Caracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombia

dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.advisorLeal Castro, Aura Lucía
dc.contributor.authorOsorio Certuche, Nicole
dc.contributor.researchgroupEpidemiologia molecular Bioinformática Enfermedades infecciosasspa
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.date.accessioned2023-07-25T16:58:01Z
dc.date.available2023-07-25T16:58:01Z
dc.date.issued2023-01-30
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn humanos la infección por P. aeruginosa es controlada por múltiples factores de virulencia y es una de las causas más recurrentes y graves de infecciones asociadas a la atención en salud. Por lo tanto, el objetivo general de este estudio fue caracterizar los perfiles genómicos de virulencia en aislados clínicos de Pseudomonas aeruginosa provenientes de un hospital universitario de Bogotá- Colombia, utilizando la tecnología de secuenciación de genoma completo (WGS). Este estudio prospectivo se realizó durante los años 2019 y 2021, en donde se secuenciaron 54 aislamientos provenientes de 37 pacientes de los servicios de UCI, hospitalización y Unidad quirúrgica, utilizando las plataformas illumina y Oxford Nanopore. En los genomas se encontraron un total de 246 genes de virulencia, encontrando la presencia de genes de gran importancia en la virulencia de esta bacteria, como el gen pilA que se detectó en el 48,1% de los aislamientos y el gen algD en el 100%. Para las toxinas la prevalencia fue para exoU de (16,6%), exoT (92,5%), exoS (79,6%) y exoY (88,8%). Adicionalmente se encontró la presencia de 16 secuencio-tipos (ST) ya reportados y se encontraron 13 ST nuevos. En conclusión, el uso de tecnologías como WGS permitió determinar el perfil de virulencia de aislados clínicos de P. aeruginosa, logrando un acercamiento global a los perfiles de virulencia de los aislamientos clínicos de esta bacteria en el país, siendo el primer reporte de la prevalencia de más de 200 genes de virulencia en Colombia para P. aeruginosa. (Texto tomado de la fuente)spa
dc.description.abstractIn humans, P. aeruginosa infection is controlled by multiple virulence factors and is one of the most recurrent and serious causes of healthcare-associated infections. The aim of this study was to characterize the virulence genomic profiles in clinical isolates of Pseudomonas aeruginosa from a hospital in Bogotá-Colombia, using whole genome sequencing (WGS) technology. A prospective study was carried out during the years 2019 and 2021, where 54 isolates from 37 patients from both the ICU and hospitalization services, and operating rooms were sequenced, using the illumina and Oxford Nanopore platforms. A total of 246 virulence genes were found in the genomes, finding the presence of genes of great importance in the virulence of this bacterium, such as the pilA gene that was detected in 48.1% of the isolates and the algD gene that found in the 100% of them. For toxins, the prevalence was for exoU de (16.6%), exoT (92.5%), exoS (79.6%) and exoY (88.8%). Additionally, the presence of 16 sequence-types (ST) already reported and 13 new ST were found. In conclusion, the use of technologies such as WGS made it possible to determine the virulence profile of clinical isolates of P. aeruginosa, achieving a global approach to the virulence profiles of the clinical isolates of this bacterium in the country, being the first report of the prevalence of more than 200 virulence genes in Colombia for P. aeruginosa.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaBiología molecular de agentes infecciososspa
dc.format.extentXI. 79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84264
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAslani, M. M., Nikbin, V. S., Sharafi, Z., Hashemipour, M., Shahcheraghi, F., & Ebrahimipour, G. H. (2012). Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iranian Journal of Microbiology, 4(3), 118–123.spa
dc.relation.referencesAzam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. https://doi.org/10.1016/j.drudis.2018.07.003spa
dc.relation.referencesBabour, I. A., Mohamed, M. B., & Shehabi, A. A. (2020). Molecular characterization of Pseudomonas aeruginosa isolates from various clinical specimens in Khartoum/Sudan: Antimicrobial resistance and virulence genes. The International Arabic Journal of Antimicrobial Agents, 10(1), 1–8. https://doi.org/10.3823/840spa
dc.relation.referencesBabraham-Bioinformatics. (2020). FastQC. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/spa
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021spa
dc.relation.referencesBarahona, N., Rodriguez, M., & De Moya, Y. (2019). Importancia De La Vigilancia Epidemiológica En El Control De Las Infecciones Asociadas a La Atención En Salud. Biociencias, 14(1), 79–96. https://doi.org/10.18041/2390-0512/biociencias.1.5440spa
dc.relation.referencesBarrio-tofiño, E., López-causapé, C., & Oliver, A. (2020). association with horizontally-acquired β -lactamases : 2020 update. 56. https://doi.org/10.1016/j.ijantimicag.2020.106196spa
dc.relation.referencesBazghandi, S. A., Arzanlou, M., Peeridogaheh, H., Vaez, H., Sahebkar, A., & Khademi, F. (2021). Prevalence of virulence genes and drug resistance profiles of pseudomonas aeruginosa isolated from clinical specimens. Jundishapur Journal of Microbiology, 14(8). https://doi.org/10.5812/jjm.118452spa
dc.relation.referencesBeceiro, A., Tomás, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Reviews, 26(2), 185–230. https://doi.org/10.1128/CMR.00059-12spa
dc.relation.referencesBehzadi, P., Baráth, Z., & Gajdács, M. (2021). It’s not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant pseudomonas aeruginosa. Antibiotics, 10(1), 1–29. https://doi.org/10.3390/antibiotics10010042spa
dc.relation.referencesBertelli, C., & Greub, G. (2013). Rapid bacterial genome sequencing: Methods and applications in clinical microbiology. Clinical Microbiology and Infection, 19(9), 803–813. https://doi.org/10.1111/1469-0691.12217spa
dc.relation.referencesBhatta, D. R., Hamal, D., Shrestha, R., HS, S., Joshi, P., Nayak, N., & Gokhale, S. (2019). Burden of multidrug resistant respiratory pathogens in intensive care units of tertiary care hospital. Asian Journal of Medical Sciences, 10(2), 14–19. https://doi.org/10.3126/ajms.v10i2.21098spa
dc.relation.referencesBioptic. (2016). Qsep 100 TM Operation Manual English V1.6 July/2016 I.spa
dc.relation.referencesBogiel, T., Depka, D., Rzepka, M., Kwiecińska-Piróg, J., & Gospodarek-Komkowska, E. (2021). Prevalence of the genes associated with biofilm and toxins synthesis amongst the pseudomonas aeruginosa clinical strains. Antibiotics, 10(3), 1–14. https://doi.org/10.3390/antibiotics10030241spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Genome analysis Trimmomatic : a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBravo Ojeda, J. S. (2020). Descripción de tipos de carbapenemasas expresadas en Klebsiella sp. y Pseudomonas aeruginosa en hospitales de tercer nivel de la ciudad de Bogotá, estudio descriptivo.spa
dc.relation.referencesBrindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., & Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochemistry, 96(September 2019), 49–57. https://doi.org/10.1016/j.procbio.2020.06.001spa
dc.relation.referencesChadha, J., Harjai, K., & Chhibber, S. (2021). Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environmental Microbiology, 00. https://doi.org/10.1111/1462-2920.15784spa
dc.relation.referencesChávez-Jacobo, V. M. (2020). La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Revista Especializada En Ciencias Químico-Biológicas, 23, 1–11. https://doi.org/10.22201/fesz.23958723e.2020.0.202spa
dc.relation.referencesChen, L., Zou, Y., She, P., & Wu, Y. (2015). Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiological Research, 172, 19–25. https://doi.org/10.1016/j.micres.2015.01.004spa
dc.relation.referencesClavijo, D. C. (2018). Reconstrucción, modelamiento y simulación de la red metabólica y de quorum-sensing, implicadas en la regulación de un fenotipo específico en Pseudomonas aeruginosa.spa
dc.relation.referencesCorrea, Yan, R., Furlaneto, I. P., Henrique, A., Maciel, P., Pires, J., Quaresma, G., Costa, E., Matos, O. De, Cleyton, M., Le, G., Falc, N., Nepomuceno, L., & Costa, G. (2020). High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. 1–21. https://doi.org/10.1371/journal.pone.0238741spa
dc.relation.referencesCorrea, A., Perenguez, M., Blanco, V. M., Rodríguez-baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, V. (2015). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. 12. https://doi.org/10.1128/AAC.03926-14spa
dc.relation.referencesde Sousa, T., Hébraud, M., Enes Dapkevicius, M. L. N., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and metabolic characteristics of the pathogenicity in pseudomonas aeruginosa. In International Journal of Molecular Sciences (Vol. 22, Issue 23). MDPI. https://doi.org/10.3390/ijms222312892spa
dc.relation.referencesDiard, M., & Hardt, W. D. (2017). Evolution of bacterial virulence. FEMS Microbiology Reviews, 41(5), 679–697. https://doi.org/10.1093/FEMSRE/FUX023spa
dc.relation.referencesElbourne, L., Tremblay, S., Ren, Q., Roy, P. H., & Tetu, S. G. (2010). Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1), 1–10. https://doi.org/10.1371/journal.pone.0008842spa
dc.relation.referencesElmouaden, C., Laglaoui, A., Ennanei, L., Bakkali, M., & Abid, M. (2019). Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. Journal of Infection in Developing Countries, 13(10), 892–898. https://doi.org/10.3855/jidc.10675spa
dc.relation.referencesFragozo, L., & Villalobos, C. (2016). Pseudomona aeruginosa: ESTADO DEL ARTE. 112.spa
dc.relation.referencesGarcía Armijos, J. A., Mesa-Cano, I. C., Ramírez-Coronel, A. A., & Segovia Clavijo, A. C. (2021). Prevention of health care-associated infections: a systematic review. Journal of American Health, 8(10). http://www.jah-journal.com/index.php/jahspa
dc.relation.referencesGenovese, C., La Fauci, V., D’Amato, S., Squeri, A., Anzalone, C., Costa, G. B., Fedele, F., & Squeri, R. (2020). Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: A review of the literature. Acta Biomedica, 91(2), 256–273. https://doi.org/10.23750/abm.v91i2.9176spa
dc.relation.referencesGomila, A., Carratalà, J., Eliakim-Raz, N., Shaw, E., Wiegand, I., Vallejo-Torres, L., Gorostiza, A., Vigo, J. M., Morris, S., Stoddart, M., Grier, S., Vank, C., Cuperus, N., Van den Heuvel, L., Vuong, C., Macgowan, A., Leibovici, L., Addy, I., & Pujol, M. (2018). Risk factors and prognosis of complicated urinary tract infections caused by pseudomonas aeruginosa in hospitalized patients: A retrospective multicenter cohort study. Infection and Drug Resistance, 11, 2571–2581. https://doi.org/10.2147/IDR.S185753spa
dc.relation.referencesGonzález-Olvera, E. M., Pérez-Morales, R., González-Zamora, A., Castroescarpulli, G., Palma-Martínez, I., & Alba-Romero, J. D. J. (2019). Antibiotic resistance, virulence factors and genotyping of pseudomonas aeruginosa in public hospitals of northeastern mexico. Journal of Infection in Developing Countries, 13(5), 374–383. https://doi.org/10.3855/jidc.10953spa
dc.relation.referencesGuo, L. li, Li, L. mei, Li, Y., Duan, X. xiao, Liu, Y. jing, Gao, R. Y., & Zhao, Y. da. (2022). Characterization of antimicrobial resistance and virulence genes of Pseudomonas aeruginosa isolated from mink in China, 2011–2020. Microbial Pathogenesis, 162(October 2021), 105323. https://doi.org/10.1016/j.micpath.2021.105323spa
dc.relation.referencesGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086spa
dc.relation.referencesHaghi, F., Zeighami, H., Monazami, A., Toutouchi, F., Nazaralian, S., & Naderi, G. (2018). Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microbial Pathogenesis, 115, 251–256. https://doi.org/10.1016/j.micpath.2017.12.052spa
dc.relation.referencesHaque, M., Sartelli, M., Mckimm, J., & Abu Bakar, M. (2018). Infection and Drug Resistance Dovepress Health care-associated infections-an overview. Infection and Drug Resistance, 11(1), 2321–2333. http://dx.doi.org/10.2147/IDR.S177247spa
dc.relation.referencesHassuna, N. A., Mandour, S. A., & Mohamed, E. S. (2020). Virulence constitution of multi-drug-resistant pseudomonas aeruginosa in upper Egypt. Infection and Drug Resistance, 13, 587–595. https://doi.org/10.2147/IDR.S233694spa
dc.relation.referencesHiggins, S., Heeb, S., Rampioni, G., Fletcher, M. P., Williams, P., & Cámara, M. (2018). Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Frontiers in Cellular and Infection Microbiology, 8(JUL), 1–13. https://doi.org/10.3389/fcimb.2018.00252spa
dc.relation.referencesHorna, G., Amaro, C., Palacios, A., Guerra, H., & Ruiz, J. (2019). High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant “high-risk clones” of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-47303-4spa
dc.relation.referencesHorna, G., & Ruiz, J. (2021). Type 3 secretion system of Pseudomonas aeruginosa. In Microbiological Research (Vol. 246). Elsevier GmbH. https://doi.org/10.1016/j.micres.2021.126719spa
dc.relation.referencesIllumina. (2020). Mi seq system. https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_miseq.pdfspa
dc.relation.referencesIllumina. (2022). What is the PhiX Control v3 Library and what is its function in Illumina Next Generation Sequencing. https://support.illumina.com/bulletins/2017/02/what-is-the-phix-control-v3-library-and-what-is-its-function-in-.htmlspa
dc.relation.referencesInstituto Nacional de Salud. (2021). Análisis del comportamiento de las infecciones asociadas a la atención en salud (IAAS). BES Boletin Epidemiologico Semanal Semana Epidemiologica 44, 4. https://hospitaltarapoto.gob.pe/web/IndicadoresAnalisisComportamientospa
dc.relation.referencesInvitrogen. (2020). PureLink TM Genomic DNA Mini Kit. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/purelink_genomic_mini_man.pdfspa
dc.relation.referencesInvitrogen. (2022). Qubit dsDNA Assay Kit. 1–8.spa
dc.relation.referencesJolley, K. A., Bray, J. E., & Maiden, M. C. J. (2018). Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; referees: 2 approved]. Wellcome Open Research, 3(0), 1–20. https://doi.org/10.12688/wellcomeopenres.14826.1spa
dc.relation.referencesJurado-Martín, I., Sainz-Mejías, M., & McClean, S. (2021). Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences, 22(6), 1–37. https://doi.org/10.3390/ijms22063128spa
dc.relation.referencesKainuma, A., Momiyama, K., Kimura, T., Akiyama, K., & Inoue, K. (2018). An outbreak of fl uoroquinolone-resistant Pseudomonas aeruginosa ST357 harboring the exoU gene *. Journal of Infection and Chemotherapy, 24(8), 615–622. https://doi.org/10.1016/j.jiac.2018.03.008spa
dc.relation.referencesKloth, C., Schirmer, B., Munder, A., Stelzer, T., Rothschuh, J., & Seifert, R. (2018). The role of Pseudomonas aeruginosa exoy in an acute mouse lung infection model. Toxins, 10(5), 1–15. https://doi.org/10.3390/toxins10050185spa
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301spa
dc.relation.referencesLiew, S. M., Rajasekaram, G., Puthucheary, S. D. A., & Chua, K. H. (2019). Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ, 2019(1), 1–19. https://doi.org/10.7717/peerj.6217spa
dc.relation.referencesLiu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–D692. https://doi.org/10.1093/nar/gky1080spa
dc.relation.referencesLuna de Araujo Jacome, P. regina., Rodrigues Alves, L., Borges Cabral, A., Souza Lopes, A. caratina., & Vierira Maciel, M. A. (2012). Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco,Brazil. Revista Da Sociedade Brasileira de Medicina Tropical, 45(6), 707–712.spa
dc.relation.referencesMéndez-álvarez, S., & Pérez-roth, E. (2004). La PCR múltiple en microbiología clínica. Enfermedades Infecciosas y Microbiología Clínica, 22(3), 183–192spa
dc.relation.referencesNain, Z., & Karim, M. M. (2021). Whole-genome sequence, functional annotation, and comparative genomics of the high biofilm-producing multidrug-resistant Pseudomonas aeruginosa MZ4A isolated from clinical waste. Gene Reports, 22(December), 100999. https://doi.org/10.1016/j.genrep.2020.100999spa
dc.relation.referencesNewman, J. W., Floyd, R. V., & Fothergill, J. L. (2017). The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiology Letters, 364(15), 1–11. https://doi.org/10.1093/femsle/fnx124spa
dc.relation.referencesOxford Nanopore Technologies. (2022a). Ligation sequencing gDNA-native barcoding (SQK-LSK109 with EXP-NBD196).spa
dc.relation.referencesOxford Nanopore Technologies. (2022b). MinION.spa
dc.relation.referencesPark, Y., & Koo, S. H. (2022). Epidemiology, Molecular Characteristics, and Virulence Factors of Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Patients with Urinary Tract Infections. Infection and Drug Resistance, 15(December 2021), 141–151. https://doi.org/10.2147/IDR.S346313spa
dc.relation.referencesPaz-Zarza, V. M., Mangwani-Mordani, S., Martínez-Maldonado, A., Álvarez-Hernández, D., Solano-Gálvez, S. G., & Vázquez-López, R. (2019). Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Revista Chilena de Infectología, 36(2), 180–189. https://doi.org/10.4067/s0716-10182019000200180spa
dc.relation.referencesPelegrin, A. C., Palmieri, M., Mirande, C., Oliver, A., Moons, P., Goossens, H., & Van Belkum, A. (2021). Pseudomonas aeruginosa: A clinical and genomics update. FEMS Microbiology Reviews, 45(6), 1–20. https://doi.org/10.1093/femsre/fuab026spa
dc.relation.referencesRaúl Recio, Mikel Mancheño, Esther Viedma, Jennifer Villa, María Ángeles Orellana, J. L.-T. and F. C. (2020). Predictors of Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact of Antimicrobial. August 2019, 1–13.spa
dc.relation.referencesRedfern, J., Wallace, J., Belkum, A. Van, Jaillard, M., Whittard, E., Ragupathy, R., Verran, J., Kelly, P., & Enright, M. C. (2021). Biofilm associated genotypes of multiple antibiotic resistant Pseudomonas aeruginosa. 1–16.spa
dc.relation.referencesRevelas, A. (2012). Healthcare - associated infections: A public health problem. Nigerian Medical Journal, 53(2), 59. https://doi.org/10.4103/0300-1652.103543spa
dc.relation.referencesReynolds, D., & Kollef, M. (2021). The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81(18), 2117–2131. https://doi.org/10.1007/s40265-021-01635-6spa
dc.relation.referencesRiaño Abril, D. J. (2016). Movilización de genes de resistencia en el clon de Pseudomonas aeruginosa ST235 causante de infecciones en Colombiaspa
dc.relation.referencesRodriguez, L. X. (2021). Caracterización in silico de los genes de virulencia PhoP -PhoQ en cepas de Pseudomonas aeruginosa fenotipo multidrogo-resistente (MDR. https://doi.org/10.19163/medchemrussia2021-2021-236spa
dc.relation.referencesSauvage, S., & Hardouin, J. (2020). Exoproteomics for better understanding Pseudomonas aeruginosa virulence. Toxins, 12(9), 1–19. https://doi.org/10.3390/toxins12090571spa
dc.relation.referencesSeemann, T. (2020). Snippy. https://github.com/tseemann/snippyspa
dc.relation.referencesSharma, A. K., Dhasmana, N., Dubey, N., Kumar, N., Gangwal, A., Gupta, M., & Singh, Y. (2017). Bacterial Virulence Factors: Secreted for Survival. Indian Journal of Microbiology, 57(1), 1–10. https://doi.org/10.1007/s12088-016-0625-1spa
dc.relation.referencesSpagnolo, A. M., Sartini, M., & Cristina, M. L. (2021). Pseudomonas aeruginosa in the healthcare facility setting. Reviews in Medical Microbiology, 32(3), 169–175. https://doi.org/10.1097/mrm.0000000000000271spa
dc.relation.referencesSpringer, T. I., Reid, T. E., Gies, S. L., & Feix, J. B. (2019). Interactions of the effector ExoU from pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. Journal of Biological Chemistry, 294(50), 19012–19021. https://doi.org/10.1074/jbc.RA119.010278spa
dc.relation.referencesStamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033spa
dc.relation.referencesSubedi, D., Vijay, A. K., Kohli, G. S., Rice, S. A., & Willcox, M. (2018). Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-34020-7spa
dc.relation.referencesSultan, M., Arya, R., & Kim, K. K. (2021). Roles of two-component systems in pseudomonas aeruginosa virulence. International Journal of Molecular Sciences, 22(22). https://doi.org/10.3390/ijms222212152spa
dc.relation.referencesTagini, F., & Greub, G. (2017). Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. European Journal of Clinical Microbiology and Infectious Diseases, 36(11), 2007–2020. https://doi.org/10.1007/s10096-017-3024-6spa
dc.relation.referencesThermoFisher. (2020a). NadoDrop. https://www.thermofisher.com/order/catalog/product/ND-ONE-W#/ND-ONE-Wspa
dc.relation.referencesThermoFisher. (2020b). Qubit 4 Fluorometer. https://www.thermofisher.com/co/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/fluorometers/qubit/qubit-fluorometer.htmlspa
dc.relation.referencesThi, M. T. T., Wibowo, D., & Rehm, B. H. A. (2020). Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences, 21(22), 1–25. https://doi.org/10.3390/ijms21228671spa
dc.relation.referencesTickler, I. A., Carlos, J., La, G. De, Alvarado, L., Obradovich, A. E., & Tenover, F. C. (2022). Journal of Global Antimicrobial Resistance Mechanisms of carbapenemase-me diate d resistance among high-risk Pseudomonas aeruginosa lineages in Peru. Journal of Global Antimicrobial Resistance, 31, 135–140. https://doi.org/10.1016/j.jgar.2022.08.018spa
dc.relation.referencesTreepong, P., Kos, V. N., Guyeux, C., Blanc, D. S., Bertrand, X., & Valot, B. (2018). Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clinical Microbiology and Infection, 24(3), 258–266. https://doi.org/10.1016/j.cmi.2017.06.018spa
dc.relation.referencesValle, R. H. (2020). resistencia bacteriana y producción de biopelículas en la ciudad de Diversidad genética de Pseudomonas aeruginosa y su relación con la resistencia bacteriana y producción de biopelículas en la ciudad de Cartagena de Indias D . C . T . -Colombia. In Universidad de cartagena.spa
dc.relation.referencesVives-Flórez, M., & Garnica, D. (2006). Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. International Microbiology, 9(4), 247–252. https://doi.org/10.2436/im.v9i4.9582spa
dc.relation.referencesWick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595spa
dc.relation.referencesWorld Health Organization. (2011). Report on the burden of endemic health care-associated infection worldwide: Clean care is safer care. World Health Organization, 1–40. https://apps.who.int/iris/bitstream/handle/10665/80135/9789241501507_eng.pdf?sequence=1spa
dc.relation.referencesWorld Health Organization. (2017). WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, 43(148), 348–365.spa
dc.relation.referencesYang, J. J., Tsuei, K. S. C., & Shen, E. P. (2022). The role of Type III secretion system in the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Medical Journal, 34(1), 8–14. https://doi.org/10.4103/tcmj.tcmj_47_21spa
dc.relation.referencesYang, X., Lai, Y., Li, C., Yang, J., Jia, M., & Sheng, J. (2021). Molecular epidemiology of pseudomonas aeruginosa isolated from lower respiratory tract of icu patients. Brazilian Journal of Biology, 81(2), 351–360. https://doi.org/10.1590/1519-6984.226309spa
dc.relation.referencesYin, R., Kwoh, C. K., & Zheng, J. (2018). Whole genome sequencing analysis. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 176–183. https://doi.org/10.1016/B978-0-12-809633-8.20095-2spa
dc.relation.referencesYoon, E., & Jeong, S. H. (2021). Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front. Microbiol., 12(February). https://doi.org/10.3389/fmicb.2021.614058spa
dc.relation.referencesZheng, M., Sun, S., Zhou, J., & Liu, M. (2021). Virulence factors impair epithelial junctions during bacterial infection. Journal of Clinical Laboratory Analysis, 35(2), 1–6. https://doi.org/10.1002/jcla.23627spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.decsInfección latentespa
dc.subject.decsLatent Infectioneng
dc.subject.proposalPseudomonas aeruginosaspa
dc.subject.proposalFactores de virulenciaspa
dc.subject.proposalInfecciones Asociadas a la Atención en Saludspa
dc.subject.proposalSecuencio-tiposspa
dc.subject.proposalVirulence factorseng
dc.subject.proposalHealthcare-associated infectionseng
dc.subject.proposalSequence-typeseng
dc.subject.proposalWGSeng
dc.titleCaracterización genómica de factores de virulencia de aislados clínicos de Pseudomonas aeruginosa basados en WGS provenientes de un hospital de Bogotá, Colombiaspa
dc.title.translatedGenomic characterization of virulence factors of clinical isolates of Pseudomonas aeruginosa based on WGS from a hospital in Bogotá, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1115086252_2023.pdf
Tamaño:
2.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: