Estrategias para la aplicación del Social Media Mining en las redes sociales de Facebook e Instagram
dc.contributor.advisor | Duque Méndez, Néstor Darío | spa |
dc.contributor.author | Zuluaga Gómez, Juan Camilo | spa |
dc.date.accessioned | 2020-06-03T22:16:50Z | spa |
dc.date.available | 2020-06-03T22:16:50Z | spa |
dc.date.issued | 2020 | spa |
dc.description.abstract | Dado el gran uso de las redes sociales en la actualidad, es indudable la gran cantidad de datos que se genera cada día y por lo cual es necesario tener la capacidad de hacer un análisis detallado. Debido a la particularidad que presentan los datos del social media, es importante que se requieren nuevas técnicas que puedan manejar eficazmente este nuevo tipo de data. El estudio y desarrollo de estas nuevas técnicas, se conoce como el Social Media Mining (SMM). Este trabajo se orientó a la construcción de un modelo que aborde los desafíos y oportunidades del SMM en las redes sociales de Facebook e Instagram. (Texto tomado de la fuente) | spa |
dc.description.abstract | Given the great use of social networks today, there is no doubt the large amount of data that is generated every day and therefore it is necessary to have the ability to make a detailed analysis. Due to the particularity of social media data, it is important that new techniques are required that can effectively handle this new type of data. The study and development of these new techniques is known as the Social Media Mining (SMM). This work was aimed at building a model that addresses the challenges and opportunities of the SMM in social networks Facebook and Instagram. | eng |
dc.description.additional | Tesis presentada como requisito parcial para optar al título de: Magister en Administración de Sistemas Informáticos. -- Línea de Investigación: Tecnologías de la Información y Comunicación. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 80 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Zuluaga Gómez, J.C. (2020). Estrategias para la aplicación del Social Media Mining en las redes sociales de Facebook e Instagram (tesis de maestría). Universidad Nacional de Colombia, Manizales, Colombia | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77610 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.program | Manizales - Administración - Maestría en Administración de Sistemas Informáticos | spa |
dc.relation.references | Adedoyin-olowe, M., Gaber, M. M., & Stahl, F. (2014). A Survey of Data Mining Techniques for Social Network Analysis. International Journal of Research in Computer Engineering and Electronics, 3(6), 1–8. Retrieved from http://jdmdh.episciences.org/18/pdf%5Cnhttp://jdmdh.episciences.org/18/ | spa |
dc.relation.references | Agyapong, K. B., Hayfron-Acquah, D. J. ., & Asante., D. M. (2016). An Overview of Data Mining Models (Descriptive and Predictive). International Journal of Software & Hardware Research in Engineering. | spa |
dc.relation.references | Allem, J. P., & Ferrara, E. (2016). The importance of debiasing social media data to better understand e-cigarette-related attitudes and behaviors. Journal of Medical Internet Research. https://doi.org/10.2196/jmir.6185 | spa |
dc.relation.references | Alsmadi, I., & Gan, K. H. (2019). Review of short-text classification. International Journal of Web Information Systems, 15(2), 155–182. https://doi.org/10.1108/IJWIS-12-2017-0083 | spa |
dc.relation.references | Aly, E. S., & van der Haar, D. T. (2020). Slang-Based Text Sentiment Analysis in Instagram. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-981-32-9343-4_25 | spa |
dc.relation.references | Aminolroaya, Z., & Katanforoush, A. (2017). How Iranian Instagram users act for parliament election campaign A study based on followee network. 2017 3rd International Conference on Web Research, ICWR 2017. https://doi.org/10.1109/ICWR.2017.7959297 | spa |
dc.relation.references | Anjaria, M., & Guddeti, R. M. R. (2014). A novel sentiment analysis of social networks using supervised learning. Social Network Analysis and Mining, 4(1), 1–15. https://doi.org/10.1007/s13278-014-0181-9 | spa |
dc.relation.references | Ardehaly, E. M., & Culotta, A. (2018). Learning from noisy label proportions for classifying online social data. Social Network Analysis and Mining. https://doi.org/10.1007/s13278-017-0478-6 | spa |
dc.relation.references | Baj-Rogowska, A. (2017). Sentiment analysis of Facebook posts: The Uber case. 2017 IEEE 8th International Conference on Intelligent Computing and Information Systems, ICICIS 2017. https://doi.org/10.1109/INTELCIS.2017.8260068 | spa |
dc.relation.references | Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. WWW’12 - Proceedings of the 21st Annual Conference on World Wide Web. https://doi.org/10.1145/2187836.2187907 | spa |
dc.relation.references | Bampo, M., Ewing, M. T., Mather, D. R., Stewart, D., & Wallace, M. (2008). The effects of the social structure of digital networks on viral marketing performance. Information Systems Research, 19(3), 273–290. https://doi.org/10.1287/isre.1070.0152 | spa |
dc.relation.references | Barbier, G., & Liu, H. (2011). Social Network Data Analytics. Social Network Data Analytics. https://doi.org/10.1007/978-1-4419-8462-3 | spa |
dc.relation.references | Cameron, J. J., Leung, C. K. S., & Tanbeer, S. K. (2011). Finding strong groups of friends among friends in social networks. Proceedings - IEEE 9th International Conference on Dependable, Autonomic and Secure Computing, DASC 2011. https://doi.org/10.1109/DASC.2011.141 | spa |
dc.relation.references | Chandrasekaran, S., Annamalai, B., & De, S. K. (2019). Evaluating marketer generated content popularity on brand fan pages – A multilevel modelling approach. Telematics and Informatics, 44(August), 101266. https://doi.org/10.1016/j.tele.2019.101266 | spa |
dc.relation.references | Chen, S., Chen, S., Wang, Z., Liang, J., Yuan, X., Cao, N., & Wu, Y. (2017). D-Map: Visual analysis of ego-centric information diffusion patterns in social media. 2016 IEEE Conference on Visual Analytics Science and Technology, VAST 2016 - Proceedings. https://doi.org/10.1109/VAST.2016.7883510 | spa |
dc.relation.references | Culotta, A. (2014). Reducing Sampling Bias in Social Media Data for County Health Inference. Joint Statistical Meetings Proceedings. Retrieved from http://cs.iit.edu/~culotta/pubs/culotta14reducing.pdf%5Cnhttp://tapilab.github.io/public health/2014/08/02/bias/ | spa |
dc.relation.references | Dasgupta, S. S., Natarajan, S., Kaipa, K. K., Bhattacherjee, S. K., & Viswanathan, A. (2015). Sentiment analysis of Facebook data using Hadoop based open source technologies. Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, (1), 3–5. https://doi.org/10.1109/DSAA.2015.7344883 | spa |
dc.relation.references | Fan, R., Yu, Z., Guo, B., Wang, L., & Yang, D. (2017). Target Distribution Guided Network Sampling. Proceedings - 5th International Conference on Advanced Cloud and Big Data, CBD 2017. https://doi.org/10.1109/CBD.2017.71 | spa |
dc.relation.references | Fresno García, M., Daly, A., & Supovitz, J. (2015). Desvelando climas de opinión por medio del Social Media Mining y Análisis de Redes Sociales en Twitter: el caso de los Common Core State Standards. Redes: Revista Hispana Para El Análisis de Redes Sociales, 26(1), 3. | spa |
dc.relation.references | Gautam, G., & Yadav, D. (2014). Sentiment analysis of twitter data using machine learning approaches and semantic analysis. 2014 7th International Conference on Contemporary Computing, IC3 2014. https://doi.org/10.1109/IC3.2014.6897213 | spa |
dc.relation.references | Gómez Rodríguez, M., Leskovec, J., & Schölkopf, B. (2013). Structure and dynamics of information pathways in online media. Proceedings of the Sixth ACM International Conference on Web Search and Data Mining - WSDM ’13, 23. https://doi.org/10.1145/2433396.2433402 | spa |
dc.relation.references | Hernández, S., Sallis, P., & Garden, K. (2011). A signal denoising method for text meaning vectors. Proceedings - AMS 2011: Asia Modelling Symposium 2011 - 5th Asia International Conference on Mathematical Modelling and Computer Simulation. https://doi.org/10.1109/AMS.2011.16 | spa |
dc.relation.references | Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003 | spa |
dc.relation.references | Kumaran, P., & Chitrakala, S. (2015). Information diffusion in online social network: Techniques, applications and challenges. 6th International Conference on Advances in Computing, Control, and Telecommunication Technologies, ACT 2015. https://doi.org/10.1515/9783110450101-013 | spa |
dc.relation.references | Liu, H., Morstatter, F., Tang, J., & Zafarani, R. (2016). The good, the bad, and the ugly: uncovering novel research opportunities in social media mining. International Journal of Data Science and Analytics, 1(3), 1–7. https://doi.org/10.1007/s41060-016-0023-0 | spa |
dc.relation.references | Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011 | spa |
dc.relation.references | Mislove, A., Lehmann, S., Ahn, Y.-Y., Onnela, J.-P., & Rosenquist, J. N. (2011). Understanding the Demographics of Twitter Users. Int’l AAAI Conference on Weblogs and Social Media (ICWSM). | spa |
dc.relation.references | Morstatter, F., Dani, H., Sampson, J., & Liu, H. (2016). Can One Tamper with the Sample API?: Toward Neutralizing Bias from Spam and Bot Content. WWW. https://doi.org/10.1145/2872518.2889372 | spa |
dc.relation.references | Noureen, R., Qamar, U., Khan, F. H., & Muhammad, I. (2018). InstaSent: A novel framework for sentiment analysis based on instagram selfies. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-3-030-01054-6_23 | spa |
dc.relation.references | Păvăloaia, V.-D., Teodor, E.-M., Fotache, D., & Danileţ, M. (2019). Opinion Mining on Social Media Data: Sentiment Analysis of User Preferences. Sustainability, 11(16), 4459. https://doi.org/10.3390/su11164459 | spa |
dc.relation.references | Ramírez-Tinoco, F. J., Alor-Hernández, G., Sánchez-Cervantes, J. L., Olivares-Zepahua, B. A., & Rodríguez-Mazahua, L. (2018). A brief review on the use of sentiment analysis approaches in social networks. Advances in Intelligent Systems and Computing, 688, 263–273. https://doi.org/10.1007/978-3-319-69341-5_24 | spa |
dc.relation.references | Zafarani, R., Abbasi, M. A., & Liu, H. (2014). Social media mining: An introduction. In Social Media Mining: An Introduction. https://doi.org/10.1017/CBO9781139088510 | spa |
dc.relation.references | Yang, D., Chow, T. W. S., Zhong, L., Tian, Z., Zhang, Q., & Chen, G. (2018). True and fake information spreading over the Facebook. Physica A: Statistical Mechanics and Its Applications. https://doi.org/10.1016/j.physa.2018.04.026 | spa |
dc.relation.references | Wani, M. A., Agarwal, N., Jabin, S., & Hussain, S. Z. (2019). Analyzing Real and Fake users in Facebook Network based on Emotions. 2019 11th International Conference on Communication Systems and Networks, COMSNETS 2019. https://doi.org/10.1109/COMSNETS.2019.8711124 | spa |
dc.relation.references | Vaghela, V. B., & Jadav, B. M. (2016). Analysis of Various Sentiment Classification Techniques. International Journal of Computer Applications, 140(3), 22–27. https://doi.org/10.5120/ijca2016909259 | spa |
dc.relation.references | Vinodhini, G., & Chandrasekaran, R. (2012). Sentiment Analysis and Opinion Mining : A Survey International Journal of Advanced Research in Sentiment Analysis and Opinion Mining : A Survey. International Journal of Advanced Research in Computer Science and Software Engineering, 2(6), 283–292. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.ddc | 300 - Ciencias sociales::302 - Interacción social | spa |
dc.subject.proposal | Social Media Mining | eng |
dc.subject.proposal | Social Media Mining | spa |
dc.subject.proposal | Social networks | eng |
dc.subject.proposal | Redes sociales | spa |
dc.subject.proposal | Análisis de sentimientos | spa |
dc.subject.proposal | Sentiment analysis | eng |
dc.subject.proposal | Information dissemination | eng |
dc.subject.proposal | Difusión de la información | spa |
dc.subject.proposal | Sampling bias | eng |
dc.subject.proposal | Sesgo de muestreo | spa |
dc.subject.proposal | Noise elimination | eng |
dc.subject.proposal | Eliminación del ruido | spa |
dc.subject.proposal | spa | |
dc.subject.proposal | eng | |
dc.subject.proposal | eng | |
dc.subject.proposal | spa | |
dc.title | Estrategias para la aplicación del Social Media Mining en las redes sociales de Facebook e Instagram | spa |
dc.title.alternative | Strategies for the application of Social Media Mining in the social networks of Facebook and Instagram | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053812140.2020.pdf
- Tamaño:
- 1.52 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Administración de Sistemas Informáticos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.9 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: