Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer

dc.contributor.advisorSandoval-Hernandez, Adrián Gabriel
dc.contributor.advisorÁvila Murillo, Mónica Constanza
dc.contributor.authorBustos Rangel, Angie Milena
dc.contributor.researchgroupMuerte Celularspa
dc.contributor.researchgroupProductos Naturales Vegetales Bioactivos y Quimica EcoIogicaspa
dc.date.accessioned2021-09-23T17:45:28Z
dc.date.available2021-09-23T17:45:28Z
dc.date.issued2021-07-13
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa enfermedad de Alzheimer es la demencia más común en la población mundial, tiene una etiología desconocida y no cuenta con un tratamiento efectivo. Se caracteriza por la agregación del péptido amiloide β y Tau hiperfosforilado, aumento de radicales libres, desregulación lipídica y exitotoxicidad. Teniendo en cuenta esto, los receptores X hepáticos, se postulan como una diana terapéutica, ya que son factores de transcripción que regulan genes encargados de la homeostasis de colesterol y se asocian con mecanismos de eliminación del péptido amiloide β, una menor fosforilación de Tau y una menor respuesta inflamatoria, etc. En este trabajo, se contó con 82 extractos de Angiospermas basales colombianas, a los que se les evaluó su actividad agonista sobre los receptores nucleares LXR β, actividad inhibitoria de acetil colinesterasa y actividad antioxidante, seguida de la evaluación in vivo del efecto protector frente a ambientes tóxicos de paraquat, ceramida y glutamato. Se encontró que, los extractos de Z. martinicense, Zanthoxylum sp., Z. rohifolium, N. reticulata, N. membranácea, Nectandra sp., Myristicaceae sp. 1 y Myristicaceae sp. 2 tienen un efecto agonista sobre LXR β, acompañado de una actividad antioxidante. Adicionalmente, el extracto etanólico de Myriticaceae sp.2 y las fracciones de Z. rhoifolium, Z. martinicense y Zanthoxylum sp., mostraron una marcada actividad inhibitoria de AChE. Por último, Z. rohifolium, disminuye el efecto de concentraciones tóxicas de glutamato. Lo que deja en evidencia el potencial de estos extractos naturales para el tratamiento de la EA. (texto tomado de la fuente)spa
dc.description.abstractAlzheimer's disease is the most common dementia in the world, has an unknown etiology and d oes not have effective treatment. It is characterized by the aggregation of amyloid peptide β and tau hyperphosphorylation, increased free radicals, lipid deregulation, and excitotoxicity. Considering this, liver X receptors are postulated as a therapeutic target, as they are transcription factors that regulate genes responsible for cholesterol homeostasis and are associated with mechanisms of removal of amyloid peptide β, lower phosphorylation of Tau and lower inflammatory response, etc. In this work, 82 extracts of basal Angiosperms obtained in Colombia were counted, which were evaluated for their agonist activity on LXR β nuclear receptors, continuing with in vitro evaluation of anti-acetylcholinesterase activity and antioxidant activity, followed by in vivo assessment of the protective effect against toxic environments of paraquat, ceramide, and glutamate. Finding that extracts from Z. martinicense, Zanthoxylum sp. Z. rohifolium, N. reticulata, N. membranácea, Nectandra sp., Myristicaceae sp. 1 and Myristicaceae sp. 2 have an agonist effect on LXR β, accompanied by antioxidant activity and particularly, the ethanolic extract of Miriticaceae sp.2 and the fractions of Z. rhoifolium, Z. martinicense and Zanthoxylum sp., showed a marked inhibitory activity of AChE and Z. rohifolium, decreases the effect of toxic concentrations of glutamate. Which highlights the potential of these natural extracts for the treatment of EA.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaEnfermedades neurodegenerativasspa
dc.description.sponsorshipA la Universidad Nacional de Colombia, al programa curricular de la Maestría en Ciencias – Bioquímica y los grupos de investigación de Muerte celular y el grupo de química de productos naturales bioactivos (QUIPRONAB), que permitieron mi formación profesional. Al Ministerio de Ciencia y Tecnología por la financiación de esta investigación mediante los proyectos, Bioprospección del potencial terapéutico de extractos vegetales de las familias Lauraceae y Rutaceae asociados a la actividad farmacológica de LXR en un modelo murino de enfermedad de Alzheimer y análisis computacional" -RC-737 DE 2018 y “Evaluación de los mecanismos moleculares asociados a la activación farmacológica de LXR en modelos de la enfermedad de Alzheimer y del potencial terapéutico de un extracto de Nectandra reticulata (Lauraceae)” RC-727 de 2018 . Al Ministerio de Medio Ambiente por el otorgamiento del Otros N° 21 al Contrato Marco de Acceso a Recursos Genéticos y sus Productos Derivados N° 121 del 22 de enero de 2016 suscrito entre el Ministerio de Ambiente y Desarrollo Sostenible y la Universidad Nacional de Colombia, por medio del cual se ampara el uso para investigación del material vegetal que hace parte de esta investigación. A mis directores de tesis Adrián Sandoval y Mónica Ávila y a los profesores que han acompañado mi proceso de formación profesional.spa
dc.format.extent150 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80277
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAbo, K. A., Fred-Jaiyesimi, A. A., & Jaiyesimi, A. E. A. (2008). Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. Journal of Ethnopharmacology, 115(1), 67–71. https://doi.org/10.1016/j.jep.2007.09.005spa
dc.relation.referencesAhmad, S., Ullah, F., Sadiq, A., Ayaz, M., Imran, M., Ali, I., Zeb, A., Ullah, F., & Shah, M. R. (2016). Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complementary and Alternative Medicine, 16(1), 1–11. https://doi.org/10.1186/s12906-016-0998-zspa
dc.relation.referencesAlberdi, E., Sánchez-Gómez, M. V., Cavaliere, F., Pérez-Samartín, A., Zugaza, J. L., Trullas, R., Domercq, M., & Matute, C. (2010). Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47(3), 264–272. https://doi.org/10.1016/j.ceca.2009.12.010spa
dc.relation.referencesAlbert, M. S., DeKosky, S. T., Dicksond, D., Dubois, B., Feldmanf, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease Marilyn. Journal of Alzheimer’s Dement, 7(3), 270–279. https://doi.org/10.1016/j.jalz.2011.03.008.spa
dc.relation.referencesAndersson, S., Gustafsson, N., Warner, M., & Gustafsson, J.-A. (2005). Inactivation of liver X receptor leads to adult-onset motor neuron degeneration in male mice. Proceedings of the National Academy of Sciences, 102(10), 3857–3862. https://doi.org/10.1073/pnas.0500634102spa
dc.relation.referencesApfel, R., Benbrook, D., Lernhardt, E., Ortiz, M. A., Salbert, G., & Pfahl, M. (1994a). A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Molecular and Cellular Biology, 14(10), 7025–7035. https://doi.org/10.1128/MCB.14.10.7025spa
dc.relation.referencesApfel, R., Benbrook, D., Lernhardt, E., Ortiz, M. A., Salbert, G., & Pfahl, M. (1994b). A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Molecular and Cellular Biology, 14(10), 7025–7035. http://www.ncbi.nlm.nih.gov/pubmed/7892230spa
dc.relation.referencesArboleda, G., Morales, L. C., Benítez, B., & Arboleda, H. (2009). Regulation of ceramide-induced neuronal death: Cell metabolism meets neurodegeneration. Brain Research Reviews, 59(2), 333–346. https://doi.org/10.1016/j.brainresrev.2008.10.001spa
dc.relation.referencesAshford, J. W., Sherman, K. A., & Kumar, V. (1989). Advances in Alzheimer therapy: Cholinesterase inhibitors. Neurobiology of Aging, 10(1), 99–105. https://doi.org/10.1016/S0197-4580(89)80017-X Association, A. (2020). World Alzheimer Report 2019. In Alzheimer’s & Dementia (Vol. 16, Issue 3). https://doi.org/10.1002/alz.12068spa
dc.relation.referencesAtanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E. M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001spa
dc.relation.referencesAtta-ur-Rahman, & Choudhary, M. I. (2001). Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure and Applied Chemistry, 73(3), 555–560. https://doi.org/10.1351/pac200173030555spa
dc.relation.referencesAzevedo, N. R., Santos, S. C., Miranda, E. G. D. E., Ferri, P. H., Quimica, I. De, Federal, U., Goi, D., & Samambaia, C. (1997). A 2-ACYLCYCLOHEXANE-1,3-DIONE FROM VIROLA OLEIFERA NEUCiRIO. 30, 1375–1377.spa
dc.relation.referencesBáez-Becerra, C., Filipello, F., Sandoval-Hernández, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research, 33(3), 569–579. https://doi.org/10.1007/s12640-017-9845-3spa
dc.relation.referencesBales, K. R., Du, Y., Holtzman, D., Cordell, B., & Paul, S. M. (n.d.). Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Abeta-induced glial activation, NF-kappaB, and apolipoprotein E. Neurobiology of Aging, 21(3), 427–432; discussion 451-3.spa
dc.relation.referencesBarbosa Filho, J. M., Medeiros, K. C. P., Diniz, M. de F. F. M., Batista, L. M., Athayde-Filho, P. F., Silva, M. S., Cunha, E. V. L. da, Almeida, J. R. G. S., & Quintans-Júnior, L. J. (2006). Natural products inhibitors of the enzyme acetylcholinesterase. Revista Brasileira de Farmacognosia, 16(2), 258–285. https://doi.org/10.1590/s0102-695x2006000200021spa
dc.relation.referencesBartus, R., Dean, R., Beer, B., & Lippa, A. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408–414. https://doi.org/10.1126/science.7046051spa
dc.relation.referencesBartus, R. T., & Johnson, H. R. (1976). Short-term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine. Pharmacology, Biochemistry and Behavior, 5(1), 39–46. https://doi.org/10.1016/0091-3057(76)90286-0spa
dc.relation.referencesBeaven, S. W., & Tontonoz, P. (2006). Nuclear Receptors in Lipid Metabolism: Targeting the Heart of Dyslipidemia. Annual Review of Medicine, 57(1), 313–329. https://doi.org/10.1146/annurev.med.57.121304.131428spa
dc.relation.referencesBernard, C., Helmer, C., Dilharreguy, B., Amieva, H., Auriacombe, S., Dartigues, J. F., Allard, M., & Catheline, G. (2014). Time course of brain volume changes in the preclinical phase of Alzheimer’s disease. Alzheimer’s and Dementia, 10(2), 143-151.e1. https://doi.org/10.1016/j.jalz.2013.08.279spa
dc.relation.referencesBerridge, M. J. (2010). Calcium hypothesis of Alzheimer’s disease. Pflugers Archiv European Journal of Physiology, 459(3), 441–449. https://doi.org/10.1007/s00424-009-0736-1spa
dc.relation.referencesBezprozvanny, I., & Mattson, M. P. (2008). Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends in Neurosciences, 31(9), 454–463. https://doi.org/10.1016/j.tins.2008.06.005spa
dc.relation.referencesBinder, L. I., Frankfurter, A., & Rebhun, L. I. (1985). The distribution of tau in the mammalian central nervous central nervous. Journal of Cell Biology, 101(4), 1371–1378. https://doi.org/10.1083/jcb.101.4.1371spa
dc.relation.referencesBlanco-Ayala, T., Andérica-Romero, A. C., & Pedraza-Chaverri, J. (2014). New insights into antioxidant strategies against paraquat toxicity. Free Radical Research, 48(6), 623–640. https://doi.org/10.3109/10715762.2014.899694spa
dc.relation.referencesBottino, C. M., Carvalho, I. A., Alvarez, A. M. M., Avila, R., Zukauskas, P. R., Bustamante, S. E., Andrade, F. C., Hototian, S. R., Saffi, F., & Camargo, C. H. (2005). Cognitive rehabilitation combined with drug treatment in Alzheimer’s disease patients: a pilot study. Clinical Rehabilitation, 19(8), 861–869. https://doi.org/10.1191/0269215505cr911oaspa
dc.relation.referencesBourguet, W., Vivat, V., Wurtz, J. M., Chambon, P., Gronemeyer, H., & Moras, D. (2000). Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Molecular Cell, 5(2), 289–298. http://www.ncbi.nlm.nih.gov/pubmed/10882070spa
dc.relation.referencesBramlett, K. S., Houck, K. A., Borchert, K. M., Dowless, M. S., Kulanthaivel, P., Zhang, Y., Beyer, T. P., Schmidt, R., Thomas, J. S., Michael, L. F., Barr, R., Montrose, C., Eacho, P. I., Cao, G., & Burris, T. P. (2003). A natural product ligand of the oxysterol receptor, liver X receptor. The Journal of Pharmacology and Experimental Therapeutics, 307(1), 291–296. https://doi.org/10.1124/jpet.103.052852spa
dc.relation.referencesBu, G. (2009). Apolipoprotein e and its receptors in Alzheimer’s disease: Pathways, pathogenesis and therapy. Nature Reviews Neuroscience, 10(5), 333–344. https://doi.org/10.1038/nrn2620spa
dc.relation.referencesBuée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews, 33(1), 95–130. https://doi.org/10.1016/S0165-0173(00)00019-9spa
dc.relation.referencesBus, J. S., Aust, S. D., & Gibson, J. E. (1974). Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochemical and Biophysical Research Communications, 58(3), 749–755. https://doi.org/10.1016/S0006-291X(74)80481-Xspa
dc.relation.referencesButterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress 1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a ser. Free Radical Biology and Medicine, 32(11), 1050–1060. https://doi.org/10.1016/S0891-5849(02)00794-3 C.spa
dc.relation.referencesCárdenas-Aguayo, M. del, C. Silva-Lucero, M. del, Cortes-Ortiz, M., Jimnez-Ramos, B., Gmez-Virgilio, L., Ramrez-Rodrguez, G., Vera- Arroyo, E., Fiorentino-Prez, R., Garca, U., Luna-Muoz, J., & A. Meraz Ros, M. (2014). Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity. In Neurochemistry. InTech. https://doi.org/10.5772/57398spa
dc.relation.referencesCabrera Martinez, X. A., & Suarez, L. E. C. (2019). METABOLITOS SECUNDARIOS OBTENIDOS DE LA FAMILIA MYRISTICACEAE QUE PRODUCEN INHIBICIÓN ENZIMÁTICA Y ACTIVIDAD BIOLÓGICA. Cai, Z. (2016). Role of berberine in Alzheimer ’ s disease. 2509–2520.spa
dc.relation.referencesCalderón, E., Cogollo, Á., Velásquez-rúa, C., Velásquez-, C., M., S.-G., García, N., & Toro, J. L. (2007). Libro rojo de plantas de Colombia: magnoliáceas, miristicáceas y podocapáceas.spa
dc.relation.referencesCarpentier, M., Robitaille, Y., DesGroseillers, L., Boileau, G., & Marcinkiewicz, M. (2002). Declining Expression of Neprilysin in Alzheimer Disease Vasculature: Possible Involvement in Cerebral Amyloid Angiopathy. Journal of Neuropathology & Experimental Neurology, 61(10), 849–856. https://doi.org/10.1093/jnen/61.10.849spa
dc.relation.referencesCassidy, L., Fernandez, F., Johnson, J. B., Naiker, M., Owoola, A. G., & Broszczak, D. A. (2020). Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complementary Therapies in Medicine, 49, 102294. https://doi.org/10.1016/j.ctim.2019.102294spa
dc.relation.referencesCharlotte M. Taylor, W. D. Á. (2000). Biota Colombiana 1 (1), 2000 Taylor y Devia 106- Myristicacea del Valle del Cauca, Colombia La Familia de Árboles Tropicales Myristicaceae en el Departamento del Valle del Cauca, Colombia. Biota Colombiana, 1(1), 106–108.spa
dc.relation.referencesChaurasia, B., & Summers, S. A. (2015). Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends in Endocrinology and Metabolism, 26(10), 538–550. https://doi.org/10.1016/j.tem.2015.07.006spa
dc.relation.referencesChen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28spa
dc.relation.referencesChoi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1(8), 623–634. https://doi.org/10.1016/0896-6273(88)90162-6spa
dc.relation.referencesCitron, M., Diehl, T. S., Gordon, G., Biere, A. L., Seubert, P., & Selkoe, D. J. (1996). Evidence that the 42- and 40-amino acid forms of amyloid protein are generated from the -amyloid precursor protein by different protease activities. Proceedings of the National Academy of Sciences, 93(23), 13170–13175. https://doi.org/10.1073/pnas.93.23.13170spa
dc.relation.referencesClejan, L., & Cederbaum, A. I. (1989). Synergistic interactions between nadph-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Biochemical Pharmacology, 38(11), 1779–1786. https://doi.org/10.1016/0006-2952(89)90412-7spa
dc.relation.referencesCochemé, H. M., & Murphy, M. P. (2008). Complex I is the major site of mitochondrial superoxide production by paraquat. Journal of Biological Chemistry, 283(4), 1786–1798. https://doi.org/10.1074/jbc.M708597200spa
dc.relation.referencesCoe, F. G., & Anderson, G. J. (1996). Screening of medicinal plants used by the Garífuna of Eastern Nicaragua for bioactive compounds. Journal of Ethnopharmacology, 53(1), 29–50. https://doi.org/10.1016/0378-8741(96)01424-9spa
dc.relation.referencesCommittee, N. R. N. (1999). A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell, 97(2), 161–163. https://doi.org/10.1016/S0092-8674(00)80726-6spa
dc.relation.referencesCruciani-Guglielmacci, C., López, M., Campana, M., & le Stunff, H. (2017). Brain ceramide metabolism in the control of energy balance. Frontiers in Physiology, 8(OCT), 1–8. https://doi.org/10.3389/fphys.2017.00787spa
dc.relation.referencesCuca, L. E., & Taborda, M. E. (2008). METABOLITOS AISLADOS DE Zanthoxylum rhoifolium. Revista Colombiana de Química, 36(1), 5–11.spa
dc.relation.referencesCutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., & Mattson, M. P. (2004a). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences, 101(7), 2070–2075. https://doi.org/10.1073/pnas.0305799101spa
dc.relation.referencesCutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., & Mattson, M. P. (2004b). Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of the National Academy of Sciences, 101(7), 2070–2075. https://doi.org/10.1073/pnas.0305799101spa
dc.relation.referencesCzubowicz, K., Wójtowicz, S., Wencel, P. L., & Strosznajder, R. P. (2018). The role of ceramide and SEW 2871 in the transcription of enzymes involved in amyloid β precursor protein metabolism in an experimental model of Alzheimer’s disease. Folia Neuropathologica, 56(3), 196–205. https://doi.org/10.5114/fn.2018.78700spa
dc.relation.referencesDani, M., Wood, M., Mizoguchi, R., Fan, Z., Edginton, T., Hinz, R., Win, Z., Brooks, D. J., & Edison, P. (2019). Tau Aggregation Correlates with Amyloid Deposition in Both Mild Cognitive Impairment and Alzheimer’s Disease Subjects. Journal of Alzheimer’s Disease, 70(2), 455–465. https://doi.org/10.3233/JAD-181168spa
dc.relation.referencesDatta, P. K. (2013). Neuronal Cell Culture. Neuronal Cell Culture: Methods and Protocols, 1078, 35–44. https://doi.org/10.1007/978-1-62703-640-5spa
dc.relation.referencesDengiz, C., Prange, C., Gawel, P., Trapp, N., Ruhlmann, L., Boudon, C., & Diederich, F. (2016). Push–pull chromophores by reaction of 2,3,5,6-tetrahalo-1,4-benzoquinones with 4-(N,N-dialkylanilino)acetylenes. Tetrahedron, 72(9), 1213–1224. https://doi.org/10.1016/j.tet.2016.01.017spa
dc.relation.referencesDeutsch, J. A. (1971). The Cholinergic Synapse and the Site of Memory. Science, 174(4011), 788–794. https://doi.org/10.1126/science.174.4011.788spa
dc.relation.referencesDighe, S. N., Mora, E. De, Chan, S., Kantham, S., Mccoll, G., Miles, J. A., Veliyath, S. K., Sreenivas, B. Y., Nassar, Z. D., Silman, I., Sussman, J. L., Weik, M., Mcgeary, R. P., Parat, M., Brazzolotto, X., & Ross, B. P. (2019). Rivastigmine and metabolite analogues with putative Alzheimerâ€TMs disease-modifying properties in a Caenorhabditis elegans model. Communications Chemistry. https://doi.org/10.1038/s42004-019-0133-4spa
dc.relation.referencesDreses-Werringloer, U., Lambert, J. C., Vingtdeux, V., Zhao, H., Vais, H., Siebert, A., Jain, A., Koppel, J., Rovelet-Lecrux, A., Hannequin, D., Pasquier, F., Galimberti, D., Scarpini, E., Mann, D., Lendon, C., Campion, D., Amouyel, P., Davies, P., Foskett, J. K., … Marambaud, P. (2008). A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer’s Disease Risk. Cell, 133(7), 1149–1161. https://doi.org/10.1016/j.cell.2008.05.048spa
dc.relation.referencesDressel, U., Allen, T. L., Pippal, J. B., Rohde, P. R., Lau, P., & Muscat, G. E. O. (2003). The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Molecular Endocrinology (Baltimore, Md.), 17(12), 2477–2493. https://doi.org/10.1210/me.2003-0151spa
dc.relation.referencesDuyckaerts, C., Delaère, P., & Hauw, J.-J. (1992). Alzheimer’s Disease and Neuroanatomy: Hypotheses and Proposals. 144–155. https://doi.org/10.1007/978-3-642-46776-9_15 Eckman, E. A., & Eckman, C. B. (2005). Aβ-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochemical Society Transactions, 33(5), 1101 LP – 1105.spa
dc.relation.referenceshttp://www.biochemsoctrans.org/content/33/5/1101.abstract Ehrenborg, E., Saliba Gustafsson, P., Pedrelli, M., Gertow, K., Pourteymour, S., Baldassarre, D., Tremoli, E., De Faire, U., Humphries, S. E., Goncalves, I., Orho-Melander, M., Boren, J., Eriksson, P., Magne, J., & Parini, P. (2019). P728Subclinical atherosclerosis and its progression are modulated by perilipin-2 through a feed-forward loop between LXR and autophagy. European Heart Journal, 40(Supplement_1). https://doi.org/10.1093/eurheartj/ehz747.0332spa
dc.relation.referencesElena-Real, C. A., Pasión-Galván, R., Pérez-Artés, M. R., Puerto, M., & Moreno, I. (2012). Posible contribución del paraquat al desarrollo de la enfermedad de Parkinson. Revista de Toxicologia, 29(2), 117–122.spa
dc.relation.referencesEllman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9spa
dc.relation.referencesEspitia Corredor, J. A., Cuca Suarez, L. E., & Guerrero Pabon, M. F. (2016). ASSESMENT OF PLATELET ANTIAGGREGANT ACTIVITY OF A FRACTION FROM AN ETHANOLIC EXTRACT OF THE BARK OF Nectandra amazonum Nees. Revista Vitae, 23(2), 119–123. https://doi.org/10.17533/udea.vitae.v23n2a04spa
dc.relation.referencesEvans, N. A., Facci, L., Owen, D. E., Soden, P. E., Burbidge, S. A., Prinjha, R. K., Richardson, J. C., & Skaper, S. D. (2008). Aβ1–42 reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: A quantitative analysis. Journal of Neuroscience Methods, 175(1), 96–103. https://doi.org/10.1016/j.jneumeth.2008.08.001spa
dc.relation.referencesEvans, R. (1988). The steroid and thyroid hormone receptor superfamily. Science, 240(4854), 889–895. https://doi.org/10.1126/science.3283939spa
dc.relation.referencesFilippov, V., Song, M. A., Zhang, K., Vinters, H. V., Tung, S., Kirsch, W. M., Yang, J., & Duerksen-Hughes, P. J. (2012a). Increased ceramide in brains with alzheimer’s and other neurodegenerative diseases. Journal of Alzheimer’s Disease, 29(3), 537–547. https://doi.org/10.3233/JAD-2011-111202spa
dc.relation.referencesFilippov, V., Song, M. A., Zhang, K., Vinters, H. V., Tung, S., Kirsch, W. M., Yang, J., & Duerksen-Hughes, P. J. (2012b). Increased Ceramide in Brains with Alzheimer’s and Other Neurodegenerative Diseases. Journal of Alzheimer’s Disease, 29(3), 537–547. https://doi.org/10.3233/JAD-2011-111202spa
dc.relation.referencesFisher, A., Bezprozvanny, I., Wu, L., Ryskamp, D. A., Bar-Ner, N., Natan, N., Brandeis, R., Elkon, H., Nahum, V., Gershonov, E., LaFerla, F. M., & Medeiros, R. (2016). AF710B, a Novel M1/σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer’s Disease. Neurodegenerative Diseases, 16(1–2), 95–110. https://doi.org/10.1159/000440864spa
dc.relation.referencesFitz, N. F., Cronican, A., Pham, T., Fogg, A., Fauq, A. H., Chapman, R., Lefterov, I., & Koldamova, R. (2010). Liver X Receptor Agonist Treatment Ameliorates Amyloid Pathology and Memory Deficits Caused by High-Fat Diet in APP23 Mice. Journal of Neuroscience, 30(20), 6862–6872. https://doi.org/10.1001/archopht.1992.01080240025017spa
dc.relation.referencesFong, L. K., Yang, M. M., Chaves, R. dos S., Reyna, S. M., Langness, V. F., Woodruff, G., Roberts, E. A., Young, J. E., & Goldstein, L. S. B. (2018). Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid- clearance in human astrocytes. Journal of Biological Chemistry, 293(29), 11341–11357. https://doi.org/10.1074/jbc.RA117.000441spa
dc.relation.referencesFonteh, A. N., Ormseth, C., Chiang, J., Cipolla, M., Arakaki, X., & Harrington, M. G. (2015). Sphingolipid metabolism correlates with cerebrospinal fluid beta amyloid levels in Alzheimer’s disease. PLoS ONE, 10(5), 1–22. https://doi.org/10.1371/journal.pone.0125597spa
dc.relation.referencesFouache, A., Zabaiou, N., De Joussineau, C., Morel, L., Silvente-Poirot, S., Namsi, A., Lizard, G., Poirot, M., Makishima, M., Baron, S., Lobaccaro, J. M. A., & Trousson, A. (2019). Flavonoids differentially modulate liver X receptors activity—Structure-function relationship analysis. Journal of Steroid Biochemistry and Molecular Biology, 190(April), 173–182. https://doi.org/10.1016/j.jsbmb.2019.03.028spa
dc.relation.referencesFrancis, G. A., Fayard, E., Picard, F., & Auwerx, J. (2003). Nuclear Receptors and the Control of Metabolism. Annual Review of Physiology, 65(1), 261–311. https://doi.org/10.1146/annurev.physiol.65.092101.142528spa
dc.relation.referencesFriedman, M. (2004). Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. Journal of Agricultural and Food Chemistry, 52(3), 385–406. https://doi.org/10.1021/jf030490pspa
dc.relation.referencesFukushima, T., Tanaka, K., Lim, H., & Moriyama, M. (2002). Mechanism of cytotoxicity of paraquat. Environmental Health and Preventive Medicine, 7(3), 89–94. https://doi.org/10.1265/ehpm.2002.89spa
dc.relation.referencesGao, M., Zhang, W. cui, Liu, Q. shan, Hu, J. juan, Liu, G. tao, & Du, G. hua. (2008). Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. European Journal of Pharmacology, 591(1–3), 73–79. https://doi.org/10.1016/j.ejphar.2008.06.071spa
dc.relation.referencesGenin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., Bullido, M. J., Engelborghs, S., De Deyn, P., Berr, C., Pasquier, F., Dubois, B., Tognoni, G., Fiévet, N., Brouwers, N., Bettens, K., Arosio, B., Coto, E., Del Zompo, M., … Campion, D. (2011). APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Molecular Psychiatry, 16(9), 903–907. https://doi.org/10.1038/mp.2011.52spa
dc.relation.referencesGerretsen, P., & Pollock, B. G. (2011). Drugs with anticholinergic properties: A current perspective on use and safety. Expert Opinion on Drug Safety, 10(5), 751–765. https://doi.org/10.1517/14740338.2011.579899spa
dc.relation.referencesGottlieb, O. R. (1979). Chemical studies on medicinal myristicaceae from Amazonia. Journal of Ethnopharmacology, 1(4), 309–323. https://doi.org/10.1016/S0378-8741(79)80001-Xspa
dc.relation.referencesGrøntvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Bråthen, G., & Doeller, C. F. (2018). Alzheimer’s disease. Current Biology, 28(11), R645–R649. https://doi.org/10.1016/j.cub.2018.04.080 Hamilton, A., Zamponi, G. W., & Ferguson, S. S. G. (2015). Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Molecular Brain, 8(1), 1–9. https://doi.org/10.1186/s13041-015-0107-0spa
dc.relation.referencesHammarstedt, A., Andersson, C. X., Rotter Sopasakis, V., & Smith, U. (2005). The effect of PPARgamma ligands on the adipose tissue in insulin resistance. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73(1), 65–75. https://doi.org/10.1016/j.plefa.2005.04.008spa
dc.relation.referencesHampel, H., Mesulam, M. M., Cuello, A. C., Khachaturian, A. S., Vergallo, A., Farlow, M. R., Snyder, P. J., Giacobini, E., & Khachaturian, Z. S. (2019). Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research. The Journal of Prevention of Alzheimer’s Disease, 6(1), 2–15. https://doi.org/10.14283/jpad.2018.43spa
dc.relation.referencesHardy, J., & Higgins, G. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256(5054), 184–185. https://doi.org/10.1126/science.1566067 Hermans, D., Htay, U. H., & Cooley, S. J. (2007). -Non-pharmacological interventions for wandering of people with dementia in the domestic setting. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD005994.pub2spa
dc.relation.referencesHiruma-lima, C. A., Maria, L., Beatriz, A., Almeida, A. De, Pietro, L. De, Campaner, L., Vilegas, W., Regina, A., & Souza, M. (2009). Antiulcerogenic action of ethanolic extract of the resin from Virola surinamensis. 122, 406–409. https://doi.org/10.1016/j.jep.2008.12.023spa
dc.relation.referencesHoey, S. E., Williams, R. J., & Perkinton, M. S. (2009). Synaptic NMDA Receptor Activation Stimulates -Secretase Amyloid Precursor Protein Processing and Inhibits Amyloid- Production. Journal of Neuroscience, 29(14), 4442–4460. https://doi.org/10.1523JNEUROSCI.6017-08.2009spa
dc.relation.referencesHolmström, K. M., & Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology, 15(6), 411–421. https://doi.org/10.1038/nrm3801spa
dc.relation.referencesHttp://www.theplantlist.org/, P. on the I. (2013). The Plant List (2013). Version 1.1. http://www.theplantlist.org Huang, C. (2014). Natural modulators of liver X receptors. Journal of Integrative Medicine, 12(2), 76–85. https://doi.org/10.1016/S2095-4964(14)60013-3spa
dc.relation.referencesHussain, F., Khan, Z., Jan, M. S., Ahmad, S., Ahmad, A., Rashid, U., Ullah, F., Ayaz, M., & Sadiq, A. (2019). Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorganic Chemistry, 91(May), 103128. https://doi.org/10.1016/j.bioorg.2019.103128spa
dc.relation.referencesIbarra Estrada, E., Pacheco Sánchez, M., García Mateos, R., San Miguel Chávez, R., Ramírez Valverde, G., & Soto Hernández, R. M. (2011). ACTIVIDAD ANTIOXIDANTE DE ALCALOIDES DE Erythrina americana Miller. Revista Fitotecnia Mexicana, 34(4), 241-246. https://www.redalyc.org/articulo.oa?id=610/61020797003spa
dc.relation.referencesIslam, B. ul, Jabir, N. R., & Tabrez, S. (2019). The role of mitochondrial defects and oxidative stress in Alzheimer’s disease. Journal of Drug Targeting, 27(9), 932–942. https://doi.org/10.1080/1061186X.2019.1584808spa
dc.relation.referencesJacobsen, J. S., Wu, C. C., Redwine, J. M., Comery, T. A., Arias, R., Bowlby, M., Martone, R., Morrison, J. H., Pangalos, M. M., Reinhart, P. H., & Bloom, F. E. (2006). Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5161–5166. https://doi.org/10.1073/pnas.0600948103spa
dc.relation.referencesJadhav, S., Cubinkova, V., Zimova, I., Brezovakova, V., Madari, A., Cigankova, V., & Zilka, N. (2015). Tau-mediated synaptic damage in Alzheimer’s disease. Translational Neuroscience, 6(1), 214–226. https://doi.org/10.1515/tnsci-2015-0023spa
dc.relation.referencesJan, M. S., Ahmad, S., Hussain, F., Ahmad, A., Mahmood, F., Rashid, U., Abid, O. ur R., Ullah, F., Ayaz, M., & Sadiq, A. (2020). Design, synthesis, in-vitro, in-vivo and in-silico studies of pyrrolidine-2,5-dione derivatives as multitarget anti-inflammatory agents. European Journal of Medicinal Chemistry, 186, 111863. https://doi.org/10.1016/j.ejmech.2019.111863spa
dc.relation.referencesJang, B. G., In, S., Choi, B., & Kim, M. (2014). Beta-amyloid oligomers induce early loss of presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent mechanisms. NeuroReport, 25(16), 1281–1288. https://doi.org/10.1097/WNR.0000000000000260spa
dc.relation.referencesJann, M. W., Shirley, K. L., & Small, G. W. (2002). Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. [Review] [100 refs]. Clinical Pharmacokinetics.41(10):719-39, 41(New Zealand PT-Journal Article PT-Research Support, Non-U.S. Gov’t PT-Review LG-English), 719–739. https://doi.org/10.2165/00003088-200241100-00003spa
dc.relation.referencesJaramillo Gomez, J. A., & Arboleda, G. (2010). Analisis del efecto del gen DJ-1 frente a C2-Ceramida, 6-Hidroxidopamina y rotenona y su relación con la via PI3K/AKT en un modelo de neuronas mesencefalicas / Effect analysis of DJ-1 gene front to C2-Ceramide, 6-Hidroxidopamine and rotenone and its relat [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/2712/spa
dc.relation.referencesJazvinšćak Jembrek, M., Hof, P. R., & Šimić, G. (2015). Ceramides in Alzheimer’s Disease: Key Mediators of Neuronal Apoptosis Induced by Oxidative Stress and A β Accumulation. Oxidative Medicine and Cellular Longevity, 2015. https://doi.org/10.1155/2015/346783spa
dc.relation.referencesJi, H. F., & Zhang, H. Y. (2008). Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacologica Sinica, 29(2), 143–151. https://doi.org/10.1111/j.1745-7254.2008.00752.xspa
dc.relation.referencesJick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., & Drachman, D. A. (2000). Statinsandtheriskofdementia. 356, 1627–1631. https://doi.org/10.1016/S0140-6736(00)03155-Xspa
dc.relation.referencesJork, H., Funk, W., Fischer, W., Wimmer, H., & & Burns, D. T. (n.d.). Thin-layer chromatography. Reagents and detection methods. Physical and chemical detection methods: fundamentals, reagents. In 1990 (Vol. 1a).spa
dc.relation.referencesJoseph, S. B., Bradley, M. N., Castrillo, A., Bruhn, K. W., Mak, P. A., Pei, L., Hogenesch, J., O’connell, R. M., Cheng, G., Saez, E., Miller, J. F., & Tontonoz, P. (2004). LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell, 119(2), 299–309. https://doi.org/10.1016/j.cell.2004.09.032spa
dc.relation.referencesJoshi, G., & A. Johnson, J. (2012). The Nrf2-ARE Pathway: A Valuable Therapeutic Target for the Treatment of Neurodegenerative Diseases. Recent Patents on CNS Drug Discovery, 7(3), 218–229. https://doi.org/10.2174/157488912803252023spa
dc.relation.referencesKato, R., Iwasaki, K., & Noguchi, H. (1976). Stimulatory effect of FMN and methyl viologen on cytochrome P-450 dependent reduction of tertiary amine N-oxide. Biochemical and Biophysical Research Communications, 72(1), 267–274. https://doi.org/10.1016/0006-291X(76)90989-Xspa
dc.relation.referencesKeller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., & Wahli, W. (1993). Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 90(6), 2160–2164. http://www.ncbi.nlm.nih.gov/pubmed/8384714spa
dc.relation.referencesKim, S.-N., Choi, H. Y., Lee, W., Park, G. M., Shin, W. S., & Kim, Y. K. (2008). Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through PPARalpha/gamma activation in 3T3-L1 cells. FEBS Letters, 582(23–24), 3465–3472. https://doi.org/10.1016/j.febslet.2008.09.011spa
dc.relation.referencesKlinge, C. M. (2000). Estrogen receptor interaction with co-activators and co-repressors☆. Steroids, 65(5), 227–251. https://doi.org/10.1016/S0039-128X(99)00107-5spa
dc.relation.referencesKosicek, M., & Hecimovic, S. (2013). Phospholipids and Alzheimer’s disease: Alterations, mechanisms and potential biomarkers. International Journal of Molecular Sciences, 14(1), 1310–1322. https://doi.org/10.3390/ijms14011310spa
dc.relation.referencesKotani, H., Tanabe, H., Mizukami, H., Makishima, M., & Inoue, M. (2010). Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. Journal of Natural Products, 73(8), 1332–1336. https://doi.org/10.1021/np100120cspa
dc.relation.referencesKraepelin, E. (1896). Psychiatrie - Ein Lehrbuch für Studierende und Ärzte. Journal of the American Medical Association, 5, 789–814. https://doi.org/10.1001/jama.1939.02800520075036spa
dc.relation.referencesKrentz, A. J., & Friedmann, P. S. (2006). Type 2 diabetes, psoriasis and thiazolidinediones. International Journal of Clinical Practice, 60(3), 362–363. https://doi.org/10.1111/j.1368-5031.2005.00765.xspa
dc.relation.referencesKumar, D., & Rub, M. A. (2019). Study of the reaction of ninhydrin with tyrosine in gemini micellar media. RSC Advances, 9(38), 22129–22136. https://doi.org/10.1039/C9RA03557Espa
dc.relation.referencesKumar, R., & Thompson, E. B. (1999). The structure of the nuclear hormone receptors. Steroids, 64(5), 310–319. https://doi.org/10.1016/S0039-128X(99)00014-8spa
dc.relation.referencesKwon, Y. (2017). Luteolin as a potential preventive and therapeutic candidate for Alzheimer ’ s disease. Experimental Gerontology, 95, 39–43. https://doi.org/10.1016/j.exger.2017.05.014spa
dc.relation.referencesLa, J. De, Ndong, C., Sima-obiang, C., Ondo, J. P., Ndong-atome, G. R., & Abessolo, F. O. (2018). inflammatory and antioxidant activities of Scyphocephalium ochocoa Warb . ( Myristicaceae ), medicinal plant from Gabon. July.spa
dc.relation.referencesLaFerla, F. M. (2002). Calcium dyshomeostasis and intracellular signalling in alzheimer’s disease. Nature Reviews Neuroscience, 3(11), 862–872. https://doi.org/10.1038/nrn960spa
dc.relation.referencesLahiri, D. K., Greig, N. H., Pappolla, M. A., & Sambamurti, K. (2016). Ab protein clearance and degradation (ABCD) Pathways and their Role in Alzheimer ’ s Disease. 12(1), 32–46.spa
dc.relation.referencesLam, Y. A., Pickart, C. M., Alban, A., Landon, M., Jamieson, C., Ramage, R., Mayer, R. J., & Layfield, R. (2000). Inhibition of the ubiquitin-proteasome system in Alzheimer ’ s disease. National Academy of Sciences, 97(18), 9902–9906. https://doi.org/10.1073/pnas.170173897spa
dc.relation.referencesLarner, A. J. (1999). Hypothesis: amyloid beta-peptides truncated at the N-terminus contribute to the pathogenesis of Alzheimer’s disease. Neurobiology of Aging, 20(1), 65–69. https://doi.org/10.1016/S0197-4580(99)00014-7spa
dc.relation.referencesLars Ulrik Gerdes, Klausen, I. C., Sihm, I., Faergeman, O., & Vogler, G. P. (1992). Apolipoprotein E polymorphism in a Danish population compared to findings in 45 other study populations around the world. Genetic Epidemiology, 9(3), 155–167. https://doi.org/10.1002/gepi.1370090302spa
dc.relation.referencesLaudet, V. (1997). Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. Journal of Molecular Endocrinology, 19(3), 207–226. http://www.ncbi.nlm.nih.gov/pubmed/9460643spa
dc.relation.referencesLe Quesne, P. W., Larrahondo, J. E., & Raffaul, R. F. (1980). Antitumor plants X Constituents of Nectandra rigida”. J Nat Prod, 43, 353–359. Leinenga, G., & Götz, J. (2015). Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Science Translational Medicine, 7(278), 278ra33-278ra33. https://doi.org/10.1126/scitranslmed.aaa2512spa
dc.relation.referencesLevites, Y., Amit, T., Mandel, S., & Youdim, M. B. H. (2003). Neuroprotection and neurorescue against Aβ toxicity and PKC‐dependent release of non‐amyloidogenic soluble precursor protein by green tea polyphenol (‐)‐epigallocatechin‐3‐gallate. The FASEB Journal, 17(8), 1–23. https://doi.org/10.1096/fj.02-0881fjespa
dc.relation.referencesLin, C. T., Chu, F. H., Tseng, Y. H., Tsai, J. B., Chang, S. T., & Wang, S. Y. (2007). Bioactivity Investigation of Lauraceae Trees Grown in Taiwan. Pharmaceutical Biology, 45(8), 638–644. https://doi.org/10.1080/13880200701538708spa
dc.relation.referencesLin, H. R. (2013). Paeoniflorin acts as a liver X receptor agonist. Journal of Asian Natural Products Research, 15(1), 35–45. https://doi.org/10.1080/10286020.2012.742510spa
dc.relation.referencesLindwall, G., & Cole, R. D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. Journal of Biological Chemistry, 259(8), 5301–5305.spa
dc.relation.referencesLiu, C. C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein e and Alzheimer disease: Risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106–118. https://doi.org/10.1038/nrneurol.2012.263spa
dc.relation.referencesLL, H., AR, M., Anderson, V., & White, J. (1981). Dementia of the alzheimer type: Clinical genetics, natural history, and associated conditions. Archives of General Psychiatry, 38(10), 1085–1090. http://dx.doi.org/10.1001/archpsyc.1981.01780350019001spa
dc.relation.referencesLopez, O. L., & Kuller, L. H. (2019). Epidemiology of aging and associated cognitive disorders : Prevalence and incidence of Alzheimer ’ s disease and other dementias. In Geriatric Neurology (1st ed., Vol. 167). Elsevier B.V. https://doi.org/10.1016/B978-0-12-804766-8.00009-1spa
dc.relation.referencesMabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The Systematic Identification of Flavonoids. In The Systematic Identification of Flavonoids. https://doi.org/10.1007/978-3-642-88458-0 Madden, S., Spaldin, V., & Park, B. K. (1995). Clinical Pharmacokinetics of Tacrine. Clinical Pharmacokinetics, 28(6), 449–457. https://doi.org/10.2165/00003088-199528060-00003spa
dc.relation.referencesMangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schütz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., & Evans, R. M. (1995). The nuclear receptor superfamily: the second decade. Cell, 83(6), 835–839. http://www.ncbi.nlm.nih.gov/pubmed/8521507spa
dc.relation.referencesManoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer ’ s Disease , Parkinson ’ s Disease , and Huntington ’ s Disease : A Mini Review. 2016. https://doi.org/10.1155/2016/8590578spa
dc.relation.referencesMarco, L., & Carreiras, C. (2006). Galanthamine , a Natural Product for the Treatment of Alzheimer ’ s Disease. 105–111.spa
dc.relation.referencesMariam, S., Wahab, A., Sivasothy, Y., Yee, L. S., Litaudon, M., Mohamad, J., & Awang, K. (2016). Natural Cholinesterase Inhibitors from Myristica cinnamomea. Bioorganic & Medicinal Chemistry Letters. https://doi.org/10.1016/j.bmcl.2016.05.046spa
dc.relation.referencesMarques CA. (2001). Importância econômica da Família Lauraceae Lindl. Floresta e Ambiente, 8, 195–206.spa
dc.relation.referencesMarston, A., Kissling, J., & Hostettmann, K. (2002). A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochemical Analysis, 13(1), 51–54. https://doi.org/10.1002/pca.623spa
dc.relation.referencesMartin, P., Anders, W., Maëlenn, G., Gemma-Claire, A., Yu-Tzu, W., & Matthew, P. (2015). Informe Mundial sobre Alzheimer 2015 Las consecuencias de la demencia análisis de prevalencia, incidencia, coste y tendencias. Psicothema, 16, 297–302.spa
dc.relation.referencesMasoud Tavazoie. (2018). The LXR/ApoE pathway regulates the innate immune system in cancer. Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy. https://doi.org/10.1158/2326-6074.TUMIMM18-IA11spa
dc.relation.referencesMedina, M., Khachaturian, Z. S., & Rossor, M. (2017). Toward common mechanisms for risk factors in Alzheimer ’ s syndrome. 3, 571–578. https://doi.org/10.1016/j.trci.2017.08.009spa
dc.relation.referencesMeraz-Ríos, M. A., León, K. I. L.-D., Campos-Peña, V., & Anda-Hernández, M. A. D. R. M.-L. (2010). Tau Oligomers and Aggregation in Alzheimer’s Disease. Jurnal of Neurochemistry, 1353–1367.https://doi.org/https://doi.org/10.1111/j.1471-4159.2009.06511.xspa
dc.relation.referencesMihailova, D., Yamboliev, I., Zhivkova, Z., Tencheva, J., & Jovovich, V. (1989). Pharmacokinetics of Galanthamine Hydrobromide after Single Subcutaneous and Oral Dosage in Humans. Pharmacology, 39(1), 50–58. https://doi.org/10.1159/000138571spa
dc.relation.referencesMiyamoto, M., Murphy, T.H., Schnaar, R.L., Coyle, J.T., 1989. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J. Pharmacol. Exp. Ther. 250.spa
dc.relation.referencesMiller, B. C., Eckman, E. A., Sambamurti, K., Dobbs, N., Chow, K. M., Eckman, C. B., Hersh, L. B., & Thiele, D. L. (2003). Amyloid- peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proceedings of the National Academy of Sciences, 100(10), 6221–6226. https://doi.org/10.1073/pnas.1031520100spa
dc.relation.referencesMiller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists Society, 48(2), 91–91. https://doi.org/10.1007/BF02635693spa
dc.relation.referencesMir, N. T., Saleem, U., Anwar, F., Ahmad, B., Ullah, I., Hira, S., Ismail, T., Ali, T., & Ayaz, M. (2019). Lawsonia inermis markedly improves cognitive functions in animal models and modulate oxidative stress markers in the brain. Medicina (Lithuania), 55(5). https://doi.org/10.3390/medicina55050192spa
dc.relation.referencesMorales, J. R., Ballesteros, I., Deniz, J. M., Hurtado, O., Vivancos, J., Nombela, F., Lizasoain, I., Castrillo, A., & Moro, M. A. (2008). Activation of Liver X Receptors Promotes Neuroprotection and Reduces Brain Inflammation in Experimental Stroke. Circulation, 118(14), 1450–1459. https://doi.org/10.1161/CIRCULATIONAHA.108.782300spa
dc.relation.referencesMoreno, S. R. F., Carvalho, J. J., Nascimento, A. L., Pereira, M., Caldas, L. Q. A., & Bernardo-Filho, M. (2011). Effects of a nectandra membranacea extract on labeling of blood constituents with technetium-99m and on the morphology of red blood cells. World Academy of Science, Engineering and Technology, 51(3), 752–756. https://doi.org/10.5281/zenodo.1333194spa
dc.relation.referencesMucke, L. (2009). Q & A Alzheimer ’ s disease. 461(October), 895–898.spa
dc.relation.referencesMuñoz-Cabrera, J. M., Sandoval-Hernández, A. G., Niño, A., Báez, T., Bustos-Rangel, A., Cardona-Gómez, G. P., Múnera, A., & Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old Triple Transgenic Mice model of Alzheimer´s disease. PLoS ONE, 14(10), 1–22. https://doi.org/10.1371/journal.pone.0223578spa
dc.relation.referencesMuse, E. D., Yu, S., Edillor, C. R., Tao, J., Spann, N. J., Troutman, T. D., Seidman, J. S., Henke, A., Roland, J. T., Ozeki, K. A., Thompson, B. M., McDonald, J. G., Bahadorani, J., Tsimikas, S., Grossman, T. R., Tremblay, M. S., & Glass, C. K. (2018). Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 115(20), E4680–E4689. https://doi.org/10.1073/pnas.1714518115spa
dc.relation.referencesMyers, R. H., Schaefer, E. J., Wilson, P. W. F., D’Agostino, R., Ordovas, J. M., Espino, A., Au, R., White, R. F., Knoefel, J. E., Cobb, J. L., McNulty, K. A., Beiser, A., & Wolf, P. A. (1996). Apolipoprotein E ∈4 association with dementia in a population-based study: The Framingham Study. Neurology, 46(3), 673–677. https://doi.org/10.1212/WNL.46.3.673spa
dc.relation.referencesNaarala, J., Nykvist, P., Tuomala, M., & Savolainen, K. (1993). Excitatory amino acid-induced slow biphasic responses of free intracellular calcium in human neuroblastoma cells. FEBS Letters, 330(2), 222–226. https://doi.org/10.1016/0014-5793(93)80278-3spa
dc.relation.referencesNadeem, M., Wai, K., Abas, F., Ahmad, S., Adnan, S., Shah, A., Choudhary, M. I., & Hj, N. (2011). Bioorganic & Medicinal Chemistry Letters New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights. Bioorganic & Medicinal Chemistry Letters, 21(13), 4097–4103. https://doi.org/10.1016/j.bmcl.2011.04.065spa
dc.relation.referencesNampoothiri, M., Reddy, N. D., John, J., Kumar, N., Kutty Nampurath, G., & Rao Chamallamudi, M. (2014). Insulin Blocks Glutamate-Induced Neurotoxicity in Differentiated SH-SY5Y Neuronal Cells. Behavioural Neurology, 2014, 1–8. https://doi.org/10.1155/2014/674164spa
dc.relation.referencesNewman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055spa
dc.relation.referencesNewman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285spa
dc.relation.referencesReport A b Secretion and Plaque Formation Depend on Autophagy. CellReports, 5(1), 61–69. https://doi.org/10.1016/j.celrep.2013.08.042spa
dc.relation.referencesNissen, S. E., & Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. The New England Journal of Medicine, 356(24), 2457–2471.https://doi.org/10.1056/NEJMoa072761spa
dc.relation.referencesNovac, N., & Heinzel, T. (2004). Nuclear Receptors: Overview and Classification. Current Drug Target -Inflammation & Allergy, 3(4), 335–346. https://doi.org/10.2174/1568010042634541spa
dc.relation.referencesNunan, J., & Small, D. H. (2000). Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Letters, 483(1), 6–10. https://doi.org/10.1016/S0014-5793(00)02076-7spa
dc.relation.referencesNwabuisi-Heath, E., Rebeck, G. W., LaDu, M. J., & Yu, C. (2014). ApoE4 delays dendritic spine formation during neuron development and accelerates loss of mature spines in vitro. ASN Neuro, 6(1), 21–28. https://doi.org/10.1042/AN200130043spa
dc.relation.referencesO’Donoghue, M. C., Murphy, S. E., Zamboni, G., Nobre, A. C., & Mackay, C. E. (2018). APOE genotype and cognition in healthy individuals at risk of Alzheimer’s disease: A review. Cortex, 104, 103–123. https://doi.org/10.1016/j.cortex.2018.03.025spa
dc.relation.referencesOliveira de Melo, J., Truiti, M. da C. T., Muscará, M. N., Bolonheis, S. M., Dantas, J. A., Caparroz-Assef, S. M., Cuman, R. K. N., & Bersani-Amado, C. A. (2006). Anti-inflammatory Activity of Crude Extract and Fractions of Nectandra falcifolia Leaves. Biological & Pharmaceutical Bulletin, 29(11), 2241–2245. https://doi.org/10.1248/bpb.29.2241spa
dc.relation.referencesOndeyka, J. G., Jayasuriya, H., Herath, K. B., Guan, Z., Schulman, M., Collado, J., Dombrowski, A. W., Kwon, S. S., McCallum, C., Sharma, N., MacNaul, K., Hayes, N., Menke, J. G., & Singh, S. B. (2005). Steroidal and Triterpenoidal Fungal Metabolites as Ligands of Liver X Receptors. The Journal of Antibiotics, 58(9), 559–565. https://doi.org/10.1038/ja.2005.76spa
dc.relation.referencesPark, I., Lee, H., & Kim, S. (2004). A b -Secretase ( BACE1 ) Inhibitor Hispidin from the Mycelial Cultures of Phellinus linteus. 10–13. https://doi.org/10.1055/s-2004-815491spa
dc.relation.referencesParsons, C. G., Danysz, W., & Parsons, C. G. (2017). The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer ’ s disease ... The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer ’ s disease : preclinical e. International Journal of Geriatric Psychiatry, 18(September 2003), S23–S32. https://doi.org/10.1002/gps.938spa
dc.relation.referencesParsons, M. P., & Raymond, L. A. (2014). Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron, 82(2), 279–293. https://doi.org/10.1016/j.neuron.2014.03.030spa
dc.relation.referencesPaula, P.-C., Angelica Maria, S.-G., Luis, C., & Gloria Patricia, C.-G. (2019). Preventive Effect of Quercetin in a Triple Transgenic Alzheimer’s Disease Mice Model. Molecules, 24(12), 2287. https://doi.org/10.3390/molecules24122287spa
dc.relation.referencesPearson, R. C. A., & Powell, T. P. S. (1989). The Neuroanatomy of Alzheimer’s Disease. Reviews in the Neurosciences, 2(2), 101–122. https://doi.org/10.1515/REVNEURO.1989.2.2.101spa
dc.relation.referencesPeet, D. J., Turley, S. D., Ma, W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E., & Mangelsdorf, D. J. (1998). Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell, 93(5), 693–704. http://www.ncbi.nlm.nih.gov/pubmed/9630215spa
dc.relation.referencesPhillips, M. C. (2014). Apolipoprotein e isoforms and lipoprotein metabolism. IUBMB Life, 66(9), 616–623. https://doi.org/10.1002/iub.1314spa
dc.relation.referencesPicard, C., Julien, C., Frappier, J., Miron, J., Théroux, L., Dea, D., Breitner, J. C. S., & Poirier, J. (2018). Alterations in cholesterol metabolism–related genes in sporadic Alzheimer’s disease. Neurobiology of Aging, 66, 180.e1-180.e9. https://doi.org/10.1016/j.neurobiolaging.2018.01.018spa
dc.relation.referencesPierrot, N., Ghisdal, P., Caumont, A. S., & Octave, J. N. (2004). Intraneuronal amyloid-β1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. Journal of Neurochemistry, 88(5), 1140–1150. https://doi.org/10.1046/j.1471-4159.2003.02227.xspa
dc.relation.referencesPires, L. M., & Roseira, A. N. (1971). The solvent effect in the use of chloranil as a reagent in the identification of aromatic amines on silica gel thin-layers. Journal of Chromatography A, 56, 59–67. https://doi.org/10.1016/S0021-9673(00)97777-Xspa
dc.relation.referencesPlant, L. D., Boyle, J. P., Smith, I. F., Peers, C., & Pearson, H. a. (2003). The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci, 23(13), 5531–5535. https://doi.org/23/13/5531 [pii]spa
dc.relation.referencesPlazas, E. A., Avila, M. C., Delgado, W. A., Patino, O. J., & Cuca, L. E. (2018). In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Research Journal of Medicinal Plants, 12(1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18spa
dc.relation.referencesPlazas, E., Casoti R, R., Murillo, M. A., Da Costa, F. B., & Cuca, L. E. (2019). Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. Phytochemistry, 168(April). https://doi.org/10.1016/j.phytochem.2019.112128spa
dc.relation.referencesPlazas Gonzalez, E., Hagenow, S., Avila Murillo, M., Stark, H., & Cuca Suarez, L. (2020). Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorganic Chemistry, 98(January), 103722. https://doi.org/10.1016/j.bioorg.2020.103722spa
dc.relation.referencesPonci, V., Figueiredo, C., Massaoka, M., de Farias, C., Matsuo, A., Sartorelli, P., & Lago, J. (2015). Neolignans from Nectandra megapotamica (Lauraceae) Display in vitro Cytotoxic Activity and Induce Apoptosis in Leukemia Cells. Molecules, 20(7), 12757–12768. https://doi.org/10.3390/molecules200712757spa
dc.relation.referencesPrince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s and Dementia, 9(1), 63–75. https://doi.org/10.1016/j.jalz.2012.11.007spa
dc.relation.referencesPulley, M.T., Berger, A.R., 2003. Toxic Peripheral Neuropathies, in: Office Practice of Neurology:Second Edition. Elsevier Inc., pp. 616–625. https://doi.org/10.1016/B0-44-306557-8/50100-3spa
dc.relation.referencesRamadhan, R., & Phuwapraisirisan, P. (2015). Bioorganic & Medicinal Chemistry Letters New arylalkanones from Horsfieldia macrobotrys , effective antidiabetic agents concomitantly inhibiting a -glucosidase and free radicals. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 83, 6–10. https://doi.org/10.1016/j.bmcl.2015.08.069spa
dc.relation.referencesRamawat, K. G., Dass, S., & Mathur, M. (2009). Herbal Drugs: Ethnomedicine to Modern Medicine. Herbal Drugs: Ethnomedicine to Modern Medicine. https://doi.org/10.1007/978-3-540-79116-4spa
dc.relation.referencesRamsay, R., & Tipton, K. (2017). Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules, 22(7), 1192. https://doi.org/10.3390/molecules22071192spa
dc.relation.referencesRang, H. P., Dale, M. M., Ritter, J. M., & Moore, P. K. (2004). Distúrbios neurodegenerativos. In Farmacologia (Vol. 7).spa
dc.relation.referencesRangel, K., Fernandes, P., Bittercourt, P. S., Duarte, A., Souza, L. De, Queiroz, A., Souza, L. De, Moura, F., Lima, E. S., Domingo, L., Acho, R., Cássia, R. De, Nunomura, S., Teixeira, A. F., Henrique, H., & Koolen, F. (1809). ( Myristicaceae ) and evaluation of their antioxidant and enzyme inhibition potential. 49(1), 48–53.spa
dc.relation.referencesReed, B., Villeneuve, S., Mack, W., DeCarli, C., Chui, H. C., & Jagust, W. (2014). Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurology, 71(2), 195–200. https://doi.org/10.1001/jamaneurol.2013.5390spa
dc.relation.referencesRepa, J. J., & Mangelsdorf, D. J. (2000). The Role of Orphan Nuclear Receptors in the Regulation of Cholesterol Homeostasis. Annual Review of Cell and Developmental Biology, 16(1), 459–481. https://doi.org/10.1146/annurev.cellbio.16.1.459spa
dc.relation.referencesRezende, K. R., Davino, S. C., & Barros, S. B. M. (2005). Natural Product Research : Formerly Natural Product Letters Antioxidant activity of aryltetralone lignans and derivatives from Virola sebifera ( Aubl .). November 2014, 37–41. https://doi.org/10.1080/14786410412331302118spa
dc.relation.referencesRiddell, D. R., Zhou, H., Atchison, K., Warwick, H. K., Atkinson, P. J., Jefferson, J., Xu, L., Aschmies, S., Kirksey, Y., Hu, Y., Wagner, E., Parratt, A., Xu, J., Li, Z., Zaleska, M. M., Jacobsen, J. S., Pangalos, M. N., & Reinhart, P. H. (2008). Impact of Apolipoprotein E (ApoE) Polymorphism on Brain ApoE Levels. Journal of Neuroscience, 28(45), 11445–11453. https://doi.org/10.1523/JNEUROSCI.1972-08.2008spa
dc.relation.referencesRincón, E. V. (2017). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales, obtenidos de plantas de las familias de Lauraceas y Myristicaceas , sobre los receptores X del hígado (LXRs) ESTEFANIA VALENCIA RINCÓN. 13–15. Robinson, M., Lee, B. Y., & Hane, F. T. (2017). Recent Progress in Alzheimer’s Disease Research, Part 2: Genetics and Epidemiology. Journal of Alzheimer’s Disease : JAD, 57(2), 317–330. https://doi.org/10.3233/JAD-161149spa
dc.relation.referencesRohwer, J. G., & Kubitzki, K. (1993). Ecogeographical Differentiation in Nectandra (Lauraceae), and its Historical Implications. In Botanica Acta (Vol. 106, Issue 1). https://doi.org/10.1111/j.1438-8677.1993.tb00342.xspa
dc.relation.referencesRojsanga, P., Gritsanapan, W., & Suntornsuk, L. (2006). Determination of Berberine Content in the Stem Extracts of Coscinium fenestratum by TLC Densitometry. Medical Principles and Practice, 15(5), 373–378. https://doi.org/10.1159/000094272spa
dc.relation.referencesRossouw, D. J., & Engelbrecht, F. M. (1978). The effect of paraquat on the respiration of lung cell fractions. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde, 54(26), 1101–1104. http://www.ncbi.nlm.nih.gov/pubmed/746468spa
dc.relation.referencesRothman, S. M., & Olney, J. W. (1986). Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Annals of Neurology, 19(2), 105–111. https://doi.org/10.1002/ana.410190202spa
dc.relation.referencesSakakura, Y., Shimano, H., Sone, H., Takahashi, A., Inoue, K., Toyoshima, H., Suzuki, S., & Yamada, N. (2001). Sterol Regulatory Element-Binding Proteins Induce an Entire Pathway of Cholesterol Synthesis. Biochemical and Biophysical Research Communications, 286(1), 176–183. https://doi.org/10.1006/bbrc.2001.5375spa
dc.relation.referencesSakurai, H., Hanyu, H., & Iwamoto, T. (2012). Toward defining the preclinical stages of Alzheimer’s disease. Journal of Tokyo Medical University, 70(3), 332–333. https://doi.org/10.1016/j.jalz.2011.03.003.spa
dc.relation.referencesToward Sandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., & Arboleda, G. (2015). Role of Liver X Receptor in AD Pathophysiology. PLOS ONE, 10(12), e0145467. https://doi.org/10.1371/journal.pone.0145467spa
dc.relation.referencesSandoval-Hernández, A. G., Restrepo, A., Cardona-Gómez, G. P., & Arboleda, G. (2016). LXR activation protects hippocampal microvasculature in very old triple transgenic mouse model of Alzheimer’s disease. Neuroscience Letters, 621, 15–21. https://doi.org/10.1016/j.neulet.2016.04.007spa
dc.relation.referencesScacchia, R., Gambinab, G., Broggiob, E., Ruggeric, M., & Corbo, R. M. (2008). C-338A polymorphism of the endothelin-converting enzyme (ECE-1) gene and the susceptibility to sporadic late-onset Alzheimer’s disease and coronary artery disease. Disease Marker, 24(3), 175–179. https://doi.org/http://dx.doi.org/10.1155/2008/578304spa
dc.relation.referencesSchoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., Staels, B., & Auwerx, J. (1996). PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. The EMBO Journal, 15(19), 5336–5348. http://www.ncbi.nlm.nih.gov/pubmed/8895578spa
dc.relation.referencesSchultz, J. R. (2000). Role of LXRs in control of lipogenesis. Genes & Development, 14(22), 2831–2838. https://doi.org/10.1101/gad.850400spa
dc.relation.referencesScott, H. A., Gebhardt, F. M., Mitrovic, A. D., Vandenberg, R. J., & Dodd, P. R. (2011). Glutamate transporter variants reduce glutamate uptake in Alzheimer ’ s disease. NBA, 32(3), 553.e1-553.e11. https://doi.org/10.1016/j.neurobiolaging.2010.03.008spa
dc.relation.referencesSerrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological Alterations in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 1(1), a006189–a006189. https://doi.org/10.1101/cshperspect.a006189spa
dc.relation.referencesSever, R., & Glass, C. K. (2013). Signaling by nuclear receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709. https://doi.org/10.1101/cshperspect.a016709spa
dc.relation.referencesSilva-Filho, A. A., Silva, M. L. A. e, Carvalho, J. C. ., & Bastos., J. K. (2004). “Evaluation of analgesic and anti-inflammatory activities of Nectandra megapotamica (Lauracea) in mice and rats.” J Pharm Pharmacol, 56, 1179. Silva, D., Z., Y., Santos, L., Bolzani, V., & Nair, M. (2007). Lipoperoxidation and Cyclooxygenases 1 and 2 Inhibitory Compounds from Iryanthera juruensis. J. Agric. Food Chem., 55(7), 2569–2574. https://doi.org/10.1021/jf063451xspa
dc.relation.referencesSoscia, S. J., Kirby, J. E., Washicosky, K. J., Tucker, S. M., Ingelsson, M., Hyman, B., Burton, M. A., Goldstein, L. E., Duong, S., Tanzi, R. E., & Moir, R. D. (2010). The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE, 5(3), 1–10. https://doi.org/10.1371/journal.pone.0009505 Souza-Junior, F. J. C., Luz-Moraes, D., Pereira, F. S., Barros, M. A., Fernandes, L. M. P., Queiroz, L. Y., Maia, C. F., Maia, J. G. S., & Fontes-Junior, E. A. (2020).spa
dc.relation.referencesAniba canelilla (Kunth) Mez (Lauraceae): A Review of Ethnobotany, Phytochemical, Antioxidant, Anti-Inflammatory, Cardiovascular, and Neurological Properties. Frontiers in Pharmacology, 11(May), 1–14. https://doi.org/10.3389/fphar.2020.00699spa
dc.relation.referencesSuri, S., Heise, V., Trachtenberg, A. J., & Mackay, C. E. (2013). The forgotten APOE allele: A review of the evidence and suggested mechanisms for the protective effect of APOE e2. Neuroscience and Biobehavioral Reviews, 37(10), 2878–2886. https://doi.org/10.1016/j.neubiorev.2013.10.010spa
dc.relation.referencesSusanti, E. (2019). In silico analysis of bioactive compounds of Hibiscus sabdariffa as potential agonists of LXR to inhibit the atherogenesis process. AIP Conference Proceedings, 2108(June). https://doi.org/10.1063/1.5109983spa
dc.relation.referencesTakao, T., Kitatani, F., Watanabe, N., Yagi, A., & Sakata, K. (1994). A Simple Screening Method for Antioxidants and Isolation of Several Antioxidants Produced by Marine Bacteria from Fish and Shellfish. Bioscience, Biotechnology, and Biochemistry, 58(10), 1780–1783. https://doi.org/10.1271/bbb.58.1780spa
dc.relation.referencesTang, Y., Lutz, M. W., & Xing, Y. (2018). A systems-based model of Alzheimer’s disease. Alzheimer’s & Dementia, August, 1–4. https://doi.org/10.1016/j.jalz.2018.06.3058spa
dc.relation.referencesTeboul, M., Enmark, E., Li, Q., Wikström, A. C., Pelto-Huikko, M., & Gustafsson, J. A. (1995). OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proceedings of the National Academy of Sciences of the United States of America, 92(6), 2096–2100. http://www.ncbi.nlm.nih.gov/pubmed/359232spa
dc.relation.referencesTenorio, M. (2016). Flavonoids extracted from orange peelings tangelo (Citrus reticulata x Citrus paradisi) and their application as a natural antioxidant in sacha inchi (Plukenetia volubilis) vegetable oil. Scientia Agropecuaria, 7(4), 419–431. https://doi.org/10.17268/sci.agropecu.2016.04.07spa
dc.relation.referencesTexidó, L., Martín-Satué, M., Alberdi, E., Solsona, C., & Matute, C. (2011). Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium, 49(3), 184–190. https://doi.org/10.1016/j.ceca.2011.02.001spa
dc.relation.referencesThompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., De Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., Doddrell, D. M., Wang, Y., Van Erp, T. G. M., Cannon, T. D., & Toga, A. W. (2004). Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. NeuroImage, 23(SUPPL. 1), 2–18. https://doi.org/10.1016/j.neuroimage.2004.07.071spa
dc.relation.referencesTobore, T. O. (2019). On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurological Sciences, 40(8), 1527–1540. https://doi.org/10.1007/s10072-019-03863-x Tspa
dc.relation.referencesönnies, E., & Trushina, E. (2017). Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57(4), 1105–1121. https://doi.org/10.3233/JAD-161088spa
dc.relation.referencesTrousson, A., Bernard, S., Petit, P. X., Liere, P., Pianos, A., El Hadri, K., Lobaccaro, J.-M. A., Said Ghandour, M., Raymondjean, M., Schumacher, M., & Massaad, C. (2009). 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. Journal of Neurochemistry, 109(4), 945–958. https://doi.org/10.1111/j.1471-4159.2009.06009.xspa
dc.relation.referencesUddin, M. S., Kabir, M. T., Niaz, K., Jeandet, P., Clément, C., Mathew, B., Rauf, A., Rengasamy, K. R. R., Sobarzo-Sánchez, E., Ashraf, G. M., & Aleya, L. (2020). Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer’s Disease. Molecules (Basel, Switzerland), 25(6). https://doi.org/10.3390/molecules25061267 Ugaz, O. L. S. de. (1997). Colorantes naturales (Pontificia).spa
dc.relation.referencesValledor, A. F., Hsu, L.-C., Ogawa, S., Sawka-Verhelle, D., Karin, M., & Glass, C. K. (2004). Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17813–17818. https://doi.org/10.1073/pnas.0407749101spa
dc.relation.referencesVepsäläinen, S., Hiltunen, M., Helisalmi, S., Wang, J., van Groen, T., Tanila, H., & Soininen, H. (2008). Increased expression of Aβ degrading enzyme IDE in the cortex of transgenic mice with Alzheimer’s disease-like neuropathology. Neuroscience Letters, 438(2), 216–220. https://doi.org/10.1016/j.neulet.2008.04.025spa
dc.relation.referencesVerbon, E. H., Post, J. A., & Boonstra, J. (2012). The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene, 511(1), 1–6. https://doi.org/10.1016/j.gene.2012.08.038spa
dc.relation.referencesVerghese, P. B., Castellano, J. M., & Holtzman, D. M. (2012). Roles of Apolipoprotein E in Alzheimer’s Disease and Other Neurological Disorders. Lancet Neurology, 10(3), 241–252. https://doi.org/10.1016/S1474-4422(10)70325-2.Rolesspa
dc.relation.referencesVetrivel, K. S., & Thinakaran, G. (2010). Membrane rafts in Alzheimer’s disease beta-amyloid production. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1801(8), 860–867. https://doi.org/10.1016/j.bbalip.2010.03.007spa
dc.relation.referencesViennois, E., Mouzat, K., Dufour, J., Morel, L., Lobaccaro, J.-M., & Baron, S. (2012). Selective liver X receptor modulators (SLiMs): what use in human health? Molecular and Cellular Endocrinology, 351(2), 129–141. https://doi.org/10.1016/j.mce.2011.08.036spa
dc.relation.referencesViswanathan, A., & Greenberg, S. M. (2011). Cerebral amyloid angiopathy in the elderly. Annals of Neurology, 70(6), 871–880. https://doi.org/10.1002/ana.22516spa
dc.relation.referencesVoulgaropoulou, S. D., Amelsvoort, T. A. M. J. Van, Prickaerts, J., & Vingerhoets, C. (2019). The e ff ect of curcumin on cognition in Alzheimer ’ s disease and healthy aging : A systematic review of pre-clinical and clinical studies. Brain Research, 1725(August), 146476. https://doi.org/10.1016/j.brainres.2019.146476spa
dc.relation.referencesWalker, L. C., Pahnke, J., Madauss, M., Vogelgesang, S., Pahnke, A., Herbst, E. W., Stausske, D., Walther, R., Kessler, C., & Warzok, R. W. (2000). Apolipoprotein E4 promotes the early deposition of Aβ42 and then Aβ40 in the elderly. Acta Neuropathologica, 100(1), 36–42. https://doi.org/10.1007/s004010051190spa
dc.relation.referencesWang, D., Dong, X., & Wang, C. (2018). Honokiol Ameliorates Amyloidosis and Neuroinflammation and Improves Cognitive Impairment in Alzheimer ’ s Disease Transgenic Mice. September, 470–478. https://doi.org/10.1124/jpet.118.248674spa
dc.relation.referencesWang, J., Einarsson, C., Murphy, C., Parini, P., Björkhem, I., Gåfvels, M., & Eggertsen, G. (2006). Studies on LXR- and FXR-mediated effects on cholesterol homeostasis in normal and cholic acid-depleted mice. Journal of Lipid Research, 47(2), 421–430. https://doi.org/10.1194/jlr.M500441-JLR200spa
dc.relation.referencesWang, Q., Liu, S., Hu, D., Wang, Z., Wang, L., Wu, T., Wu, Z., Mohan, C., & Peng, A. (2016). Identification of apoptosis and macrophage migration events in paraquat-induced oxidative stress using a zebrafish model. Life Sciences, 157, 116–124. https://doi.org/10.1016/j.lfs.2016.06.009spa
dc.relation.referencesWang, Y., & Du, G. (2009). Ginsenoside Rg1 inhibits b -secretase activity in vitro and protects against A b -induced cytotoxicity in PC12 cells. 11(7), 604–612. https://doi.org/10.1080/10286020902843152spa
dc.relation.referencesWeisgraber, K. H. (1994). Apolipoprotein E: structure-function relationships. Advances in Protein Chemistry, 41(6), 853–872. https://doi.org/10.1016/S0065-3233(08)60642-7spa
dc.relation.referencesWitschi, H., Kacew, S., Hirai, K., & Côté, M. G. (1977). In vivo oxidation of reduced nicotinamide-adenine dinucleotide phosphate by paraquat and diquat in rat lung. Chemico-Biological Interactions, 19(2), 143–160. https://doi.org/10.1016/0009-2797(77)90027-8spa
dc.relation.referencesWolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., & Siegel, G. (2000). Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Archives of Neurology. https://doi.org/10.1001/archneur.57.10.1439spa
dc.relation.referencesXie, T., Akbar, S., Stathopoulou, M. G., Oster, T., Masson, C., Yen, F. T., & Visvikis-Siest, S. (2018). Epistatic interaction of apolipoprotein E and lipolysis-stimulated lipoprotein receptor genetic variants is associated with Alzheimer’s disease. Neurobiology of Aging, 69, 292.e1-292.e5. https://doi.org/10.1016/j.neurobiolaging.2018.04.013spa
dc.relation.referencesXing, Y., Tang, Y., Zhao, L., Wang, Q., Qin, W., Zhang, J. L., & Jia, J. (2016). Plasma Ceramides and Neuropsychiatric Symptoms of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 52(3), 1029–1035. https://doi.org/10.3233/JAD-151158spa
dc.relation.referencesYadav, R. S., & Tiwari, N. K. (2014). Lipid Integration in Neurodegeneration: An Overview of Alzheimer’s Disease. Molecular Neurobiology, 50(1), 168–176. https://doi.org/10.1007/s12035-014-8661-5spa
dc.relation.referencesYamamoto, T., Anno, M., & Sato, T. (1987). Effects of paraquat on mitochondria of rat skeletal muscle. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 86(2), 375–378. https://doi.org/10.1016/0742-8413(87)90098-3spa
dc.relation.referencesYan, D., Zhang, Y., Liu, L., & Yan, H. (2016). Pesticide exposure and risk of Alzheimer’s disease: A systematic review and meta-analysis. Scientific Reports, 6(February), 1–9. https://doi.org/10.1038/srep32222spa
dc.relation.referencesYang, C., Li, Q., & Li, Y. (2014). Targeting nuclear receptors with marine natural products. Marine Drugs, 12(2), 601–635. https://doi.org/10.3390/md12020601spa
dc.relation.referencesYang, C., Li, Q., & Li, Y. (2014). Targeting nuclear receptors with marine natural products. Marine Drugs, 12(2), 601–635. https://doi.org/10.3390/md12020601spa
dc.relation.referencesYasojima, K., Akiyama, H., McGeer, E. G., & McGeer, P. L. (2001). Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neuroscience Letters, 297(2), 97–100. https://doi.org/10.1016/S0304-3940(00)01675-Xspa
dc.relation.referencesYiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6(1), 19–33. https://doi.org/10.1177/1756285612461679spa
dc.relation.referencesZekonyte, J., Sakai, K., Nicoll, J. A. R., Weller, R. O., & Carare, R. O. (2016).spa
dc.relation.referencesQuantification of molecular interactions between ApoE, amyloid-beta (Aβ) and laminin: Relevance to accumulation of Aβ in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1862(5), 1047–1053. https://doi.org/10.1016/j.bbadis.2015.08.025spa
dc.relation.referencesZelcer, N., Khanlou, N., Clare, R., Jiang, Q., Reed-Geaghan, E. G., Landreth, G. E., Vinters, H. V., & Tontonoz, P. (2007). Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proceedings of the National Academy of Sciences, 104(25), 10601–10606. https://doi.org/10.1073/pnas.0701096104spa
dc.relation.referencesZhang, W., Xiong, H., Callaghan, D., Liu, H., Jones, A., Pei, K., Fatehi, D., Brunette, E., & Stanimirovic, D. (2013). Blood-brain barrier transport of amyloid beta peptides in efflux pump knock-out animals evaluated by in vivo optical imaging. Fluids and Barriers of the CNS. https://doi.org/10.1186/2045-8118-10-13spa
dc.relation.referencesZhao, Z., Xiang, Z., Haroutunian, V., Buxbaum, J. D., Stetka, B., & Pasinetti, G. M. (2007). Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer’s disease. Neurobiology of Aging. https://doi.org/10.1016/j.neurobiolaging.2006.05.001spa
dc.relation.referencesZheng, X., Zhang, Z., Chou, G., Wu, T., Cheng, X., Wang, C., & Wang, Z. (2009). Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC- bioautographic assay. Archives of Pharmacal Research, 32(9), 1245–1251. https://doi.org/10.1007/s12272-009-1910-xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocExtractos vegetales
dc.subject.agrovocplant extracts
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsEnfermedad de Alzheimerspa
dc.subject.decsAlzheimer Diseaseeng
dc.subject.otherNectandra reticulata
dc.subject.otherAgonistseng
dc.subject.otherAgonistasspa
dc.subject.proposalEnfermedad de Alzheimerspa
dc.subject.proposalMyristicaceaeother
dc.subject.proposalLauraceaeother
dc.subject.proposalRutaceaeother
dc.subject.proposalAlzheimer's diseaseeng
dc.subject.proposalParaquateng
dc.subject.proposalParaquatspa
dc.subject.proposalCeramidaspa
dc.subject.proposalGlutamatospa
dc.subject.proposalCeramideeng
dc.subject.proposalGlutamateeng
dc.titleBúsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimerspa
dc.title.translatedSearch for LXR agonists in Colombian plants with therapeutic potential for Alzheimer's diseaseeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBioprospección del potencial terapéutico de extractos vegetales de las familias Lauraceae y Rutaceae asociados a la actividad farmacológica de LXR en un modelo murino de enfermedad de Alzheimer y análisis computacional" -RC-737 DE 2018spa
oaire.awardtitleEvaluación de los mecanismos moleculares asociados a la activación farmacológica de LXR en modelos de la enfermedad de Alzheimer y del potencial terapéutico de un extracto de Nectandra reticulata (Lauraceae)” RC-727 de 2018spa
oaire.fundernameMinisterio de Ciencia y Tecnologíaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022384698.2021.pdf
Tamaño:
3.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: