Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B

dc.contributor.advisorCombita Rojas, Alba Lucia
dc.contributor.advisorLopez Kleine, Liliana
dc.contributor.authorTorres Llanos, Yulieth Ximena
dc.contributor.cvlacYulieth Ximena Torres Llanosspa
dc.contributor.googlescholarYULIETH XIMENA TORRES LLANOSspa
dc.contributor.orcid0000-0002-2859-6980spa
dc.contributor.researchgroupBiología del cáncer. Instituto Nacional de Cancerologíaspa
dc.date.accessioned2023-06-29T14:29:58Z
dc.date.available2023-06-29T14:29:58Z
dc.date.issued2023-03
dc.descriptionilustracionesspa
dc.description.abstractLas leucemias linfoides agudas de células B (LLA-B) son las enfermedades neoplásicas más comunes en niños. Las tasas de supervivencia en la población pediátrica hispana son más bajas en comparación con la supervivencia en niños no hispanos. Por tanto, es necesario encontrar biomarcadores predictivos de respuesta al tratamiento y de pronóstico de recaída y muerte en esta población. El objetivo de este estudio fue identificar biomarcadores de respuesta al tratamiento de inducción, que también pudiesen predecir la recaída y la muerte, a través de la identificación de genes diferencialmente metilados y expresados entre pacientes que respondieron o no a la quimioterapia de inducción. Se extrajeron muestras de DNA y RNA de 46 muestras de médula ósea de niños hispanos recién diagnosticados con LLA-B. Treinta y dos muestras fueron utilizadas como cohorte descriptiva (27 de diagnóstico y 5 post quimioterapia), en la cual se hicieron los análisis de secuencia de RNA y metilación de DNA para elegir los genes candidatos a biomarcadores de respuesta al tratamiento. Por su parte, 18 muestras se utilizaron para validar el set de genes seleccionados del anterior análisis. El mRNA fue secuenciado en el equipo NextSeq500 de Illumina. El DNA fue previamente tratado con bisulfito de sodio y posteriormente se hibridó a los chips de metilación Illumina Infinium EPIC. Los análisis de expresión y metilación diferencial se hicieron a través de la comparación de los perfiles entre respondedores y no respondedores al día 15, al final de la quimioterapia de inducción. Se encontró que DAPK1, CNKSR3, MIR4435-HG2, CTHRC1, NPDC1, SLC45A3, ITGA6 y ASCL2 se sobreexpresaban en los pacientes no respondedores, y también se evidenció que tenían CpGs hipometiladas, dichos hallazgos fueron comunes en todos los grupos analizados. Se hicieron análisis de regresión logística y curvas ROC, se determinó que la sobreexpresión de MIR4435-2HG, DAPK1, ASCL2, SCL45A3, CNKSR3 y NPDC1 puede predecir la falla en la respuesta al día 15 y la refractariedad. Además, con alta sensibilidad y especificidad se evidenció que una mayor expresión de MIR4435-2HG aumenta la probabilidad de falla terapéutica y el riesgo de fallecer. A su vez, se observó que DAPK1, CNKSR3 y MIR4435-2HG también se sobreexpresan en muestras de recaída. Finalmente, la sobreexpresión de MIR4435-2HG en conjunto con la detección de la enfermedad mínima residual positiva se asocian con una menor supervivencia, y la alta expresión de MIR4435-2HG, DAPK1 y ASCL2 mejoran la clasificación de riesgo de los pacientes con cariotipo normal. En conclusión, en este estudio se observó que la expresión de MIR4435-2HG es un potencial biomarcador predictivo y pronóstico en niños hispanos con LLA-B, y su detección en el momento del diagnóstico podría mejorar las tasas de supervivencia en nuestros pacientes. (Texto tomado de la fuente)spa
dc.description.abstractAunque las tasas de supervivencia de la leucemia linfoblástica aguda de células B (LLAB) han mejorado en los últimos años, los niños hispanos siguen teniendo peores tasas de supervivencia. El objetivo de este proyecto fue identificar biomarcadores de respuesta al tratamiento, que también pueden predecir la recaída y la muerte, mediante la identificación de genes metilados y expresados diferencialmente entre los pacientes que respondieron o no respondieron al tratamiento de inducción. Se realizaron ensayos de metilación de DNA y secuenciación de mRNA en 27 médulas óseas de niños hispanos con LLA-B. Se compararon la expresión génica y la metilación diferencial entre los pacientes que respondieron y los que no respondieron el día 15 y al final de la quimioterapia de inducción. DAPK1, CNKSR3, MIR4435-HG2, CTHRC1, NPDC1, SLC45A3, ITGA6 y ASCL2 estaban sobreexpresados e hipometilados en los pacientes no respondedores. La sobreexpresión de DAPK1, ASCL2, SCL45A3, NPDC1 e ITGA6 puede predecir la falla de respuesta al día 15 y la refractariedad. Además, una mayor expresión de MIR4435-2HG aumenta la probabilidad de no respuesta, muerte y riesgo de muerte. MIR4435-2HG también se sobreexpresa en muestras de recaída. Por último, la sobreexpresión de MIR4435-2HG, junto con la enfermedad mínima residual positiva, se asocian a una peor supervivencia, y junto con la sobreexpresión de DAPK1 y ASCL2, podría mejorar la clasificación del riesgo de los pacientes con cariotipo normal. MIR4435-2HG es un biomarcador predictivo potencial en niños con LLA-Beng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Biomédicasspa
dc.description.methodsEstudio descriptivo analítico en paciente con diagnóstico de novo de leucemia linfoide B. Se extrajeron muestras de DNA y RNA de 46 muestras de médula ósea de niños hispanos recién diagnosticados con LLA-B. Treinta y dos muestras fueron utilizadas como cohorte descriptiva (27 de diagnóstico y 5 post quimioterapia), en la cual se hicieron los análisis de secuencia de RNA y metilación de DNA para elegir los genes candidatos a biomarcadores de respuesta al tratamiento. Por su parte, 18 muestras se utilizaron para validar el set de genes seleccionados del anterior análisis. El mRNA fue secuenciado en el equipo NextSeq500 de Illumina. El DNA fue previamente tratado con bisulfito de sodio y posteriormente se hibridó a los chips de metilación Illumina Infinium EPIC. Los análisis de expresión y metilación diferencial se hicieron a través de la comparación de los perfiles entre respondedores y no respondedores al día 15, al final de la quimioterapia de inducción. Los genes seleccionados fueron validados por RT-qPCR. Posteriormente, se hicieron regresiones logísticas y regresiones de Cox para determinar la capacidad predicitiva de cada gen, así como su asociación con el aumento del riesgo de muerte.spa
dc.description.researchareaBiomarcadores predictivos de respuesta al tratamiento en leucemias linfoides agudasspa
dc.format.extent132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84105
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicasspa
dc.relation.referencesChing-Hon Pui, Leslie L Robison, A. T. L. Acute Lymphoblastic Leukaemia. Lancet 371, 1030–1043 (2008).spa
dc.relation.referencesInaba, H. & Mullighan, C. G. Pediatric acute lymphoblastic leukemia. Haematologica 105, 2524–2539 (2020).spa
dc.relation.referencesBelson, M., Kingsley, B. & Holmes, A. Risk Factors for Acute Leukemia in Children: A Review. Environ Health Perspect 115, 138–145 (2006).spa
dc.relation.referencesMiranda-Filho, A. et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol 5, e14–e24 (2018).spa
dc.relation.referencesPardo, C., de Vries, E., Buitrago, L. & Gamboa, O. Atlas de mortalidad por cancer en Colombia. (2017).spa
dc.relation.referencesKadan-Lottick, N. S., Ness, K. K., Bhatia, S. & Gurney, J. G. Survival Variability by Race and Ethnicity in Childhood Acute Lymphoblastic Leukemia. American Medical Association 2008–2014 (2003).spa
dc.relation.referencesWalsh, K. M. et al. Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia vol. 27 2416–2419 Preprint at https://doi.org/10.1038/leu.2013.130 (2013).spa
dc.relation.referencesWalsh, K. M. et al. Genomic ancestry and somatic alterations correlate with age at diagnosis in Hispanic children with B-cell acute lymphoblastic leukemia. Am J Hematol 89, 721–725 (2014).spa
dc.relation.referencesLinares, A. et al. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Centro Nacional de Investigacion en Evidencia y Tecnologia en Salud CINETS (2013).spa
dc.relation.referencesAlaggio, R. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia vol. 36 1720–1748 Preprint at https://doi.org/10.1038/s41375-022-01620-2 (2022).spa
dc.relation.referencesStary, J. et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. Journal of Clinical Oncology 32, 174–184 (2014).spa
dc.relation.referencesPagna Sok et al. Disparities in relapse among a large multi-ethnic population of children diagnosed with acute lymphoblastic leukemia (ALL): A report from the Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium. (2022).spa
dc.relation.referencesNordlund, J. & Syvänen, A. C. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 51, 129–138 (2018).spa
dc.relation.referencesBhojwani, D., Yang, J. J. & Pui, C. H. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am 62, 47–60 (2015).spa
dc.relation.referencesJi, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).spa
dc.relation.referencesTrowbridge, J., Snow, J., Kim, J. & Orkin, S. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5, 442–449 (2009).spa
dc.relation.referencesScala, G., Federico, A., Palumbo, D., Cocozza, S. & Greco, D. DNA sequence context as a marker of CpG methylation instability in normal and cancer tissues. Sci Rep 10, 1–11 (2020).spa
dc.relation.referencesHogan, L. E. et al. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 118, 5218–5227 (2015).spa
dc.relation.referencesPui, C., Mullighan, C. G., Evans, W. E. & Relling, M. v. Pediatric acute lymphoblastic leukemia : where are we going and how do we get there ? Blood 120, 1–3 (2017).spa
dc.relation.referencesDominique J. P. M. Stumpel,1 Pauline Schneider, Eddy H. J. van Roon, Judith M. Boer, Paola de Lorenzo, Maria G. Valsecchi, Renee X. de Menezes, Rob Pieters, and R. W. S. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114, 5490–5498 (2009).spa
dc.relation.referencesKatz, A. J., Chia, V. M., Schoonen, W. M. & Kelsh, M. A. Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes & Control 26, 1627–1642 (2015).spa
dc.relation.referencesAcuña, L., Sánchez, P., Uribe, D., Pulido, D. & Valencia, O. Situación del cáncer en Colombia 2015. (2015).spa
dc.relation.referencesTrujillo, Á. M., Linares, A. & Sarmiento, I. C. Intensive chemotherapy in children with acute lymphoblastic leukemia. Interim analysis in a referral center in Colombia. Revista Facultad de Medicina 64, 417–425 (2016).spa
dc.relation.referencesVera, A. M., Pardo, C., Duarte, M. C. & Suárez, A. Experiencia en el análisis de la mortalidad por leucemia aguda pediátrica en el Instituto Nacional de Cancerología. Biomédica 32, 355–364 (2012).spa
dc.relation.referencesMiguel Ángel Castro Jiménez, Luis Carlos Orozco Vargas, Ernesto Rueda Arenas, A. S. M., Jiménez, M. Á. C., Vargas, L. C. O., Arenas, E. R. & Mattos, A. S. Epidemiología de la leucemia linfoblástica aguda en pediatría: incidencia, mortalidad y asociaciones causales. Revista de la Universidad Industrial de Santander. Salud 57, 116–123 (2010).spa
dc.relation.referencesAmaranto Suarez, MD, 1 Martha Pina, MD, 1 Diana X. Nichols-Vinueza, MD, 3 John Lopera, MD, 1 Lyda Rengifo, MD, 1 Mauricio Mesa, MD, 1 Marcela Cardenas, RN, 1 Lisa Morrissey, RN, 3 Galo Veintemilla, MD, 2 Martha Vizcaino, MD, 1 Ligia Del Toro, MD, 1 Victo, M. & 3, 4*. A Strategy to Improve Treatment-Related Mortality and Abandonment of Therapy for Childhood ALL in a Developing Country Reveals the Impact of Treatment Delays. Pediatr Blood Cancer 62, 1395–1402 (2015).spa
dc.relation.referencesYang, J. J. et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet 43, 237–241 (2011).spa
dc.relation.referencesMatasar, M. J., Ritchie, E. K., Consedine, N., Magai, C. & Neugut, A. I. Incidence rates of the major leukemia subtypes among U.S. Hispanics, Blacks, and non-Hispanic Whites. Leuk Lymphoma 47, 2365–2370 (2006).spa
dc.relation.referencesWalsh, K. M. et al. Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia 27, 2416–2419 (2013).spa
dc.relation.referencesvan Dongen, J. J. M., van der Velden, V. H. J., Brüggemann, M. & Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 125, 3996–4009 (2015).spa
dc.relation.referencesVardiman, J. W. et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood vol. 114 937–951 Preprint at https://doi.org/10.1182/blood-2009-03-209262 (2009).spa
dc.relation.referencesMcGregor, S., McNeer, J. & Gurbuxani, S. Beyond the 2008 World Health Organization classification: The role of the hematopathology laboratory in the diagnosis and management of acute lymphoblastic leukemia. Semin Diagn Pathol 29, 2–11 (2012).spa
dc.relation.referencesOnciu, M. Acute Lymphoblastic Leukemia. Hematol Oncol Clin North Am 23, 655–674 (2009).spa
dc.relation.referencesRedaelli, A., Laskin, B. L., Stephens, J. M., Botteman, M. F. & Pashos, C. L. A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL). Eur J Cancer Care (Engl) 14, 53–62 (2005).spa
dc.relation.referencesInaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. The Lancet 381, 1943–1955 (2013).spa
dc.relation.referencesvan Dongen, J. J. M. et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26, 1908–1975 (2012).spa
dc.relation.referencesCoustan-smith, E. et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. 117, 1–3 (2011).spa
dc.relation.referencesBhojwani, D. & Pui, C. H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol 14, e205–e217 (2013).spa
dc.relation.referencesPui, C. H. et al. Childhood acute lymphoblastic leukemia: Progress through collaboration. Journal of Clinical Oncology 33, 2938–2948 (2015).spa
dc.relation.referencesJiménez, M. Á. C., Vargas, L. C. O., Arenas, E. R. & Mattos, A. S. Epidemiología de la leucemia linfoblástica aguda en pediatría: incidencia, mortalidad y asociaciones causales. Revista de la Universidad Industrial de Santander. Salud 39, 116–123 (2007).spa
dc.relation.referencesThe Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine 368, 2059–2074 (2013).spa
dc.relation.referencesZhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).spa
dc.relation.referencesRodolphe Taby, M. & ; Jean-Pierre J. Issa, M. A. Cancer epigenetics. CACANCER J CLIN 60, 376–392 (2010).spa
dc.relation.referencesMoore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).spa
dc.relation.referencesBurke, M. J. & Bhatla, T. Epigenetic Modifications in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 2, 1–7 (2014).spa
dc.relation.referencesNavada, S. C., Steinmann, J., Lübbert, M. & Silverman, L. R. Clinical development of demethylating agents in hematology. Journal of Clinical Investigation 124, 40–46 (2014).spa
dc.relation.referencesBhatla, T. et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 119, 5201–5210 (2012).spa
dc.relation.referencesBenton, C. B. et al. Safety and clinical activity of 5-aza-2’-deoxycytidine (decitabine) with or without Hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 167, 356–365 (2014).spa
dc.relation.referencesGarcia-manero, G., Yang, H., Kuang, S., Brien, S. O. & Thomas, D. Epigenetics of acute lymphocytic leukemia. Semin Hematol 46, 1–14 (2009).spa
dc.relation.referencesBlack, J. C., Van Rechem, C. & Whetstine, J. R. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol Cell 48, 491–507 (2012).spa
dc.relation.referencesYoshimi, A. & Kurokawa, M. Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem 112, 415–424 (2011).spa
dc.relation.referencesVarier, R. A. & Timmers, H. T. M. Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta Rev Cancer 1815, 75–89 (2011).spa
dc.relation.referencesDou, Y. & Hess, J. L. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int J Hematol 87, 10–18 (2008).spa
dc.relation.referencesEguchi, M., Eguchi-Ishimae, M. & Greaves, M. Molecular pathogenesis of MLL-associated leukemias. Int J Hematol 82, 9–20 (2005).spa
dc.relation.referencesPieters, R. Infant acute lymphoblastic leukemia: Lessons learned and future directions. Curr Hematol Malig Rep 4, 167–174 (2009).spa
dc.relation.referencesDeaton, A. & Bird, A. CpG islands and the regulation of transcription. Genes Dev 25, 1010–1022 (2011).spa
dc.relation.referencesJones, P. A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484–492 (2012).spa
dc.relation.referencesZhang, W. & Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 5, 1 (2017).spa
dc.relation.referencesHermann, A., Goyal, R. & Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. Journal of Biological Chemistry 279, 48350–48359 (2004).spa
dc.relation.referencesDean, W. et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences 98, 13734–13738 (2001).spa
dc.relation.referencesGuo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).spa
dc.relation.referencesIto, S. et al. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).spa
dc.relation.referencesTahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (1979) 324, 930–935 (2009).spa
dc.relation.referencesCortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).spa
dc.relation.referencesHeidari, N. et al. Significance of Inactivated Genes in Leukemia: Pathogenesis and Prognosis. Cell J 19, 9–26 (2017).spa
dc.relation.referencesYou, J. S. & Jones, P. A. Cancer Genetics and Epigenetics: Two Sides of the Same Coin? Cancer Cell 22, 9–20 (2012).spa
dc.relation.referencesRoman-Gomez, J. et al. The role of DNA hypermethylation in the pathogenesis and prognosis of acute lymphoblastic leukemia. Leuk Lymphoma 44, 1855–64 (2003).spa
dc.relation.referencesNordlund, J. et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 14, (2013).spa
dc.relation.referencesFigueroa, M. & Chen, S. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. The Journal of … 123, 3099–3111 (2013).spa
dc.relation.referencesChatterton, Z. et al. Validation of DNA methylation biomarkers for diagnosis of acute lymphoblastic leukemia. Clin Chem 60, 995–1003 (2014).spa
dc.relation.referencesTerwilliger, T. & Abdul-Hay, M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7, e577 (2017).spa
dc.relation.referencesYánez, L., Bermúdez, A., Richard, C., Bureo, E. & Iriondo, A. Successful induction therapy with decitabine in refractory childhood acute lymphoblastic leukemia. Leukemia 23, 1342–1343 (2009).spa
dc.relation.referencesMichael J. Burke, MD1,*, Jatinder K Lamba, PhD2,*, Stanley Pounds, PhD3, Xueyuan Cao, PhD3, Yogita Ghodke-Puranaik, PhD2, Bruce R. Lindgren, MS4, Brenda J. Weigel, M. & Michael R. Verneris, MD6, and Jeffrey S. Miller, M. A Therapeutic Trial of Decitabine and Vorinostat in Combination with Chemotherapy for Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Am J Hematol 89, 889–895 (2014).spa
dc.relation.referencesMullighan, C. G. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program 2012, 389–96 (2012).spa
dc.relation.referencesSan Jose-Eneriz, E., Agirre, X., Rodriguez-Otero, P. & Prosper, F. Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics 5, 525–538 (2013).spa
dc.relation.referencesAgirre, X. et al. ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 25, 1862–1870 (2006).spa
dc.relation.referencesRoman-gomez, J. et al. 5’ CpG island hypermethylation is associated with transcriptional silencing of the p21 CIP1 / WAF1 / SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99, 2291–2296 (2002).spa
dc.relation.referencesPaixão, V. A. et al. Hypermethylation of CpG island in the promoter region of CALCA in acute lymphoblastic leukemia with central nervous system (CNS) infiltration correlates with poorer prognosis. Leuk Res 30, 891–894 (2006).spa
dc.relation.referencesRoman-Gomez, J. et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma 48, 1269–1282 (2007).spa
dc.relation.referencesBorssén, M. et al. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin Epigenetics 10, 1–7 (2018).spa
dc.relation.referencesUyen, T. N. et al. Aberrant methylation of protocadherin 17 and its prognostic value in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 64, e26259 (2017).spa
dc.relation.referencesGopeshwar Narayan, 1† Allen J. Freddy, 1 Dongxu Xie, 2 Hema Liyanage, 3 Lorraine Clark, 1 Sergey Kisselev, 1 Ji Un Kang, 1 Subhadra V. Nandula, 1, 2 Catherine McGuinn, 4 Shivakumar Subramaniyam, 1‡ Bachir Alobeid, 1 Prakash Satwani, 4 David Savage, 5 Govi, 6* & 1Departmentof. Promoter Methylation-Mediated Inactivation of PCDH10 in Acute Lymphoblastic Leukemia Contributes to Chemotherapy Resistance. Genes Chromosomes Cancer 50, 1043–1053 (2011).spa
dc.relation.referencesAbdullah, M. et al. ADAMTSL5 and CDH11: putative epigenetic markers for therapeutic resistance in acute lymphoblastic leukemia. Hematology 22, 386–391 (2017).spa
dc.relation.referencesPaugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet 47, 607–614 (2015).spa
dc.relation.referencesThathia, S. H. et al. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica 97, 371–378 (2012).spa
dc.relation.referencesStary, J. et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. Journal of Clinical Oncology 32, 174–184 (2014).spa
dc.relation.referencesvan Dongen Jacques J M et al. Prognostic value of minimal residual disease in acutelymphoblastic leukaemia in childhood. The Lancet 352, 1731–1738 (1998).spa
dc.relation.referencesCruz-Rodriguez, N. et al. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-Acute lymphoblastic leukemia. Journal of Experimental and Clinical Cancer Research 35, 1–14 (2016).spa
dc.relation.referencesGoldman, M. et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. BioRxiv (2019) doi:10.1101/326470.spa
dc.relation.referencesWarde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38, (2010).spa
dc.relation.referencesCheok, M. H. et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 34, 85–90 (2003).spa
dc.relation.referencesHeberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, (2015).spa
dc.relation.referencesGoldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38, 675–678 (2020).spa
dc.relation.referencesLejman, M., Chałupnik, A., Chilimoniuk, Z. & Dobosz, M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. International Journal of Molecular Sciences vol. 23 Preprint at https://doi.org/10.3390/ijms23052755 (2022).spa
dc.relation.referencesMcCabe, M. T., Brandes, J. C. & Vertino, P. M. Cancer DNA methylation: Molecular mechanisms and clinical implications. Clinical Cancer Research vol. 15 3927–3937 Preprint at https://doi.org/10.1158/1078-0432.CCR-08-2784 (2009).spa
dc.relation.referencesHanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discovery vol. 12 31–46 Preprint at https://doi.org/10.1158/2159-8290.CD-21-1059 (2022).spa
dc.relation.referencesBorssén, M. et al. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin Epigenetics 10, 1–7 (2018).spa
dc.relation.referencesTsellou, E. et al. Hypermethylation of CpG islands in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur J Cancer 41, 584–589 (2005).spa
dc.relation.referencesMai, H. et al. Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142, 497–504 (2016).spa
dc.relation.referencesKuang, S. Q. et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22, 1529–1538 (2008).spa
dc.relation.referencesMusialik, E. et al. Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res 50, 26–32 (2015).spa
dc.relation.referencesGhasemian, M. et al. Long non-coding RNA MIR4435-2HG: a key molecule in progression of cancer and non-cancerous disorders. Cancer Cell International vol. 22 Preprint at https://doi.org/10.1186/s12935-022-02633-8 (2022).spa
dc.relation.referencesMovahhed, P. et al. The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer. Mol Biol Rep 49, 4959–4964 (2022).spa
dc.relation.referencesQin, Y. et al. Effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line. Int J Clin Exp Pathol vol. 7 www.ijcep.com/ (2014).spa
dc.relation.referencesGasimli, K., Raab, M., Becker, S., Sanhaji, M. & Strebhardt, K. The Role of DAPK1 in the Cell Cycle Regulation of Cervical Cancer Cells and in Response to Topotecan. J Cancer 13, 728–743 (2022).spa
dc.relation.referencesLake, S. L. et al. Single nucleotide polymorphism array analysis of uveal melanomas reveals that amplification of CNKSR3 is correlated with improved patient survival. American Journal of Pathology 182, 678–687 (2013).spa
dc.relation.referencesSørensen, K. D. et al. Genetic and epigenetic SLC18A2 silencing in prostate cancer is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clinical Cancer Research 15, 1400–1410 (2009).spa
dc.relation.referencesLebedev, T. D. et al. Two receptors, two isoforms, two cancers: Comprehensive analysis of kit and trka expression in neuroblastoma and acute myeloid leukemia. Front Oncol 9, (2019).spa
dc.relation.referencesMeng, C., Zhang, Y., Jiang, D. & Wang, J. CTHRC1 is a prognosis-related biomarker correlated with immune infiltrates in colon adenocarcinoma. World J Surg Oncol 20, (2022).spa
dc.relation.referencesSial, N. et al. CTHRC1 expression is a novel shared diagnostic and prognostic biomarker of survival in six different human cancer subtypes. Sci Rep 11, (2021).spa
dc.relation.referencesNguyen, C. H. et al. SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Sci Rep 9, (2019).spa
dc.relation.referencesFattahi, S., Nikbakhsh, N., Ranaei, M., Sabour, D. & Akhavan-Niaki, H. Association of sonic hedgehog signaling pathway genes IHH, BOC, RAB23a and MIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci Rep 11, (2021).spa
dc.relation.referencesMathew, E. et al. Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by Hedgehog signaling. Cell Rep 9, 484–494 (2014).spa
dc.relation.referencesHu, X. G. et al. Elevated expression of ASCL2 is an independent prognostic indicator in lung squamous cell carcinoma. J Clin Pathol 69, 313–318 (2016).spa
dc.relation.referencesWu, L. et al. ASCL2 Affects the Efficacy of Immunotherapy in Colon Adenocarcinoma Based on Single-Cell RNA Sequencing Analysis. Front Immunol 13, (2022).spa
dc.relation.referencesEsgueva, R. et al. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort. Modern Pathology 23, 539–546 (2010).spa
dc.relation.referencesPin, E. et al. Identification of a Novel Autoimmune Peptide Epitope of Prostein in Prostate Cancer. J Proteome Res 16, 204–216 (2017).spa
dc.relation.referencesSong, S. et al. Downregulation of ITGA6 confers to the invasion of multiple myeloma and promotes progression to plasma cell leukaemia. Br J Cancer 124, 1843–1853 (2021).spa
dc.relation.referencesYamakawa, N., Kaneda, K., Saito, Y., Ichihara, E. & Morishita, K. The increased expression of integrin α6 (itga6) enhances drug resistance in evi1 high leukemia. PLoS One 7, (2012).spa
dc.relation.referencesOuyang, W., Ren, L., Liu, G., Chi, X. & Wei, H. Lncrna mir4435-2hg predicts poor prognosis in patients with colorectal cancer. PeerJ 2019, (2019).spa
dc.relation.referencesZhong, C., Xie, Z., Zeng, L. H., Yuan, C. & Duan, S. MIR4435-2HG Is a Potential Pan-Cancer Biomarker for Diagnosis and Prognosis. Frontiers in Immunology vol. 13 Preprint at https://doi.org/10.3389/fimmu.2022.855078 (2022).spa
dc.relation.referencesZhu, L., Wang, A., Gao, M., Duan, X. & Li, Z. LncRNA MIR4435-2HG triggers ovarian cancer progression by regulating miR-128-3p/CKD14 axis. Cancer Cell Int 20, (2020).spa
dc.relation.referencesShen, H. et al. MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology 108, 553–559 (2020).spa
dc.relation.referencesNavarrete-Meneses, M. del P. & Pérez-Vera, P. Alteraciones epigenéticas en leucemia linfoblástica aguda. Bol Med Hosp Infant Mex 74, 243–264 (2017).spa
dc.relation.referencesZhou, Z. H. et al. Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 18, 511–522 (2019).spa
dc.relation.referencesLi, X., Song, F. & Sun, H. Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncol Lett 20, (2020).spa
dc.relation.referencesGreco, M. et al. Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Blood Cells Mol Dis 45, 181–185 (2010).spa
dc.relation.referencesDong, R. et al. Models for Predicting Response to Immunotherapy and Prognosis in Patients with Gastric Cancer: DNA Damage Response Genes. Biomed Res Int 2022, 4909544 (2022).spa
dc.relation.referencesTong, C.-W. et al. Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in neuroblastoma IMR-32 cells. Gene 515, 62–70 (2013).spa
dc.relation.referencesBloomston, M. et al. Identification of Molecular Markers Specific for Pancreatic Neuroendocrine Tumors by Genetic Profiling of Core Biopsies. Ann Surg Oncol 11, 413–419 (2004).spa
dc.relation.referencesPotter, C. et al. Maternal Red Blood Cell Folate and Infant Vitamin B12 Status Influence Methylation of Genes Associated with Childhood Acute Lymphoblastic Leukemia. Mol Nutr Food Res 62, 1800411 (2018).spa
dc.relation.referencesSandoval, J. et al. Genome-wide DNA methylation profiling predicts relapse in childhood B-cell acute lymphoblastic leukaemia. Br J Haematol 160, 404–418 (2012).spa
dc.relation.referencesNordlund, J. et al. Dna methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 7, 1–12 (2015).spa
dc.relation.referencesMilani, L. et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute. Childhood A Global Journal Of Child Research 115, 1214–1225 (2010).spa
dc.relation.referencesGabriel, A. S. et al. Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia. Epigenetics 10, 717–726 (2015).spa
dc.relation.referencesIacobucci, I. & Mullighan, C. G. Genetic basis of acute lymphoblastic leukemia. Journal of Clinical Oncology 35, 975–983 (2017).spa
dc.relation.referencesGröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature (2018) doi:10.1038/nature25480.spa
dc.relation.referencesThol, F. ALL is not the same in the era of genetics. Blood vol. 138 915–916 Preprint at https://doi.org/10.1182/blood.2021011934 (2021).spa
dc.relation.referencesGuru, S. A. et al. Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib respondents and poor survival. BMC Cancer 22, (2022).spa
dc.relation.referencesYuan, W. et al. Correlation of DAPK1 methylation and the risk of gastrointestinal cancer: A systematic review and meta-analysis. PLoS One 12, (2017).spa
dc.relation.referencesCalmon, M. F. et al. Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer. Cancer Genet Cytogenet 173, 31–37 (2007).spa
dc.relation.referencesWei, J. et al. Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med 8, 678–678 (2020).spa
dc.relation.referencesSingh, P., Ravanan, P. & Talwar, P. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Frontiers in Molecular Neuroscience vol. 9 Preprint at https://doi.org/10.3389/fnmol.2016.00046 (2016).spa
dc.relation.referencesWang, L. Q. et al. Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J Transl Med 12, (2014).spa
dc.relation.referencesEben Massari, M. & Murre, C. Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms. MOLECULAR AND CELLULAR BIOLOGY vol. 20 (2000).spa
dc.relation.referencesvan der Flier, L. G. et al. Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate. Cell 136, 903–912 (2009).spa
dc.relation.referencesZuo, Q. et al. ASCL2 expression contributes to gastric tumor migration and invasion by downregulating miR223 and inducing EMT. Mol Med Rep 18, 3751–3759 (2018).spa
dc.relation.referencesKwon, O. H. et al. Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci 104, 391–397 (2013).spa
dc.relation.referencesJubb, A. M. et al. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 25, 3445–3457 (2006).spa
dc.relation.referencesSamra, E. B., Klein, B., Commes, T. & Moreaux, J. Development of gene expression-based risk score in cytogenetically normal acute myeloid leukemia patients. Oncotarget vol. 3 www.impactjournals.com/oncotargetwww.impactjournals.com/oncotarget/ (2012).spa
dc.relation.referencesKiyotani, K. et al. A genome-wide association study identifies four genetic markers for hematological toxicities in cancer patients receiving gemcitabine therapy. Pharmacogenet Genomics 22, 229–235 (2012).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsNeoplasiasspa
dc.subject.decsNeoplasmseng
dc.subject.decsInsuficiencia del tratamientospa
dc.subject.decsTreatment Failureeng
dc.subject.proposalLeucemia linfoide agudaspa
dc.subject.proposalExpresión génicaspa
dc.subject.proposalMetilación de DNAspa
dc.subject.proposalBiomarcadores predictivosspa
dc.subject.proposalAcute lymphoid leukemiaeng
dc.subject.proposalGene expressioneng
dc.subject.proposalDNA methylationeng
dc.subject.proposalPredictive biomarkers
dc.titleIdentificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo Bspa
dc.title.translatedIdentification of changes in DNA methylation and gene expression profiles associated with clinical response to chemotherapeutic treatment in pediatric patients with type B acute lymphoid leukemiaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleIdentificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo Bspa
oaire.fundernameInstituto Nacional de Cancerologíaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020747366 2023.pdf
Tamaño:
3.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Biomédicas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: