Factibilidad técnica y económica para el escalado de la tecnología productiva de plántulas de cacao (Theobroma cacao L.) a nivel de Biofábrica.

dc.contributor.advisorUrrea Trujillo, Aura Ines
dc.contributor.advisorHoyos Sánchez, Rodrigo Alberto
dc.contributor.authorHenao Ramirez, Ana Maria
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001335340spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=wDwhWUYAAAAJspa
dc.contributor.orcid0000-0002-8957-702Xspa
dc.contributor.researcherCano Martínez, Diana María
dc.contributor.researcherHoyos Sánchez, Rodrigo Alberto
dc.contributor.researcherUrrea Trujillo, Aura Inés
dc.contributor.researcherHenao-Ramírez, A.,
dc.contributor.researcherSalazar-Duque, H
dc.contributor.researcherCalle-Tobón, A
dc.contributor.researcherPalacio Hajduk , David Hernando
dc.contributor.researchgatehttps://www.researchgate.net/profile/Ana-Henao-5spa
dc.contributor.researchgroupGrupo de Biotecnologíaspa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57189090904spa
dc.date.accessioned2023-02-03T14:18:46Z
dc.date.available2023-02-03T14:18:46Z
dc.date.issued2022-11-24
dc.description.abstractCocoa (Theobroma cacao L.) is a cash crop in many developing countries and provides the main ingredients for chocolate production. As the demand for food increases, it is necessary to establish optimal crops and, in this sense, the production of plants on a scale is necessary to meet the growing demand, making propagation systems a challenge for agro-industrial strengthening. To overcome this obstacle, somatic embryogenesis (SE) is proposed and the transition from a research scale to a commercial scale is proposed. The estimated time to produce is usually underestimated, which results in it being unfeasible to face the markets. The first chapter presents the production of the CCN51 genotype on a pilot scale in the laboratory with a view to reducing time in the process. It was possible to define the different stages of seedling production by SE: initiation, multiplication, maturation, germination, and acclimatization. The minimum time obtained to produce CCN51 was 30, 70, 50, 70 and 30 days, respectively. To continue technically enabling the propagation system via ES, it was necessary to evaluate the clonal fidelity of the regenerated seedlings as a first step to respond to quality. In chapter 2, the genetic stability of cocoa seedlings propagated by SE with respect to conventional grafting was studied for the CCN51 and TSH565 genotypes using 13 microsatellites (SSR). The 13 loci analyzed revealed 25 alleles in the CCN51 genotype and 24 alleles in the TSH565 genotype. According to the results, no differences were observed in the allelic composition, this indicates that the plants propagated by SE did not show perceptible detriment in their genome with the SSR used. Next, with a view to larger-scale production such as commercial laboratories or biofactories, it is necessary to interconnect propagation with effective and efficient management of the production process on an industrial scale. Chapter 3 presents a production planning and control system (PPC) for SE multiplication through a pilot production of 100,000 for CCN51. The main indicators of the process in materials, labour, quality, and performance are detailed. Finally, considering ES as a technology that is usually expensive compared to other propagation techniques, in chapter 4 the key factors in the financial viability of the production process were identified. The costs of the process were estimated, identifying the factors that influence the process with a Monte Carlo Simulation (MCS). The cost components identified were culture medium (CM), indirect manufacturing costs (IMC), labour (direct and indirect), and operating expenses (GO). Labour had the highest share of costs, with 53%, followed by GO, with 30%, CM, with 12% and IMC, with 5%. The MCS helped define that the variables with the greatest impact on the unit price were the response of the embryos in the germination stage and the proliferation coefficient. This projection gave a figure of US$0.73 per plantlet.eng
dc.description.abstractEl cacao (Theobroma cacao L.) es un cultivo comercial en muchos países en desarrollo y provee la materia prima para la producción de chocolate. A medida que aumenta la demanda de alimentos, se requiere establecer cultivos óptimos y en este sentido, la producción de plantas a escala es necesaria para satisfacer la creciente demanda, convirtiéndose los sistemas de propagación de plántulas en un reto para el fortalecimiento agroindustrial. Para hacer frente a este obstáculo, se plantea el método de la embriogénesis somática (ES) y realizar la transición de una escala de investigación a una escala comercial. El tiempo estimado para la producción suele estar subestimado, lo que resulta que sea inviable para enfrentar los mercados. En el primer capítulo se presenta la producción del genotipo CCN51 a escala piloto en laboratorio con miras a la reducción de tiempo en el proceso. Se lograron definir las diferentes etapas de producción de plántulas por SE: iniciación, multiplicación, maduración, germinación y aclimatación. El tiempo mínimo obtenido para la producción de CCN51 fue de 30, 70, 50, 70 y 30 días respectivamente. Con el fin de continuar habilitando técnicamente el sistema de propagación vía ES fue necesario evaluar la fidelidad clonal de las plántulas regeneradas como un primer paso para responder a la calidad. En el capítulo 2 se estudió la estabilidad genética de plántulas de cacao propagadas por SE respecto al injerto convencional para los genotipos CCN51 y TSH565 usando 13 microsatélites (SSR). Los 13 loci analizados revelaron 25 alelos en el genotipo CCN51 y 24 alelos en el genotipo TSH565. De acuerdo con los resultados, no se observaron diferencias en la composición alélica, esto indica que las plantas propagadas por SE no mostraron detrimento perceptible en su genoma con los SSR utilizados. Seguidamente, con miras a la producción a mayor escala como laboratorios comerciales o biofabricas, es necesario interconectar la propagación con una Resumen y Abstract X gestión eficaz y eficiente del proceso productivo a escala industrial. En el capítulo 3 se presenta un sistema de control y planificación de la producción (PPC) para la multiplicación por SE a través de un piloto de producción de 100.000 plántulas para CCN51. Se detalla los principales indicadores del proceso en materiales, mano de obra, calidad y rendimiento. Finalmente, considerando la ES como una tecnología que suele ser costosa en comparación con otras técnicas de propagación, en el capítulo 4 se identificaron los factores claves en la viabilidad financiera para el proceso productivo. Se estimaron los costos del proceso, identificando los factores que influyen en el proceso con una Simulación de Monte Carlo (MCS). Los componentes del costo identificados fueron medio de cultivo (CM), costos indirectos de fabricación (IMC), mano de obra (directa e indirecta) y gastos operativos (GO). La mano de obra tuvo la mayor participación de los costos, con un 53%, seguida de los GO, con un 30%, CM, con un 12% e IMC, con un 5%. La MCS ayudó a definir que las variables con mayor impacto en el precio unitario fueron la respuesta de los embriones en la etapa de germinación y el coeficiente de proliferación. Esta proyección arrojó una cifra de US $ 0,73 por plántula. (texto tomado de la fuente)spa
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaBiotecnología vegetalspa
dc.description.sponsorshipUniversidad de Antioquiaspa
dc.description.sponsorshipUniversidad Católica de Orientespa
dc.description.sponsorshipCompañia Nacional de Chocolatesspa
dc.format.extentxviii, 157 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83270
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAcosta, Danaysi. 2017. “Perfeccionamiento Del Cálculo Del Costo de Producción En La Empresa Productora y Comercializadora de Semillas Biofábrica Villa Clara.” Universidad Central" Marta Abreu" de Las Villasspa
dc.relation.referencesAdu-Gyamfi, R., A. Wetten, C. Rodríguez, and Marcelino. 2016. “Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.).” PLoS ONE 11(7):1–13. doi: 10.1371/journal.pone.0158857.spa
dc.relation.referencesAdu-Gyamfi, Raphael, and Andy Wetten. 2020. “Cocoa (Theobroma Cacao L.) Somatic Embryos Tolerate Some Ice Crystallization during Cryopreservation.” Agricultural Sciences 11(03):223–34. doi: 10.4236/as.2020.113014.spa
dc.relation.referencesAjijah, N., I. Darwati, and M. S. D. Ibrahim. 2021. “Developing in Vitro Selection Methods to High Temperature Stress in Pruacan and Cacao.” IOP Conference Series: Earth and Environmental Science 724(1). doi: 10.1088/1755-1315/724/1/012083.spa
dc.relation.referencesAjijah, N., and R. Hartati. 2019. “Primary and Secondary Somatic Embryogenesis of Cacao: The Effect of Explant Types and Plant Growth Regulators.” Indonesian Journal of Agricultural Science 20(2):69–76. doi: http//dx.doi.org/10.21082/ijas.v.20.n2.2019.p69–76.spa
dc.relation.referencesAjijah, N., R. Hartati, R. Rubiyo, D. Sukma, and D. Sudarsono. 2016. “Effective Cacao Somatic Embryo Regeneration on Kinetin Supplemented DKW Medium and Somaclonal Variation Assessment Using SSRs Markers.” Agrivita 38(1):80–92. doi: 10.17503/agrivita.v38i1.619.spa
dc.relation.referencesAjijah, N., Syafaruddin, and E. Inoue. 2020. “Cacao (Theobroma cacao L.) Somatic Embryos Development under Heat Stress Condition.” IOP Conference Series: Earth and Environmental Science 418(1). doi: 10.1088/1755-1315/418/1/012012spa
dc.relation.referencesAlemanno, L., M. Berthouly, and N. Michaux. 1996. “Histology of Somatic Embryogenesis from Floral Tissues Cocoa.” Plant Cell, Tissue and Organ Culture 46(3):187–94. doi: 10.1007/BF02307094.spa
dc.relation.referencesBahia, Rita de Cássia, Carlos Ivan Aguilar-Vildoso, Edna Dora Martins Newman Luz, Uilson Vanderlei Lopes, Regina Celle Rebouças Machado, and Ronan Xavier Corrêa. 2015. “Resistance to Black Pod Disease in a Segregating Cacao Tree Population.” Tropical Plant Pathology 40(1):13–18. doi: 10.1007/s40858-014-0003-7.spa
dc.relation.referencesBajpai, Anju, Shahina Kalim, Ramesh Chandra, and Madhu Kamle. 2016. “Recurrent Somatic Embryogenesis and Plantlet Regeneration in Psidium Guajava L.” Brazilian Archives of Biology and Technology 59(0):1–11. doi: 10.1590/1678-4324-2016150170.spa
dc.relation.referencesBarreto, M. A., J. C. S. Santos, R. X. Corrêa, E. D. M. N. Luz, J. Marelli, and A. P. Souza. 2015. “Detection of Genetic Resistance to Cocoa Black Pod Disease Caused by Three Phytophthora Species.” Euphytica 206(3):677–87. doi: 10.1007/s10681-015-1490-4.spa
dc.relation.referencesBarrezueta, Salomón. 2018. “Construcción de Indicadores Agrarios Para Medir La Sostenibilidad de La Producción de Cacao En El Oro, Ecuador.” Universidade Da Coruña.spa
dc.relation.referencesBerger, Margot M. J., Philippe Gallusci, and Emeline Teyssier. 2018. Roles of Epigenetic Mechanisms in Grafting and Possible Applications. Vol. 88. Elsevier Ltd.spa
dc.relation.referencesBoutchouang, R., O. Zebaze, A. Ngouambe, and N. Niemenak. 2016. “Influence of the Position of Flowers Buds on the Tree on Somatic Embryogenesis of Cocoa (Theobroma cacao L.).” International Journal of Plant Physiology and Biochemistry 8(2):7–16. doi: 10.5897/ijgmb2016.0247.spa
dc.relation.referencesBoza, Edward J., Brian M. Irish, Alan W. Meerow, Cecile L. Tondo, Orlando A. Rodríguez, Marisol Ventura-López, Jaime A. Gómez, J. Michael Moore, Dapeng Zhang, Juan Carlos Motamayor, and Raymond J. Schnell. 2013. “Genetic Diversity, Conservation, and Utilization of Theobroma cacao L.: Genetic Resources in the Dominican Republic.” Genetic Resources and Crop Evolution 60(2):605–19. doi: 10.1007/s10722-012-9860-4.spa
dc.relation.referencesBryan, J., and L. Chuquista. 2016. “Estrategias Para La Formación de Capital Humano Investigador En Biotecnología Orientado a La Innovación En Perú.” Universidad Peruana Cayetano Heredia.spa
dc.relation.referencesBustami, M., and S. Werbrouck. 2018. “Somatic Embryogenesis in Elite Indonesian Cacao Theobroma cacao L.” Pp. 73–81 in Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants, edited by S. M. Jain and P. Gupta. Springer International Publishing AG.spa
dc.relation.referencesCano, C. 2019. “Caracterización Productiva y Económica de Viveristas de Cacao (Theobroma Cacao) de La Asociación Narcisa de Jesús, Sector La Virginia 2 Del Cantón Quevedo.” Universidad Técnica Estatal de Quevedo.spa
dc.relation.referencesCNCH. 2020. Producción Plántulas de Cacao En Vivero. Barrancabermeja.spa
dc.relation.referencesDíaz-López, Andy A., Dinora Sánchez, Javier Valera-Leal, Ariadne L. Vegas García, and Autor para correspondencia. 2015. “Formación de Embriones Somáticos En Cinco Cultivares de Theobroma cacao L. Cultivados En Venezuela.” Artículo Original Biotecnología Vegetal 15(1):27–34. doi: https://revista.ibp.co.cu/index.php/BV/article/view/6.spa
dc.relation.referencesDostert, N., J. Roque, A. Cano, M. La torre, and M. Weigend. 2011. “Factsheet: Datos Botánicos de Cacao.” Botconsult GmbH 1–13.spa
dc.relation.referencesDaouda K, Kan K, Alla N, Kouablan K. 2019. Induction of somatic embryos of recalcitrant genotypes of Theobroma cacao L. J Appl Biosci. 133(1):13552. https://doi.org/10.4314/jab.v133i1.7spa
dc.relation.referencesDriver, J., and A. Kuniyuki. 1984. “In Vitro Propagation of Paradox Walnut Rootstock.” HortScience 19(4):507–9.spa
dc.relation.referencesDuval, Ashley, Salvador A. Gezan, Guiliana Mustiga, Conrad Stack, Jean-Philippe Marelli, José Chaparro, Donald Livingstone III, Stefan Royaert, and Juan C. Motamayor. 2017. “Genetic Parameters and the Impact of Off-Types for Theobroma cacao L. in a Breeding Program in Brazil.” Frontiers in Plant Science 8:2059.spa
dc.relation.referencesEchenique, M., and D. Calle. 2020. “Effect of Different Disinfection Methods on the in Vitro Establishment of Cocoa (Theobroma Cacao) at the Sapecho Experimental Station - Bolivia.” Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales 7(1):48–54.spa
dc.relation.referencesEgertsdotter, Ulrika, Iftikhar Ahmad, and David Clapham. 2019. “Automation and Scale up of Somatic Embryogenesis for Commercial Plant Production, with Emphasis on Conifers.” Frontiers in Plant Science 10(February):1–13. doi: 10.3389/fpls.2019.00109.spa
dc.relation.referencesEliane, M., K. Modeste, S. André, K. Edmond, and K. Mongomaké. 2019. “Effect of Water Stress Induced by Polyethylene Glycol 6000 on Somatic Embryogenesis in Cocoa (Theobroma cacao L.).” Agricultural Sciences 10(09):1240–54. doi: 10.4236/as.2019.109092.spa
dc.relation.referencesEntuni, G., R. Edward, H. Nori, and A. Ahmad. 2018. “Field Performance of Selected Malaysian Cocoa Clones Regenerated through Somatic Embryogenesis Cultures.” Malaysian Applied Biology 47(1):97–102.spa
dc.relation.referencesEntuni, Gibson, Hollena Nori, Rebicca Edward, and Ahmad Kamil B. Mohamma. Jaafar. 2020. “Evaluation of the Bean Qualities of Cocoa Clones after Propagated from Somatic Embryogenesis Culture.” Asia-Pacific Journal of Science and Technology 25(4):1–8. doi: 10.14456/apst.2020.31.spa
dc.relation.referencesEntuni, Gibson, Hollena Nori, Rebicca Edward, and Ahmad Kamil Bin Mohammad Jaafar. 2021. “Reproductive Characteristics of the Selected Cocoa (Theobroma cacao l.) Clones after Regenerated from the Somatic Embryogenesis Culture.” Trends in Sciences 18(24). doi: 10.48048/tis.2021.1406.spa
dc.relation.referencesFajardo, Lillien, Yans Guardia, Suyén Rodríguez, Ursula Rosabal, Juan Silva, and Stefaan Werbrouck. 2022. “Effects of Salicylic Acid on the Production of Polyphenols and the Reducing Power of Theobroma cacao Calli.” Current Research in Biotechnology 4(September 2021):47–57. doi: 10.1016/j.crbiot.2021.12.005.spa
dc.relation.referencesFang, Jong Yi, Andy Wetten, Raphael Adu-Gyamfi, Mike Wilkinson, and Carlos Rodriguez-Lopez. 2009. “Use of Secondary Somatic Embryos Promotes Genetic Fidelity in Cryopreservation of Cocoa (Theobroma cacao L.).” Agricultural and Food Science 18(2):152–59. doi: 10.2137/145960609789267579.spa
dc.relation.referencesFang, Wanping, Lyndel W. Meinhardt, Sue Mischke, Cláudia M. Bellato, Lambert Motilal, and Dapeng Zhang. 2014. “Accurate Determination of Genetic Identity for a Single Cacao Bean, Using Molecular Markers with a Nanofluidic System, Ensures Cocoa Authentication.” Journal of Agricultural and Food Chemistry 62(2):481–87.spa
dc.relation.referencesFister, Andrew S., Lena Landherr, Siela N. Maximova, and Mark J. Guiltinan. 2018. “Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma Cacao.” Frontiers in Plant Science 9:268.spa
dc.relation.referencesFlorida, Nelino, Jose Levano, Santos Jacobo, and Royer Ferrer. 2020. “Physical-Chemical Indicators of Soil and Cocoa Yield with Organic and Conventional Management.” Agroindustrial Science 10(2):175–80. doi: 10.17268/agroind.sci.2020.02.08.spa
dc.relation.referencesFontanel, A., S. Gire, G. Labbe, P. Favereau, M. Alvarez, S. Von, and V. Petiard. 2002. “In Vitro Multiplication and Plant Regeneration of Theobroma cacao L. via Stable Embryogenic Calli.” IAPTC Congress, Plant Biotechnology 2002 and Beyond 23–28.spa
dc.relation.referencesGallego, A., A. Henao, A. Urrea, and L. Atehortúa. 2016. “Polyphenols Distribution and Reserve Substances Analysis in Cocoa Somatic Embryogenesis.” Acta Biologica Colombiana 21(2):335–45. doi: http://dx.doi.org/10.15446/abc.v21n2.50196.spa
dc.relation.referencesGarate, M., E. Arévalo, L. do Bomfim, and D. da Costa. 2017. “Pro-Embrionary Somatic Structure of Three Cacao Genotypes (Theobroma cacao l.) Using Staminodes.” International Annals of Science 2(1):28–32. doi: 10.21467/ias.2.1.28-32.spa
dc.relation.referencesGarcia, C., F. Corrêa, F. Seth, A. Alex, C. Marcio, C. Motamayor, R. Schnell, and M. Jean. 2016. “Optimization of Somatic Embryogenesis Procedure for Commercial Clones of Theobroma cacao L .” African Journal of Biotechnology 15(36):1936–51. doi: 10.5897/AJB2016.15513.spa
dc.relation.referencesGarcia, C., A. Furtado de Almeida, M. Costa, D. Britto, R. Valle, S. Royaert, and J. Marelli. 2019. “Abnormalities in Somatic Embryogenesis Caused by 2,4-D: An Overview.” Plant Cell, Tissue and Organ Culture 137(2):193–212. doi: 10.1007/s11240-019-01569-8.spa
dc.relation.referencesGarcia, C., J. Marelli, J. Motamayor, and C. Villela. 2018. “Somatic Embryogenesis in Theobroma cacao L.” Pp. 227–45 in Plant Cell Culture Protocols, Methods in Molecular Biology. Vol. 1815, edited by V. Loyola-Vargas and N. Ochoa-Alejo. New York, NY: Springer Science.spa
dc.relation.referencesGarcia, Claudia, Alex-Alan Furtado de Almeida, Marcio Costa, Dahyana Britto, Pedro Mangabeira, Lidiane Silva, Jose Silva, Stefan Royaert, and Jean-Philippe Marelli. 2021. “Single-Base Resolution Methylomes of Somatic Embryogenesis in Theobroma cacao L. Reveal Epigenome Modifications Associated With Somatic Embryo Abnormalities.” Scientific Reports under review.spa
dc.relation.referencesGaut, Brandon S., Allison J. Miller, and Danelle K. Seymour. 2019. “Living with Two Genomes: Grafting and Its Implications for Plant Genome-to-Genome Interactions, Phenotypic Variation, and Evolution.” Annual Review of Genetics 53:195–215. doi: 10.1146/annurev-genet-112618-043545.spa
dc.relation.referencesGoenaga, Ricardo, Mark Guiltinan, Siela Maximova, Ed Seguine, and Heber Irizarry. 2015. “Yield Performance and Bean Quality Traits of Cacao Propagated by Grafting and Somatic Embryo-Derived Cuttings.” HortScience 50(3):358–62. doi: 10.21273/hortsci.50.3.358.spa
dc.relation.referencesGómez, M. 2015. “Compatibilidad Del Patrón y Métodos de Micro- Injertación En La Propagación Del Clon de Cacao (Theobroma cacao l.) CCN-51.” Universidad Técnica Estatal de Quevedo.spa
dc.relation.referencesGuillou, C., A. Fillodeau, E. Brulard, D. Breton, S. De Faria, D. Verdier, M. Simon, and J. Ducos. 2018. “Indirect Somatic Embryogenesis of Theobroma cacao L. in Liquid Medium and Improvement of Embryo-to-Plantlet Conversion Rate.” In Vitro Cellular and Developmental Biology - Plant 54(4):377–91. doi: 10.1007/s11627-018-9909-y.spa
dc.relation.referencesGuillou, C., A. Fillodeau, E. Brulard, D. Verdier, M. Simon, A. Landmann, F. Lausanne, A. Fontanel, J. Ducos, A. Buchwalder, and P. Broun. 2015. “Nestlé Cocoa Plan: Cocoa Propagation by Somatic Embryogenesis.” Pp. 75–80 in Proceedings of the Third International Conference of the IUFRO on “Woody Plant Production Integrating Genetic and Vegetative Propagation Technologies“. Vol. 1, edited by Y. S. Park and J. M. Bonga. Spain: IUFRO.spa
dc.relation.referencesHenao, A, T. De-La-Hoz, T. Ospina, L. Atehortúa, and A. Urrea. 2018. “Evaluation of the Potential of Regeneration of Different Colombian and Commercial Genotypes of Cocoa ( Theobroma cacao L .) via Somatic Embryogenesis.” Scientia Horticulturae 229:148–56. doi: 10.1016/j.scienta.2017.10.040.spa
dc.relation.referencesHenao-Ramírez, A., and A. Urrea-Trujillo. 2020. “Somatic Embryogenesis for Clonal Propagation and Associated Molecular Studies in Cacao (Theobroma cacao L.).” Pp. 63–102 in Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery, edited by P. Chong and D. Newman. Springer, Cham.spa
dc.relation.referencesHenao, A., H. Jaime, S. Duque, A. Calle, and A. Urrea. 2021. “Determination of Genetic Stability in Cacao Plants (Theobroma cacao L.) Derived from Somatic Embryogenesis Using Microsatellite Molecular Markers (SSR).” International Journal of Fruit Science 00(00):1–15. doi: 10.1080/15538362.2021.1873219.spa
dc.relation.referencesIkeuchi, M., Y. Ogawa, A. Iwase, and K. Sugimoto. 2016. “Plant Regeneration: Cellular Origins and Molecular Mechanisms.” Development (Cambridge) 143(9):1442–51. doi: 10.1242/dev.134668.spa
dc.relation.referencesIracheta, L., L. Cruz, P. Lopez, C. Avendaño, and S. Ortiz. 2019. “2iP and Brasinosteroids Promote Somatic Embryogenesis Induction in Theobroma cacao L.” Agroproductividad 12(1):65–70. doi: https://doi.org/1010.32854/agrop.v0i0.1340.spa
dc.relation.referencesJaimez, Ramon E., Luigy Barragan, Miguel Fernández-Niño, Ludger A. Wessjohann, George Cedeño-Garcia, Ignacio Sotomayor Cantos, and Francisco Arteaga. 2022. “Theobroma cacao L. Cultivar CCN 51: A Comprehensive Review on Origin, Genetics, Sensory Properties, Production Dynamics, and Physiological Aspects.” PeerJ 9:1–23. doi: 10.7717/peerj.12676.spa
dc.relation.referencesJones, Jesse, Elaine Zhang, Dominick Tucker, Daniel Rietz, Douglas Dahlbeck, Michael Gomez, Claudia Garcia, Jean Philippe Marelli, Donald Livingstone, Ray Schnell, Brian Staskawicz, and Myeong Je Cho. 2022. “Screening of Cultivars for Tissue Culture Response and Establishment of Genetic Transformation in a High-Yielding and Disease-Resistant Cultivar of Theobroma Cacao.” In Vitro Cellular and Developmental Biology - Plant 58(1):133–45. doi: 10.1007/s11627-021-10205-0.spa
dc.relation.referencesKahia, J., S. Kone, L. Diby, G. Ngoran, C. Dadjo, and C. Kouame. 2017. “Enhanced Plantlet Regeneration in Two Cacao (Theobroma Cacao) Clones from Immature Inflorescence Explants.” HortScience 52(6):892–95. doi: 10.21273/HORTSCI11844-17.spa
dc.relation.referencesKone, D., K. Kouassi, O. Nan-Alla, and E. Koffi. 2019. “Induction of Somatic Embryos of Recalcitrant Genotypes of Theobroma cacao L.” Journal of Applied Biosciences 133(1):13552. doi: 10.4314/jab.v133i1.7.spa
dc.relation.referencesKone, D., O. Nan-Alla, K. Kouassi, and K. Koffi. 2021. “Use of Mineral Salts to Remove Recalcitrance to Somatic Embryogenesis of Improved Genotypes of Cacao (Theobrama Cacao L.).” African Journal of Biotechnology 20(1):33–42. doi: 10.5897/ajb2020.17271.spa
dc.relation.referencesKouassi, M., E. Manlé, D. Koné, B. Soumahoro, T. Koné, K. Koffi, and M. Koné. 2017. “Effect of Antioxidants on the Callus Induction and the Development of Somatic Embryogenesis of Cocoa [Theobroma cacao (L.)].” Australian Journal of Crop Science 11(1):25–31. doi: 10.21475/ajcs.2017.11.01.pne174.spa
dc.relation.referencesKundariya, Hardik, Xiaodong Yang, Kyla Morton, Robersy Sanchez, Michael J. Axtell, Samuel F. Hutton, Michael Fromm, and Sally A. Mackenzie. 2020. “MSH1-Induced Heritable Enhanced Growth Vigor through Grafting Is Associated with the RdDM Pathway in Plants.” Nature Communications 11(1):1–14. doi: 10.1038/s41467-020-19140-x.spa
dc.relation.referencesKyriacou, Marios C., Youssef Rouphael, Giuseppe Colla, Rita Zrenner, and Dietmar Schwarz. 2017. “Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value.” Frontiers in Plant Science 8(May):1–23. doi: 10.3389/fpls.2017.00741.spa
dc.relation.referencesLázaro, A., L. Azpeitia, S. Sáenz, and F. Mirafuentes. 2015. “Somatic Secondary Embryogenesis in the Genotype of Cocoa (Theobroma Cocoa L.) Inifap 1 and His Histological Description.” Nova Scientia 7(14):398–417. doi: https://doi.org/10.21640/ns.v7i14.35.spa
dc.relation.referencesLi, Junxing, Yan Wang, Langlang Zhang, Bin Liu, Liwen Cao, Zhenyu Qi, and Liping Chen. 2013. “Heritable Variation and Small RNAs in the Progeny of Chimeras of Brassica Juncea and Brassica Oleracea.” Journal of Experimental Botany 64(16):4851–62. doi: 10.1093/jxb/ert266.spa
dc.relation.referencesMasseret, B., M. Gianforcaro, J. F. Bouquet, E. Brulard, and B. Florin. 2009. “Somatic Embryogenesis Applied to the Creation of a Cacao Collection.” Malaysian Cocoa Journal SOMATIC 5:1–10.spa
dc.relation.referencesMinyaka, E., N. Niemenak, L. Ngangue, B. Madina, J. Bahoya, and N. Omokolo. 2017. “Peroxidase and Polyphenol Oxidase Activities Associated to Somatic Embryogenesis Potential in an Elite Hybrid Genotype of Theobroma cacao L.” African Journal of Biotechnology 16(49):2278–88. doi: 10.5897/ajb2017.16157.spa
dc.relation.referencesMotamayor, Juan C., Philippe Lachenaud, Jay Wallace da Silva e Mota, Rey Loor, David N. Kuhn, J. Steven Brown, and Raymond J. Schnell. 2008. “Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L).” PLoS ONE 3(10). doi: 10.1371/journal.pone.0003311.spa
dc.relation.referencesOrellana, P., M. Suárez, R. Triana, Z. Sarría, M. Pons, M. León, M. González, and Z. Pérez. 2008. “Métodos y Elementos Básicos Para La Planificación de La Producción in Vitro En Biofábricas.” Biotecnología Vegetal 8(2):73–80.spa
dc.relation.referencesOsorio, T., A. Henao, T. de la Hoz, and A. Urrea. 2022. “Propagation of IMC67 Plants, Universal Cacao (Theobroma cacao L.) Rootstock via Somatic Embryogenesis.” International Journal of Fruit Science 22(1):78–94. doi: 10.1080/15538362.2021.2023067.spa
dc.relation.referencesPancaningtyas, Sulistyani. 2021a. “Callogenesis and Embryogenic Potential of New Superior Cocoa (Theobroma cacao L.) Genotypes Treated with Ascorbic Acid.” Pelita Perkebunan (a Coffee and Cocoa Research Journal) 37(3):184–96. doi: 10.22302/iccri.jur.pelitaperkebunan.v37i3.472.spa
dc.relation.referencesPancaningtyas, Sulistyani. 2021b. “The Evaluation of Java Fine Flavor Cocoa Propagation through Somatic Embryogenesis Technique for Germplasm Preservation.” E3S Web of Conferences 306:01056. doi: 10.1051/e3sconf/202130601056.spa
dc.relation.referencesPark, Yill-sung. 2014. “Conifer Somatic Embryogenesis and Multi-Varietal Forestry. In Challenges and Opportunities for the World’s Forests in the 21st Century.” Springer Netherlands 81:425–39. doi: 10.1007/978-94-007-7076-8.spa
dc.relation.referencesPhillips-Mora, W., J. Castillo, A. Arciniegas, A. Mata, A. Sánchez, M. Leandro, C. Astorga, J. Motamayor, B. Guyton, E. Seguine, and R. Schnell. 2009. “Overcoming the Main Limiting Factors of Cacao Production in Central America through the Use of Improved Clones Developed at CATIE.” Pp. 1–7 in Proceedings of the 16th International Cocoa Research Conference, COPAL. Bali.spa
dc.relation.referencesRamasamy, Gnanam, Sivachandran Ramasamy, Nagganatha Suganthan Ravi, Rajalakshmi Krishnan, Rajesh Subramanian, Renuka Raman, Sudhakar Duraialaguraja, Raveendran Muthurajan, and Jegadeeswari Vellaichamy. 2022. “Haploid Embryogenesis and Molecular Detection of Somatic Embryogenesis Receptor-like Kinase (TcSERK) Genes in Sliced Ovary Cultures of Cocoa (Theobroma cacao L.).” Plant Biotechnology Reports. doi: 10.1007/s11816-022-00756-y.spa
dc.relation.referencesRibeiro, Miguel A. Q., Alex Alan F. de Almeida, Tainã F. O. Alves, Karina P. Gramacho, Carlos P. Pirovani, and Raúl R. Valle. 2016. “Rootstock × Scion Interactions on Theobroma cacao Resistance to Witches’ Broom: Photosynthetic, Nutritional and Antioxidant Metabolism Responses.” Acta Physiologiae Plantarum 38(3):1–14. doi: 10.1007/s11738-016-2095-9.spa
dc.relation.referencesRodríguez, C., A. Wetten, and M. Wilkinson. 2004. “Detection and Quantification of in Vitro-Culture Induced Chimerism Using Simple Sequence Repeat (SSR) Analysis in Theobroma cacao (L.).” Theoretical and Applied Genetics 110(1):157–66. doi: 10.1007/s00122-004-1823-5.spa
dc.relation.referencesSodré, George Andrade, and Augusto Roberto Sena Gomes. 2019. “Cocoa Propagation, Technologies for Production of Seedlings.” Revista Brasileira de Fruticultura 41(2):1–22. doi: 10.1590/0100-29452019782.spa
dc.relation.referencesSuárez-castellá, Miguel, Rafael G. Kosky, Borys Chong-pérez, Maritza Reyes, Leyanis García-, Zoe Sarría, Pedro Orellana, Alex Rodríguez, Robin Triana, Zaida Pérez, Milagros González, Miladys León, and Blanca Pérez. 2012. “Estrategia de Innovación Tecnológica Para El Empleo de Embriogénesis Somática En Medios de Cultivo Semisólido En Musa Spp . y Su Impacto Económico.” Biotecnología Vegetal Vol. 12(1):41–48.spa
dc.relation.referencesTan, C. L., and D. B. Furtek. 2003. “Development of an in Vitro Regeneration System for Theobroma cacao from Mature Tissues.” Plant Science 164(3):407–12.spa
dc.relation.referencesTapi, Arthur, Mathias Gnion, Amoncho Adiko, Sangaré Mahamadou, and Cheikh Mboup. 2020. “Field Performance of Cocoa Somaclones Derived from Somatic Embryogenesis.” Journal of Plant Sciences and Agricultural Research 4(2):34. doi: 10.36648/plant-sciences.4.1.spa
dc.relation.referencesToma, Sorin, and Andreea Săseanu. 2020. “Chocolate, a Global Business.” P. 1233 in BASIQ 2020 International Conference. Messina, Italy.spa
dc.relation.referencesTraore, A. 2000. “Somatic Embryogenesis, Embryo Conversion, Micropropagation and Factors Affecting Genetic Transformation.Pdf.” Pennsylvania State University.spa
dc.relation.referencesUrrea, A., L. Atehortúa, and A. Gallego. 2011. “Regeneration through Somatic Embryogenesis of an Elite Colombian Theobroma cacao L . Variety.” Revista Colombiana de Biotecnología 13(2):39–50.spa
dc.relation.referencesVargas, José Rodolfo Namuche, Erickdel Castillo Solis, and María Dolores Olvera Salgado. 2019. “Diagnóstico de La Calidad Del Suelo y El Agua En Una Parcela de Cacao En Huehuetan, Chiapas, Mexico.” Pp. 1–12 in Quinto Congreso Nacional de Riego y Drenaje. Mazatlán: COMEII.spa
dc.relation.referencesWang, Jing, Libo Jiang, and Rongling Wu. 2017. “Plant Grafting: How Genetic Exchange Promotes Vascular Reconnection.” New Phytologist 214(1):56–65. doi: 10.1111/nph.14383.spa
dc.relation.referencesWickramasuriya, Anushka, and Jim Dunwell. 2018. “Cacao Biotechnology: Current Status and Future Prospects.” Plant Biotechnology Journal 16(1):4–17. doi: 10.1111/pbi.12848.spa
dc.relation.referencesXanthopoulou, A., A. Tsaballa, I. Ganopoulos, A. Kapazoglou, E. Avramidou, F. Aravanopoulos, T. Moysiadis, M. Osathanunkul, A. Tsaftaris, A. Doulis, A. Kalivas, E. Sarrou, S. Martens, I. Nianiou Obeidat, and P. Madesis. 2018. “Ιntra-Species Grafting Induces Epigenetic and Metabolic Changes Accompanied by Alterations in Fruit Size and Shape of Cucurbita Pepo L.” Plant Growth Regulation 87(1):93–108. doi: https://doi.org/10.1007/s10725-018-0456-7.spa
dc.relation.referencesYu, Ningning, Liwen Cao, Lu Yuan, Xiao Zhi, Yiqian Chen, Susheng Gan, and Liping Chen. 2018. “Maintenance of Grafting-Induced Epigenetic Variations in the Asexual Progeny of Brassica Oleracea and B. Juncea Chimera.” Plant Journal 96(1):22–38. doi: 10.1111/tpj.14058.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembcacao (Theobroma cacao L.)
dc.subject.lembCocoa - Producción
dc.subject.lembCultivo de tejidos vegetales
dc.subject.proposalPlant Tissue cultureeng
dc.subject.proposalSomatic embryogenesiseng
dc.subject.proposalTime productioneng
dc.subject.proposalCommercial-scale propagationeng
dc.subject.proposalPlant tissue cultureeng
dc.subject.proposalCultivo de Tejidos Vegetalesspa
dc.subject.proposalEmbriogénesis somáticaspa
dc.subject.proposalAnálisis de costosspa
dc.subject.proposalFidelidad genéticaspa
dc.subject.proposalSimulación Monte Carlospa
dc.titleFactibilidad técnica y económica para el escalado de la tecnología productiva de plántulas de cacao (Theobroma cacao L.) a nivel de Biofábrica.
dc.title.translatedTechnical and economic feasibility for the scaling of the productive technology of cocoa plantlets (Theobroma cacao L.) at the Biofactory – commercial laboratory.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleCentro de Desarrollo Agrobiotecnológico e Innovación CEDAITspa
oaire.fundernameSistema General de Regalias SGRspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036603562.2022..pdf
Tamaño:
2.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: