal of Education.spa
dc.relation.referencesDarabseh, A., & Freris, N. M. (2019). A software-defined architecture for control of IoT cyberphysical systems. Cluster Computing, 22(4), 1107–1122. https://doi.org/10.1007/s10586-018-02889-8spa
dc.relation.referencesDas, R. K., Ahmed, N., Pohrmen, F. H., Maji, A. K., & Saha, G. (2020). 6LE-SDN: An Edge-Based Software-Defined Network for Internet of Things; 6LE-SDN: An Edge-Based Software-Defined Network for Internet of Things. IEEE INTERNET OF THINGS JOURNAL, 7(8). https://doi.org/10.1109/JIOT.2020.2990936spa
dc.relation.referencesDas, S., Talayco, D., & Sherwood, R. (2013a). Software-Defined Networking and OpenFlow. In Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition. Elsevier Inc. https://doi.org/10.1016/B978-0-12-401673-6.00017-9spa
dc.relation.referencesDas, S., Talayco, D., & Sherwood, R. (2013b). Software-Defined Networking and OpenFlow. In Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition (pp. 427–445). Elsevier Inc. https://doi.org/10.1016/B978-0-12-401673-6.00017-9spa
dc.relation.referencesDeCusatis, C. (2013). Network Architectures and Overlay Networks. Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition, 321–337. https://doi.org/10.1016/B978-0-12-401673-6.00013-1spa
dc.relation.referencesEl-Mougy, A., Ibnkahla, M., & Hegazy, L. (2015). Software-defined wireless network architectures for the Internet-of-Things; Software-defined wireless network architectures for the Internet-of-Things. https://doi.org/10.1109/LCNW.2015.7365931spa
dc.relation.referencesF. Almeida. (2018). STRATEGIES TO PERFORM A MIXED METHODS STUDY (ALMEIDA). Open Access Publishing Group .spa
dc.relation.referencesFarris, I., Taleb, T., Khettab, Y., & Song, J. (2019). A Survey on Emerging SDN and NFV Security Mechanisms for IoT Systems. IEEE Communications Surveys & Tutorials, 21(1), 812–837. https://doi.org/10.1109/COMST.2018.2862350spa
dc.relation.referencesFelipe, D., & Gómez, B. (n.d.). OPENFLOW: EL PROTOCOLO DEL FUTURO* (Issue 93).spa
dc.relation.referencesFlauzac, O., Gonzalez, C., & Nolot, F. (2016). Developing a Distributed Software Defined Networking Testbed for IoT. Procedia Computer Science, 83(Ant), 680–684. https://doi.org/10.1016/j.procs.2016.04.151spa
dc.relation.referencesFortinet INC. (n.d.). Soluciones Secure SD-WAN: Rápidas, escalables & flexibles | Fortinet. Retrieved August 15, 2022, from https://www.fortinet.com/lat/products/sd-wanspa
dc.relation.referencesFortinet INC. (2021). SD-WAN / SD-Branch Architecture for Enterprise. https://blog.fortinet.comspa
dc.relation.referencesGalluccio, L., Milardo, S., Morabito, G., & Palazzo, S. (2015). SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for WIreless SEnsor networks; SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for WIreless SEnsor networks. In 2015 IEEE Conference on Computer Communications (INFOCOM). https://doi.org/10.1109/INFOCOM.2015.7218418spa
dc.relation.referencesGartner. (2021). Magic Quadrant Gartner . https://www.gartner.es/es/metodologias/magic-quadrantspa
dc.relation.referencesGooley Jason. (2021). Cisco Software-Defined Network. Copyright © 2021 Cisco Systems, Inc.spa
dc.relation.referencesGuan, Z., Bertizzolo, L., Demirors, E., & Melodia, T. (2021). WNOS: Enabling Principled Software-Defined Wireless Networking; WNOS: Enabling Principled Software-Defined Wireless Networking. IEEE/ACM TRANSACTIONS ON NETWORKING, 29(3). https://doi.org/10.1109/TNET.2021.3064824spa
dc.relation.referencesH. Tobi, & Jarl K. Kampen. (2017). Research design the methodology for interdisciplinary (Tobi).spa
dc.relation.referencesHajian, E., Khayyambashi, M. R., & Movahhedinia, N. (2022). A Mechanism for Load Balancing Routing and Virtualization Based on SDWSN for IoT Applications. https://doi.org/10.1109/ACCESS.2022.3164693spa
dc.relation.referencesHatzivasilis, G., Fysarakis, K., Soultatos, O., Askoxylakis, I., Papaefstathiou, I., & Demetriou, G. (2018). The Industrial Internet of Things as an enabler for a Circular Economy Hy-LP: A novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network. Computer Communications, 119, 127–137. https://doi.org/10.1016/j.comcom.2018.02.007spa
dc.relation.referencesHu, F., Hao, Q., & Bao, K. (2014). A survey on software-defined network and OpenFlow: From concept to implementation. In IEEE Communications Surveys and Tutorials (Vol. 16, Issue 4, pp. 2181–2206). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/COMST.2014.2326417spa
dc.relation.referencesIbrahim Naser, J., & Jawad Kadhim, A. (2020). Multicast routing strategy for SDN-cluster based MANET. International Journal of Electrical and Computer Engineering (IJECE), 10(5), 4447–4457. https://doi.org/10.11591/ijece.v10i5.pp4447-4457spa
dc.relation.referencesIntegrated cisco and unix network architectures. (2008). Equal-Cost Multi-Path (ECMP) Routing. Chapter 8. Static Routing Concepts. http://etutorials.org/Networking/Integrated+cisco+and+unix+network+architectures/Chapter+8.+Static+Routing+Concepts/Equal-Cost+Multi-Path+ECMP+Routing/spa
dc.relation.referencesInteroperabilidad - Arquitectura TI. (n.d.). Retrieved August 5, 2022, from https://www.mintic.gov.co/arquitecturati/630/w3-propertyvalue-8117.htmlspa
dc.relation.referencesJain, V., Yatri, V., Kanchan, & Kapoor, C. (2019). Software defined networking: State-of-the-art. Journal of High Speed Networks, 25(1), 1–40. https://doi.org/10.3233/JHS-190601spa
dc.relation.referencesJarraya, Y., Madi, T., & Debbabi, M. (2014). A survey and a layered taxonomy of software-defined networking. In IEEE Communications Surveys and Tutorials (Vol. 16, Issue 4, pp. 1955–1980). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/COMST.2014.2320094spa
dc.relation.referencesJuan.Rodrigo. (2019). Application-aware routing y SD-WAN. Teldat Blog - Connectando El Mundo SDWAN. https://www.teldat.com/blog/es/application-aware-routing-y-sd-wan/spa
dc.relation.referencesJuniper INC. (2014). Understanding IEEE 802.3ad Link Aggregation. Technical Documentation - Support - Juniper Networks. https://www.juniper.net/documentation/en_US/junose15.1/topics/concept/802.3ad-link-aggregation-understanding.htmlspa
dc.relation.referencesKamal, Z., Mohammed, A., Sayed, E., & Ahmed, A. (2017). Internet of Things Applications , Challenges and Related Future Technologies Internet of Things Applications , Challenges and Related Future Technologies. World Scient Ific News, 67(February), 126–148.spa
dc.relation.referencesKaragiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015). A Survey on Application Layer Protocols for the Internet of Things. Transaction on IoT and Cloud Computing, 3(1), 11–17. https://doi.org/10.5281/ZENODO.51613spa
dc.relation.referencesKirichek, R., Vladyko, A., Zakharov, M., & Koucheryavy, A. (2016). Model networks for Internet of Things and SDN; Model networks for Internet of Things and SDN. https://doi.org/10.1109/ICACT.2016.7423280spa
dc.relation.referencesKitchenham, B. (2007). Source: “Guidelines for performing Systematic Literature Reviews in SE”, Kitchenham et al Guidelines for performing Systematic Literature Reviews in Software Engineering.spa
dc.relation.referencesKitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. In Information and Software Technology (Vol. 55, Issue 12, pp. 2049–2075). Elsevier B.V. https://doi.org/10.1016/j.infsof.2013.07.010spa
dc.relation.referencesKobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., Weissmann, P., & McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151–175. https://doi.org/10.1016/j.bjp.2013.10.011spa
dc.relation.referencesKreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76. https://doi.org/10.1109/JPROC.2014.2371999spa
dc.relation.referencesKristen Gloss. (n.d.). IoT authentication and authorization. How to Use IoT Authentication and Authorization for Security. Retrieved August 16, 2022, from https://www.techtarget.com/iotagenda/feature/How-to-use-IoT-authentication-and-authorization-for-securityspa
dc.relation.referencesLantz, B., & O’Connor, B. (2015). A Mininet-based Virtual Testbed for Distributed SDN Development. Computer Communication Review, 45(4), 365–366. https://doi.org/10.1145/2785956.2790030spa
dc.relation.referencesLe, N. T., Hossain, M. A., Islam, A., Kim, D.-Y., Choi, Y.-J., & Jang, Y. M. (2016). Survey of promising technologies for 5g networks. Mobile Information Systems, 2016, 1–26. https://doi.org/10.1155/2016/2676589spa
dc.relation.referencesLeón Garcia, O. (2000). Tomar decisiones dificiles. 305.spa
dc.relation.referencesLi, G., Wu, J., Li, J., Zhou, Z., & Guo, L. (2018). SLA-Aware Fine-Grained QoS Provisioning for Multi-Tenant Software-Defined Networks. https://doi.org/10.1109/ACCESS.2017.2761553spa
dc.relation.referencesLi, X., Li, D., Wan, J., Liu, C., & Imran, M. (2018). Adaptive Transmission Optimization in SDN-Based Industrial Internet of Things With Edge Computing; Adaptive Transmission Optimization in SDN-Based Industrial Internet of Things With Edge Computing. IEEE INTERNET OF THINGS JOURNAL, 5(3), 1351. https://doi.org/10.1109/JIOT.2018.2797187spa
dc.relation.referencesLiu, Y., Kuang, Y., Xiao, Y., & Xu, G. (2018). SDN-Based Data Transfer Security for Internet of Things. IEEE Internet of Things Journal, 5(1), 257–268. https://doi.org/10.1109/JIOT.2017.2779180spa
dc.relation.referencesM. del Socorro García. (2009). Métodos para la comparación de alternativas SAD.spa
dc.relation.referencesM. Fetters, & JF. Molina-Azorin. (2017). The Journal of Mixed Methods Research Starts a New Decade. Journal of Mixed Methods Research.spa
dc.relation.referencesM. S, G. (2009). Métodos para la comparación de alternativas SAD. Tesis UPCT.spa
dc.relation.referencesMaimó, L. F., Celdrán, A. H., Perales Gómez, Á. L., García Clemente, F. J., Weimer, J., & Lee, I. (2019). Intelligent and dynamic ransomware spread detection and mitigation in integrated clinical environments. Sensors (Switzerland), 19(5). https://doi.org/10.3390/s19051114spa
dc.relation.referencesMalcolm Betts. (2014). TR_SDN_ARCH_1.0_06062014. Open Networking Foundation.spa
dc.relation.referencesMaría, J., & Jiménez, M. (2010). EL PROCESO ANALÍTICO JERÁRQUICO (AHP).spa
dc.relation.referencesMarsden., C. T. (2017). Network neutrality: From policy to law to regulation. In Network neutrality: From policy to law to regulation. Manchester University Press. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073492282&partnerID=40&md5=68f85dfe22d42fe7ea6c21f95ec1a225spa
dc.relation.referencesMartinez-julia, P., & Skarmeta, A. F. (2014). Empowering the Internet of Things with Software Defined Networking. IPv6 for the Internet of Things. iot6.eu/sites/default/files/imageblock/IoT6 - SDN - IoT.pdfspa
dc.relation.referencesMcKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., & Turner, J. (2013). OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Communication Review, 38(2), 69. https://doi.org/10.1145/1355734.1355746spa
dc.relation.referencesMorabito, R., & Jimenez, J. (2020). IETF Protocol Suite for the Internet of Things: Overview and Recent Advancements. IEEE Communications Standards Magazine, 4(2), 41–49. https://doi.org/10.1109/MCOMSTD.001.1900014spa
dc.relation.referencesMoreno, J. C. (2015). Estudio de las redes definidas por software y escenarios virtuales de red orientados al aprendizaje.spa
dc.relation.referencesMoreno, J. M. (2012). EL PROCESO ANALÍTICO JERÁRQUICO (AHP). FUNDAMENTOS, METODOLOGÍA Y APLICACIONES.spa
dc.relation.referencesMouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Communications Surveys and Tutorials, 20(1), 416–464. https://doi.org/10.1109/COMST.2017.2771153spa
dc.relation.referencesNguyen, K. T., Laurent, M., & Oualha, N. (2015). Survey on secure communication protocols for the Internet of Things. Ad Hoc Networks, 32, 17–31. https://doi.org/10.1016/j.adhoc.2015.01.006spa
dc.relation.referencesOSORIO, J. C. O. , J. (2008). Analitic hierarchic process and multicriteria decisión making. Application example. UTP.spa
dc.relation.referencesPerera, C., McCormick, C., Bandara, A. K., Price, B. A., & Nuseibeh, B. (2016). Privacy-by-Design Framework for Assessing Internet of Things Applications and Platforms. Proceedings of the 6th International Conference on the Internet of Things - IoT’16, 83–92. https://doi.org/10.1145/2991561.2991566spa
dc.relation.referencesPetticrew, M., & Roberts, H. (2005). Systematic Reviews in the Social Sciences A PRACTICAL GUIDE.spa
dc.relation.referencesR. Burke Johnson, & Anthony J. Onwuegbuzie. (2004). A research paradigm whose time has come. Educational Researcher (Johnson, R., & Onwuegbuzie).spa
dc.relation.referencesRashidi, B., Fung, C., & Bertino, E. (2017). A Collaborative DDoS Defence Framework Using Network Function Virtualization. IEEE Transactions on Information Forensics and Security, 12(10), 2483–2497. https://doi.org/10.1109/TIFS.2017.2708693spa
dc.relation.referencesRed Hat, Inc. (2018). ¿Qué es la virtualización? Https://Www.Redhat.Com/Es/Topics/Virtualization/What-Is-Virtualization. https://www.redhat.com/es/topics/virtualization/what-is-virtualizationspa
dc.relation.referencesRehmani, M. H., Davy, A., Jennings, B., & Assi, C. (2019). Software Defined Networks-Based Smart Grid Communication: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 21(3), 2637–2670. https://doi.org/10.1109/COMST.2019.2908266spa
dc.relation.referencesSaaty, T. L. (2008a). Decision making with the analytic hierarchy process. In Int. J. Services Sciences (Vol. 1, Issue 1).spa
dc.relation.referencesSaaty, T. L. (2008b). Decision making with the analytic hierarchy process. In Int. J. Services Sciences (Vol. 1, Issue 1).spa
dc.relation.referencesSaaty, T. L. (2008c). The Analytic Hierarchy/Network Process. In Rev. R. Acad. Cien. Serie A. Mat. VOL (Vol. 102, Issue 2).spa
dc.relation.referencesSalman, O., Elhajj, I., Chehab, A., & Kayssi, A. (2018). IoT survey: An SDN and fog computing perspective. Computer Networks, 143, 221–246. https://doi.org/10.1016/j.comnet.2018.07.020spa
dc.relation.referencesSanjay, U., Steve. Woo, & Dan, P. (2018). SD_WAN_For_Dummies_VMware_2nd_SpecialEdition. Book.spa
dc.relation.referencesSerrano, D., & Guerri, J. (2015). Redes Definidas por Software (SDN): OpenFlow. 1–43. https://articulosit.files.wordpress.com/2013/10/sdn.pdf%0Ahttps://riunet.upv.es/bitstream/handle/10251/62801/SERRANO - Redes Definidas por Software (SDN): OpenFlow.pdf?sequence=3spa
dc.relation.referencesSher DeCusatis, C. J., & Carranza, A. (2013). Cloud Computing Data Center Networking. In Handbook of Fiber Optic Data Communication: A Practical Guide to Optical Networking: Fourth Edition (pp. 365–386). Elsevier Inc. https://doi.org/10.1016/B978-0-12-401673-6.00015-5spa
dc.relation.referencesSikeridis, D., Papapanagiotou, I., Rimal, B. P., & Devetsikiotis, M. (2017). A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors. http://arxiv.org/abs/1710.01476spa
dc.relation.referencesSood, K., Yu, S., & Xiang, Y. (2016). Software-Defined Wireless Networking Opportunities and Challenges for Internet-of-Things: A Review. IEEE Internet of Things Journal, 3(4), 453–463. https://doi.org/10.1109/JIOT.2015.2480421spa
dc.relation.referencesSouri, A., Norouzi, M., Asghari, P., Rahmani, A. M., & Emadi, G. (2020). A systematic literature review on formal verification of software-defined networks. Transactions on Emerging Telecommunications Technologies, 31(2), 1–23. https://doi.org/10.1002/ett.3788spa
dc.relation.referencesSouza, R., Dias, K., & Fernandes, S. (n.d.). NFV Data Centers: A Systematic Review. https://doi.org/10.1109/ACCESS.2020.2973568spa
dc.relation.referencesSouza, R., Dias, K., & Fernandes, S. (2020). NFV Data Centers: A Systematic Review. IEEE Access, 8, 51713–51735. https://doi.org/10.1109/ACCESS.2020.2973568spa
dc.relation.referencesSun, X., & Ansari, N. (2016). EdgeIoT: Mobile Edge Computing for the Internet of Things; EdgeIoT: Mobile Edge Computing for the Internet of Things. https://doi.org/10.1109/MCOM.2016.1600492CMspa
dc.relation.referencesTaherkordi, A., Zahid, F., Verginadis, Y., & Horn, G. (2018). Future Cloud Systems Design: Challenges and Research Directions. IEEE Access, 6, 74120–74150. https://doi.org/10.1109/ACCESS.2018.2883149spa
dc.relation.referencesTheodorou, T., & Mamatas, L. (2017). CORAL-SDN: A Software-Defined Networking Solution for the Internet of Things. https://www.ansible.com/spa
dc.relation.referencesTsai, P.-W., Piccialli, F., Tsai, C.-W., Luo, M.-Y., & Yang, C.-S. (2017). Control frameworks in network emulation testbeds: A survey. Journal of Computational Science, 22, 148–161. https://doi.org/10.1016/j.jocs.2017.03.003spa
dc.relation.referencesVargas, M. G., Galeano Higuita, C., & Jaramillo Muñoz, A. (2015). EL ESTADO DEL ARTE- UNA METODOLOGÍA DE INVESTIGACIÓN. Revista Colombiana de Ciencias Sociales, 20.spa
dc.relation.referencesVaryani, N., Zhang, Z.-L., & Dai, D. (2020). QROUTE: An Efficient Quality of Service (QoS) Routing Scheme for Software-Defined Overlay Networks. https://doi.org/10.1109/ACCESS.2020.2995558spa
dc.relation.referencesVelasquez, K., Abreu, D. P., Assis, M. R. M., Senna, C., Aranha, D. F., Bittencourt, L. F., Laranjeiro, N., Curado, M., Vieira, M., Monteiro, E., & Madeira, E. (2018). Fog orchestration for the Internet of Everything: state-of-the-art and research challenges. Journal of Internet Services and Applications, 9(1). https://doi.org/10.1186/s13174-018-0086-3spa
dc.relation.referencesVučinić, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., & Guizzetti, R. (2015). OSCAR: Object security architecture for the Internet of Things. Ad Hoc Networks, 32, 3–16. https://doi.org/10.1016/j.adhoc.2014.12.005spa
dc.relation.referencesWette, P., Dräxler, M., Schwabe, A., Wallaschek, F., Zahraee, M. H., & Karl, H. (2014). MaxiNet: Distributed Emulation of Software-Defined Networks. https://doi.org/10.1109/IFIPNetworking.2014.6857078spa
dc.relation.referencesWood, T., Ramakrishnan, K. K., Hwang, J., Liu, G., & Zhang, W. (2015). Toward a software-based network: integrating software defined networking and network function virtualization; Toward a software-based network: integrating software defined networking and network function virtualization. https://doi.org/10.1109/MNET.2015.7113223spa
dc.relation.referencesXiong, B., Yang, K., Zhao, J., Li, W., & Li, K. (2016). Performance evaluation of OpenFlow-based software-defined networks based on queueing model. Computer Networks, 102, 172–185. https://doi.org/10.1016/j.comnet.2016.03.005spa
dc.relation.referencesXu, T., Gao, D., Dong, P., Zhang, H., Heng Foh, C., & Chao, H.-C. (2016). Defending Against New-Flow Attack in SDN-Based Internet of Things. https://doi.org/10.1109/ACCESS.2017.2666270spa
dc.relation.referencesZerifi, M., Ezzouhairi, A., & Boulaalam, A. (2020). Overview on SDN and NFV based architectures for IoT environments: challenges and solutions; Overview on SDN and NFV based architectures for IoT environments: challenges and solutions. https://doi.org/10.1109/ICDS50568.2020.9268779spa
dc.relation.referencesZhang, X., Yu, S., Zhang, J., & Xu, Z. (2019). Forwarding Rule Multiplexing for Scalable SDN-Based Internet of Things. IEEE Internet of Things Journal, 6(2), 3373–3385. https://doi.org/10.1109/JIOT.2018.2882855spa
dc.relation.referencesZhu, T., Dhelim, S., Zhou, Z., Yang, S., & Ning, H. (2017). An architecture for aggregating information from distributed data nodes for industrial internet of things. Computers and Electrical Engineering, 58, 337–349. https://doi.org/10.1016/j.compeleceng.2016.08.018spa
dc.relation.referencesZunino, C., Valenzano, A., Obermaisser, R., & Petersen, S. (2020). Factory Communications at the Dawn of the Fourth Industrial Revolution. Computer Standards and Interfaces, 71. https://doi.org/10.1016/j.csi.2020.103433spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembPERT (ANALISIS DE REDES)spa
dc.subject.lembPert (Network analysis)eng
dc.subject.proposalSDN-IoTeng
dc.subject.proposalRedes definidas por softwarespa
dc.subject.proposalInternet de las cosasspa
dc.subject.proposalSDNeng
dc.subject.proposalInteroperabilidadspa
dc.subject.proposalSeguridadspa
dc.subject.proposalQoSspa
dc.subject.proposalSoftware-defined networkeng
dc.subject.proposalSDN-IoTeng
dc.subject.proposalInteroperabilityeng
dc.subject.proposalSecurityeng
dc.subject.proposalData qualityeng
dc.subject.proposalInternet of thingseng
dc.titleDefinición de un procedimiento orientado a la evaluación técnica de la arquitectura de red IoT definida por softwarespa
dc.title.translatedDefinition of a procedure oriented to the technical evaluation of the IoT network architecture defined by softwareeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80207866.2022.pdf
Tamaño:
2.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Ingenieria de Telecomunicaciones

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: