Superficie de respuesta con bloques en supervivencia

dc.contributor.advisorMelo Martínez, Oscar Orlando
dc.contributor.authorChávez Rojas, Ana Patricia
dc.date.accessioned2021-09-13T18:03:47Z
dc.date.available2021-09-13T18:03:47Z
dc.date.issued2020-06
dc.descriptionIlustraciones y tablasspa
dc.description.abstractIn this work, a methodology is proposed to fit a survival model to a response surface in the presence of blocks, in order that this methodology allows improving the estimation of parameters and prediction in models where the variable of interest is observed in of time. Also, was developed an adaptation of the classical correction methods for ties data to the proposed methodology. Theoretical development was carried out for the construction, estimation, and validation of assumptions, which was developed using the Cox proportional hazard model and the response surfaces methodology. To evaluate the performance of the methodology in comparison with other methodologies, real and simulated data were used. The results also show the fact that by combining the proportional hazards model with the response surfaces methodology, it is possible to identify the levels of the treatments that optimize the response variable. Finally, it is concluded that this methodology has the advantage of being able to include a local control (block) that allows reducing experimental error, improving efficiency by detecting minor differences between treatments, which allows making comparisons over the treatments more reliable.eng
dc.description.abstractEn este trabajo se propone una metodología para ajustar un modelo de supervivencia a una superficie de respuesta en presencia de bloques, con la finalidad de que dicha metodología permita mejorar la estimación de parámetros y predicción en modelos donde la variable de interés es observada en el tiempo hasta la ocurrencia de un evento. Se llevó a cabo el desarrollo teórico para la construcción, estimación y validación de supuestos, utilizando como base el modelo de riesgos proporcionales de Cox y la metodología de superficies de respuesta. Asimismo, se desarrolló una adaptación de los métodos clásicos de corrección de empates para la metodología propuesta. Para evaluar el desempeño de la metodología en comparación con otras metodologías se utilizaron datos reales y simulados. Los resultados ponen en evidencia el hecho de que al combinar el modelo de riesgos proporcionales con la metodología de superficies de respuesta se puede identificar los niveles de los tratamientos que optimizan la variable respuesta. Finalmente, se concluye que esta metodología tiene la ventaja de poder incluir un control local (bloque) que permite reducir el error experimental, mejorar la eficiencia al detectar menores diferencias entre los tratamientos, con lo cual se pueden hacer comparaciones de los tratamientos más confiables. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extent113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80167
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAalen, O. O. (1989), ‘A linear regression model for the analysis of life times’, Statistics in medicine 8(8), 907–925.spa
dc.relation.referencesAalen, O. O. (1993), ‘Further results on the non-parametric linear regression model in survival analysis’, Statistics in medicine 12(17), 1569–1588.spa
dc.relation.referencesAndersen, P. K. & Gill, R. D. (1982), ‘Cox’s regression model for counting processes: a large sample study’.spa
dc.relation.referencesAta, N. & Tekin, M. (2007), ‘Cox regression models with nonproportional hazards applied to lung cancer survival data’, Hacettepe Journal of Mathematics and Statistics 36(2), 157–167.spa
dc.relation.referencesBender, R., Augustin, T. & Blettner, M. (2005), ‘Generating survival times to simulate Cox proportional hazards models’, Statistics in medicine 24(11), 1713–1723.spa
dc.relation.referencesBonferroni, C. (1936), ‘Teoria statistica delle classi e calcolo delle probabilita’, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, 3–62.spa
dc.relation.referencesBox, G. E. P. & Draper, N. R. (1982), ‘Measures of lack of fit for response surface designs and predictor variable transformations’, Technometrics 24, 1–8.spa
dc.relation.referencesBox, G. E. P. & Draper, N. R. (2007), Response Surfaces, Mixtures, and Ridge Analyses, Wiley Series in Probability and Statistics, New York.spa
dc.relation.referencesBox, G. E. P. & Wilson, K. B. (1951), ‘On the experimental attainment of optimum conditions’, Journal of the Royal Statistical Society 13, 1–45.spa
dc.relation.referencesBrenneman, W. A., Myers, W. R. & Myers, R. H. (2005), ‘A dual-response approach to robust parameter design for a generalizad linear model’, Journal of Quality Technology 37, 130–138.spa
dc.relation.referencesBreslow, N. E. (1972), ‘Discussion following “Regression models and life table” by D. R. Cox’, Journal of the Royal Statistical Society Series B 34, 187–220.spa
dc.relation.referencesBreslow, N. E. (1974), ‘Covariance analysis of censored survival data’, Biometrics 30(1), 89–99.spa
dc.relation.referencesBuchholz, A. & Sauerbrei, W. (2011), ‘Comparison of procedures to assess non-linear and time- varying effects in multivariable models for survival data’, Biometrical Journal 53(2), 308–331.spa
dc.relation.referencesChen, M.-H., Ibrahim, J. G. & Sinha, D. (1999), ‘A new bayesian model for survival data with a surviving fraction’, Journal of the American Statistical Association 94(447), 909–919.spa
dc.relation.referencesChiou, J., Müller, H. &Wang, J. (2004), ‘Functional response models’, Statistica Sinica 14, 675–693.spa
dc.relation.referencesCochran, W, G. & Cox, G. M. (1992), Experimental Designs, Wiley, New York.spa
dc.relation.referencesCollett, D. (2003), Modelling survival data, in ‘Modelling Survival Data in Medical Research’, Springer.spa
dc.relation.referencesCox, D. R. (1972), ‘Regression models and life-tables’, Journal of the Royal Statistical Society. Series B 34(2), 187–220.spa
dc.relation.referencesCox, D. R. (1975), ‘Partial likelihood’, Biometrika 62, 269–276.spa
dc.relation.referencesCox, D. R. & Snell, E. J. (1968), ‘A general definition of residuals’, Journal of the Royal Statistical Society: Series B (Methodological) 30(2), 248–265.spa
dc.relation.referencesDas, M. K., Sahu, P. K., Rao, G. S., Mukkanti, K. & Silpavathi, L. (2014), ‘Application of response surface method to evaluate the cytotoxic potency of Ulva fasciata Delile, a marine macro alga’, Saudi Journal of Biological Sciences 21(6), 539 – 546.spa
dc.relation.referencesDas, R. N. (2009), ‘Response surface methodology in improving mean lifetime’, ProbStat Forum 2, 08–21.spa
dc.relation.referencesDebusho, L. K. & Chibayambuya, G. (2013), ‘Efficient response-surface designs with unknown block sizes’, South African Statistical Journal 47, 15–22.spa
dc.relation.referencesDerringer, G. C. & Suich, R. (1980), ‘Simultaneous optimization of several responses variables’, Journal of Quality Technology 12, 214–219.spa
dc.relation.referencesDraper, N. & Ying, L. H. (1994), ‘A note on slope rotatability over all directions’, Journal of Statistical Planning and Inference 41, 113–119.spa
dc.relation.referencesEfron, B. (1977), ‘The efficiency of Cox’s likelihood function for censored data’, Journal of the American Statistical Association 72(359), 557–565.spa
dc.relation.referencesFlores, C. J. (2011), Modelo de regresión de Cox con métodos flexibles en pacientes con linfoma no Hodgkin, Tesis de master, Universitat Politecnica de Catalunya, Barcelona.spa
dc.relation.referencesGarcía, J. J. (2012), ‘Análisis de supervivencia aplicado al estudio de la mortalidad en injertos de Inchi (Caryodendron orinocense Karsten)’, Revista Científica UDO Agrícola 12(4), 759–769.spa
dc.relation.referencesGarcía, J., Pérez, H. M. & Perdomo, D. (2009), ‘Evaluación de dos métodos de propagación asexual en Inchi (Caryodendron orinocense karsten)’, Revista Científica UDO Agrícola 9(4), 782–792.spa
dc.relation.referencesGiolo, S. R. & Colosimo, E. A. (2006), Análise de sobrevivencia aplicada, Edgard Blucher.spa
dc.relation.referencesGómez, G. (2004), Análisis de supervivencia, Universidad Politécnica de Catalunya, Barcelona.spa
dc.relation.referencesGuanghui, W. & Douglas, E. S. (2008), ‘Estimating cumulative treatment effects in the presence of nonproportional hazards’, Biometrics 64(3), 724–732.spa
dc.relation.referencesGuanghui, W. & Douglas, E. S. (2014), ‘A measure for assessing functions of time-varying effects in survival analysis’, Open Journal of Statistics 4(11), 977–998.spa
dc.relation.referencesHarrell, J. & Frank, E. (2015), Cox proportional hazards regression model, in ‘Regression Modeling Strategies’, Springer, pp. 475–519.spa
dc.relation.referencesHarrington, J. E. C. (1965), ‘The desirability function’, Industrial Quality Control 21(10), 494–498.spa
dc.relation.referencesHill, W. J. & Hunter, W. G. (1966), ‘A review of response surface methodology: A literature review’, Technometrics 8, 571–590.spa
dc.relation.referencesHuffer, F. W. & McKeague, I. W. (1991), ‘Weighted least squares estimation for Aalen’s additive risk model’, Journal of the American Statistical Association 86(413), 114–129.spa
dc.relation.referencesJohansen, S. (1983), ‘An extension of cox’s regression model’, International Statistical Review/Revue Internationale de Statistique pp. 165–174.spa
dc.relation.referencesKalbfleisch, J. D. & Prentice, R. L. (1973), ‘Marginal likelihoods based on Cox’s regression and life model’, Biometrika 60(2), 267–278.spa
dc.relation.referencesKalbfleisch, J. D. & Prentice, R. L. (1980), The statistical analysis of failure time data, John Wiley & Sons, New York.spa
dc.relation.referencesKalbfleisch, J. D. & Prentice, R. L. (2011), The statistical analysis of failure time data, Vol. 360, John Wiley & Sons.spa
dc.relation.referencesKaplan, E. & Meier, P. (1958), ‘Nonparametric estimation from incomplete observations’, Journal of the American Statistical Association 53, 457–481.spa
dc.relation.referencesKhuri, A. I. & Colon, M. (1981), ‘Simultaneous optimization of multiples responses represented by polynomial regression functions’, Technometrics 23(4), 363–375.spa
dc.relation.referencesKlein, J. P. & Moeschberger, M. L. (1997), Survival analysis: techniques for censored and truncated data, Springer Science, New York.spa
dc.relation.referencesKlein, J. P. & Moeschberger, M. L. (2003), Survival analysis Techniques for censored and truncated data, Springer, New York.spa
dc.relation.referencesKlein, J. P. & Moeschberger, M. L. (2006), Survival analysis: techniques for censored and truncated data, Springer Science & Business Media.spa
dc.relation.referencesKudelka, W. (2007), ‘Use of response surface methodology to evaluate the survival rate of yogurt bacteria in natural bio-yoghurts of cow and goat milk’, Milchwissenschaft 63(3), 08–21.spa
dc.relation.referencesLin, D. & Ying, Z. (1995), ‘Semiparametric analysis of general additivemultiplicative hazard models for counting processes’, Annals of Statistics 23, 1712–1734.spa
dc.relation.referencesLucas, J. M. (1976), ‘Which response surfaces is best?’, Technometrics 18, 411-417.spa
dc.relation.referencesMead, R. & Pike, D. J. (1975), ‘A review of responses surface methodology from a biometric viewpoint’, Biometrics 31, 830–851.spa
dc.relation.referencesMontgomery, D. (2005), Diseño y análisis de experimentos, Limusa Wiley, México.spa
dc.relation.referencesMontgomery, D. C. (2012), Design and Analyisis of Experiments, 5 edn, John Wiley & Sons.spa
dc.relation.referencesMyers, R. H. & Montgomery, D. C. (1995), Response Surface Methodology, John Wiley & Sons.spa
dc.relation.referencesMyers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. (2016), Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons.spa
dc.relation.referencesMyers, R. H., Montgomery, D. C. & Vinning, G. G. (2002), Generalized Linear Models. With Applications in Engineering and the Sciences, John Wiley & Sons.spa
dc.relation.referencesOliveira, T., Leal, C. & Oliveira, A. (2014), Stochastic response surface methodology in medicine with censored/uncensored data analysis, in Biomed, ed., ‘Applied Numerical Mathematics and Scientific Computation’, Athens, Greece, pp. 92–98.spa
dc.relation.referencesPanagiotis, N. S. & George-John, E. N. (2000), ‘Development and evaluation of a model predicting the survival of Escherichia coli o157:h7 NCTC 12900 in Homemade Eggplant salad at various temperatures, pHs, and oregano essential oil concentrations’, Applied and Environmental Microbiology 66(4), 1646–1653.spa
dc.relation.referencesPeace, K. E. (2009), Design and Analysis of Clinical Trials with Time-to-Event Endpoints, CRC Press.spa
dc.relation.referencesR Development Core Team (2020), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/.spa
dc.relation.referencesSauerbrei, W., Royston, P. & Look, M. (2007), ‘A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation’, Biometrical Journal 49(3), 453–73.spa
dc.relation.referencesScheike, T. & Martinussen, T. (2002), ‘A flexible additive multiplicative hazard model’, Biometrika 89, 283–298.spa
dc.relation.referencesScheike, T. H. & Zhang, M.-J. (2002), ‘An additive-multiplicative Cox-Aalen regression model’, Scandinavian Journal of Statistics 29(1), 75–88.spa
dc.relation.referencesScheike, T. H. & Zhang, M.-J. (2005), Predicting cumulative incidence probability: Marginal and cause-specific modelling, Department of Biostatistics, University of Copenhagen.spa
dc.relation.referencesSchumacher, M. (1984), ‘Two-sample tests of cram´er-von mises-and kolmogorovsmirnov-type for randomly censored data’, International Statistical Review/Revue Internationale de Statistique pp. 263–281.spa
dc.relation.referencesSong, X. & Wang, C. Y. (2008), ‘Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients’, Biometrics 64(2), 557–566.spa
dc.relation.referencesStephen, L. L., Randall, P. N. & Evens, T. J. (2010), ‘An artificial diet for diaprepes abbreviatus(coleoptera: Curculionidae) optimized for larval survival’, Florida Entomologist 93(1), 56–62.spa
dc.relation.referencesTsiatis, A. A. (1981), ‘A large sample study of Cox’s regression model’, The Annals of Statistics pp. 93–108.spa
dc.relation.referencesVining, G. (1998), ‘A compromise approach to multiresponse optimization’, Journal of Quality Technology 30(4), 309–313.spa
dc.relation.referencesZeng, D. & Lin, D. Y. (2007), ‘Maximum likelihood estimation in semiparametric regression models with censored data’, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(4), 507–564.spa
dc.relation.referencesZeng, D., Cai, J. & Shen, Y. (2006), ‘Semiparametric additive risks model for interval-censored data’, Statistica Sinica 16(1), 287–302.spa
dc.relation.referencesZeng, D., Yin, G. & Ibrahim, J. G. (2006), ‘Semiparametric transformation models for survival data with a cure fraction’, Journal of the American Statistical Association 101(474), 670–684.spa
dc.relation.referencesZeng, D. et al. (2004), ‘Estimating marginal survival function by adjusting for dependent censoring using many covariates’, The Annals of Statistics 32(4), 1533–1555.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembParameter estimation
dc.subject.lembEstimación de parámetros
dc.subject.lembProbabilities
dc.subject.lembProbabilidades
dc.subject.otherModelos estadísticos
dc.subject.otherStatistical models
dc.subject.proposalDiseño de experimentosspa
dc.subject.proposalModelo de Coxspa
dc.subject.proposalAnálisis de supervivenciaspa
dc.subject.proposalDesign of experimentseng
dc.subject.proposalCox modeleng
dc.subject.proposalResponse surfaces methodologyeng
dc.subject.proposalSurvival analysiseng
dc.subject.proposalMetodología de superficies de respuestasspa
dc.titleSuperficie de respuesta con bloques en supervivenciaspa
dc.title.translatedResponse surface methodology with blocks in survivaleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
39629109.2021.pdf
Tamaño:
16.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: