Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio

dc.contributor.advisorGuerrero Fajardo, Carlos Alberto
dc.contributor.authorLozano Pérez, Alejandra Sophia
dc.contributor.cvlacLOZANO PÉREZ, ALEJANDRA SOPHIA [0001922132]spa
dc.contributor.orcidLozano Pérez, Alejandra Sophia [0000000244691312]spa
dc.contributor.researchgroupAprovechamiento Energético de Recursos Naturalesspa
dc.date.accessioned2024-03-19T15:12:11Z
dc.date.available2024-03-19T15:12:11Z
dc.date.issued2024
dc.descriptionilustraciones, fotografías, diagramasspa
dc.description.abstractColombia es el principal productor mundial de café arábica lavado suave y produce 12,6 millones de sacos de café verde, pero al mismo tiempo se vierten en campo abierto 784 000 toneladas de biomasa residual, de las cuales sólo el 5% se valoriza o utiliza. El objetivo de este proyecto fue evaluar la obtención de productos químicos plataforma a partir de dichos residuos de café. Para lograr esto, se realizó la caracterización de la biomasa implementando el análisis próximo, análisis último y análisis estructural. Se hizo la valorización hidrotermal en rangos de temperatura de 120-180 ºC (LHW) y 180-260 ºC (HTC) a una hora, cuantificando los productos químicos plataforma obtenidos por HPLC-IR, haciendo su seguimiento por pH, conductividad, y caracterizando la fracción sólida por seguimientos en espectroscopía IR y análisis elemental. Se obtuvieron procesos de hidrólisis a partir de 150 ºC, producción de químicos plataforma a partir de 180 ºC y degradación a partir de 240 ºC. De la misma manera se analizó y describió la cinética de la hidrólisis de las estructuras lignocelulósicas a azúcares a 180 ºC (LHW) y 200 ºC (HTC), se obtuvieron órdenes de reacción de 1 y 3 respectivamente, aspecto que fue corroborado por HPLC-MS. Se evaluó la incidencia de catalizadores homogéneos ácidos y básicos en el proceso y la eficiencia y selectividad de estos, deduciendo una alta selectividad con CH3COOH, una alta eficiencia con H2SO4, y el uso de catalizadores básicos para la obtención de ácido fórmico y biochar. Finalmente, se evaluó el rendimiento de azúcares, ácido fórmico, ácido levulínico, HMF y furfural para finalmente reportar las condiciones óptimas para la obtención de estos a partir de residuos de cerezas de café. (Texto tomado de la fuente)spa
dc.description.abstractColombia is the world's leading producer of mild washed Arabica coffee and produces 12.6 million bags of green coffee, but at the same time 784,000 tons of residual biomass are dumped in open fields, of which only 5% is valorized or used. The objective of this project was to evaluate the production of platform chemicals from said coffee wastes. To achieve this, biomass characterization was carried out using proximate analysis, ultimate analysis and structural analysis. Hydrothermal valorization was carried out in temperature ranges of 120-180 ºC (LHW) and 180-260 ºC (HTC) at one hour, quantifying the platform chemicals obtained by HPLC-IR, monitoring them by pH, conductivity, and characterizing the solid fraction by IR spectroscopy and elemental analysis. Hydrolysis processes were obtained from 150 ºC onwards, production of platform chemicals from 180 ºC onwards and degradation from 240 ºC onwards. The kinetics of the hydrolysis of lignocellulosic structures to sugars at 180 ºC (LHW) and 200 ºC (HTC) were also analyzed and described. Reaction orders of 1 and 3, respectively, were obtained, which was corroborated by HPLC-MS. The incidence of acid and basic homogeneous catalysts in the process and their efficiency and selectivity were evaluated, deducing a high selectivity with CH3COOH, a high efficiency with H2SO4, and the use of basic catalysts to obtain formic acid and biochar. Finally, the yield of sugars, formic acid, levulinic acid, HMF and furfural was evaluated to finally report the optimal conditions for obtaining them from coffee cherry waste.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaster en Ciencias - Químicaspa
dc.description.researchareaEnergía y biocombustiblesspa
dc.description.sponsorshipFONDO NACIONAL DE FINANCIAMIENTO PARA LA CIENCIA, LA TECNOLOGÍA Y LA INNOVACIÓN FRANCISCO JOSÉ DE CALDASspa
dc.format.extentxvii, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85816
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesEnvironmental and Energy Study Institute, “Fossil Fuels,” https://www.eesi.org/topics/fossil-fuels/description.spa
dc.relation.referencesUnited Nations, “Causes and Effects of Climate Change,” https://www.un.org/en/climatechange/science/causes-effects-climate-change.spa
dc.relation.referencesUnited Nations Climate Change, “Key aspects of the Paris Agreement,” https://unfccc.int/most-requested/key-aspects-of-the-paris agreement#:~:text=The%20Paris%20Agreement’s%20central%20aim,further%20to%201.5%20degrees%20Celsius.spa
dc.relation.referencesZ. Anwar, M. Gulfraz, and M. Irshad, “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review,” J Radiat Res Appl Sci, vol. 7, no. 2, pp. 163–173, Apr. 2014, doi: 10.1016/j.jrras.2014.02.003.spa
dc.relation.referencesM. Mujtaba et al., “Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics,” J Clean Prod, vol. 402, p. 136815, May 2023, doi: 10.1016/j.jclepro.2023.136815.spa
dc.relation.referencesS. Nanda, J. A. Kozinski, and A. K. Dalai, “Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products,” Current Biochemical Engineering, vol. 3, no. 1, pp. 24–36, Nov. 2015, doi: 10.2174/2213385203666150219232000.spa
dc.relation.referencesM. V. Rodionova et al., “A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production,” Int J Hydrogen Energy, vol. 47, no. 3, pp. 1481–1498, Jan. 2022, doi: 10.1016/j.ijhydene.2021.10.122.spa
dc.relation.referencesU.S Energy Information Administration, “Country Analysis Executive Summary: Colombia,” 2022.spa
dc.relation.referencesJ. A. Serna-Jiménez, L. S. Torres-Valenzuela, K. Martínez Cortínez, and M. C. Hernández Sandoval, “Aprovechamiento de la pulpa de café como alternativa de valorización de subproductos.,” Revista ION, vol. 31, no. 1, pp. 37–42, Nov. 2018, doi: 10.18273/revion.v31n1-2018006.spa
dc.relation.referencesInternational Coffee Organization, “COFFEE REPORT AND OUTLOOK (CRO) APRIL 2023,” 2023.spa
dc.relation.referencesP. Navarro, “Volume of coffee production in Colombia from marketing year 2015/16 to 2023/24.”spa
dc.relation.referencesCafé de Colombia, “REGIONES CAFETERAS,” https://www.cafedecolombia.com/particulares/regiones-cafeteras/.spa
dc.relation.referencesO. L. Ocampo Lopez and L. M. Alvarez-Herrera, “Tendencia de la producción y el consumo del café en Colombia,” Apuntes del Cenes, vol. 36, no. 64, pp. 139–165, Jun. 2017, doi: 10.19053/01203053.v36.n64.2017.5419.spa
dc.relation.referencesLatinA International Commerce, “Regiones Cafeteras en Colombia,” https://latinaintrade.com/es/regiones-cafeteras-en-colombia/.spa
dc.relation.referencesA. Iriondo-DeHond, M. Iriondo-DeHond, and M. D. del Castillo, “Applications of Compounds from Coffee Processing By-Products,” Biomolecules, vol. 10, no. 9, p. 1219, Aug. 2020, doi: 10.3390/biom10091219.spa
dc.relation.referencesM. Rebollo-Hernanz et al., “Biorefinery and Stepwise Strategies for Valorizing Coffee By-Products as Bioactive Food Ingredients and Nutraceuticals,” Applied Sciences, vol. 13, no. 14, p. 8326, Jul. 2023, doi: 10.3390/app13148326.spa
dc.relation.referencesS. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, “Production, Composition, and Application of Coffee and Its Industrial Residues,” Food Bioproc Tech, vol. 4, no. 5, pp. 661–672, Jul. 2011, doi: 10.1007/s11947-011-0565-z.spa
dc.relation.referencesR. C. Alves, F. Rodrigues, M. Antónia Nunes, A. F. Vinha, and M. B. P. P. Oliveira, “State of the art in coffee processing by-products,” in Handbook of Coffee Processing By-Products, Elsevier, 2017, pp. 1–26. doi: 10.1016/B978-0-12-811290-8.00001-3.spa
dc.relation.referencesP. S. Murthy and M. Madhava Naidu, “Sustainable management of coffee industry by-products and value addition—A review,” Resour Conserv Recycl, vol. 66, pp. 45–58, Sep. 2012, doi: 10.1016/j.resconrec.2012.06.005.spa
dc.relation.referencesInternational Coffee Organization, “Total production by all exporting countries,” 2020.spa
dc.relation.referencesB. M. Gouvea, C. Torres, A. S. Franca, L. S. Oliveira, and E. S. Oliveira, “Feasibility of ethanol production from coffee husks,” Biotechnol Lett, vol. 31, no. 9, pp. 1315–1319, Sep. 2009, doi: 10.1007/s10529-009-0023-4.spa
dc.relation.referencesA. de C. Souza, “A importância do café para São Tomé e Príncipe frente à proibição do comércio de escravizados pela Inglaterra,” Afro-Ásia, no. 63, Jun. 2021, doi: 10.9771/aa.v0i63.38370.spa
dc.relation.referencesV. A. Mirón-Mérida, J. Yáñez-Fernández, B. Montañez-Barragán, and B. E. Barragán Huerta, “Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films,” LWT, vol. 101, pp. 167–174, Mar. 2019, doi: 10.1016/j.lwt.2018.11.013.spa
dc.relation.referencesT. Klingel, J. I. Kremer, V. Gottstein, T. Rajcic de Rezende, S. Schwarz, and D. W. Lachenmeier, “A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union,” Foods, vol. 9, no. 5, p. 665, May 2020, doi: 10.3390/foods9050665.spa
dc.relation.referencesY. Narita and K. Inouye, “Review on utilization and composition of coffee silverskin,” Food Research International, vol. 61, pp. 16–22, Jul. 2014, doi: 10.1016/j.foodres.2014.01.023.spa
dc.relation.referencesA. S. G. Costa et al., “Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process,” Ind Crops Prod, vol. 53, pp. 350–357, Feb. 2014, doi: 10.1016/j.indcrop.2014.01.006.spa
dc.relation.referencesM. A. Amran et al., “Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques,” Sustainability, vol. 13, no. 20, p. 11432, Oct. 2021, doi: 10.3390/su132011432.spa
dc.relation.referencesM. Martuscelli, L. Esposito, C. Di Mattia, A. Ricci, and D. Mastrocola, “Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient,” Foods, vol. 10, no. 6, p. 1367, Jun. 2021, doi: 10.3390/foods10061367.spa
dc.relation.referencesM. C. Echeverria and M. Nuti, “Valorisation of the Residues of Coffee Agro-industry: Perspectives and Limitations,” The Open Waste Management Journal, vol. 10, no. 1, pp. 13–22, Jan. 2017, doi: 10.2174/1876400201710010013.spa
dc.relation.referencesNational Geographic Society, “Biomass Energy,” https://education.nationalgeographic.org/resource/biomass-energy/.spa
dc.relation.referencesJ. Moncada, J. A. Tamayo, and C. A. Cardona, “Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery,” Chem Eng Sci, vol. 118, pp. 126–140, Oct. 2014, doi: 10.1016/j.ces.2014.07.035.spa
dc.relation.referencesT. Kalak, “Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future,” Energies (Basel), vol. 16, no. 4, p. 1783, Feb. 2023, doi: 10.3390/en16041783.spa
dc.relation.referencesM. Pande and A. N. Bhaskarwar, “Biomass Conversion to Energy,” in Biomass Conversion, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–90. doi: 10.1007/978-3-642-28418-2_1.spa
dc.relation.referencesG. Zeng et al., “Pretreatment technology of lignocellulose,” E3S Web of Conferences, vol. 271, p. 04010, Jun. 2021, doi: 10.1051/e3sconf/202127104010.spa
dc.relation.referencesM. Gavrilescu, “Biorefinery Systems,” in Bioenergy Research: Advances and Applications, Elsevier, 2014, pp. 219–241. doi: 10.1016/B978-0-444-59561-4.00014-0.spa
dc.relation.referencesH. K. Sharma, C. Xu, and W. Qin, “Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview,” Waste Biomass Valorization, vol. 10, no. 2, pp. 235–251, Feb. 2019, doi: 10.1007/s12649-017-0059-y.spa
dc.relation.referencesP. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresour Technol, vol. 83, no. 1, pp. 37–46, May 2002, doi: 10.1016/S0960-8524(01)00118-3.spa
dc.relation.referencesC. G. Yoo et al., “Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion,” Green Chemistry, vol. 19, no. 22, pp. 5467–5478, 2017, doi: 10.1039/C7GC02219K.spa
dc.relation.referencesA. K. Chandel, V. K. Garlapati, A. K. Singh, F. A. F. Antunes, and S. S. da Silva, “The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization,” Bioresour Technol, vol. 264, pp. 370–381, Sep. 2018, doi: 10.1016/j.biortech.2018.06.004.spa
dc.relation.referencesA. K. Chandel, V. K. Garlapati, A. K. Singh, F. A. F. Antunes, and S. S. da Silva, “The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization,” Bioresour Technol, vol. 264, pp. 370–381, Sep. 2018, doi: 10.1016/j.biortech.2018.06.004.spa
dc.relation.referencesJ. Kruyeniski, P. J. T. Ferreira, M. da G. Videira Sousa Carvalho, M. E. Vallejos, F. E. Felissia, and M. C. Area, “Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis,” Ind Crops Prod, vol. 130, pp. 528–536, Apr. 2019, doi: 10.1016/j.indcrop.2018.12.075.spa
dc.relation.referencesA. J. Ragauskas et al., “Lignin Valorization: Improving Lignin Processing in the Biorefinery,” Science (1979), vol. 344, no. 6185, May 2014, doi: 10.1126/science.1246843.spa
dc.relation.referencesN. Giummarella, Y. Pu, A. J. Ragauskas, and M. Lawoko, “A critical review on the analysis of lignin carbohydrate bonds,” Green Chemistry, vol. 21, no. 7, pp. 1573–1595, 2019, doi: 10.1039/C8GC03606C.spa
dc.relation.referencesH. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” The Scientific World Journal, vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/631013.spa
dc.relation.referencesH. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” The Scientific World Journal, vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/631013.spa
dc.relation.referencesS. Kim, “Evaluation of Alkali-Pretreated Soybean Straw for Lignocellulosic Bioethanol Production,” Int J Polym Sci, vol. 2018, pp. 1–7, 2018, doi: 10.1155/2018/5241748.spa
dc.relation.referencesA. Kumar, A. Gautam, and D. Dutt, “Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview,” Advances in Bioscience and Biotechnology, vol. 07, no. 03, pp. 149–168, 2016, doi: 10.4236/abb.2016.73014.spa
dc.relation.referencesC. Sánchez, “Lignocellulosic residues: Biodegradation and bioconversion by fungi,” Biotechnol Adv, vol. 27, no. 2, pp. 185–194, Mar. 2009, doi: 10.1016/j.biotechadv.2008.11.001.spa
dc.relation.referencesA. P. de Souza, A. Grandis, D. C. C. Leite, and M. S. Buckeridge, “Sugarcane as a Bioenergy Source: History, Performance, and Perspectives for Second-Generation Bioethanol,” Bioenergy Res, vol. 7, no. 1, pp. 24–35, Mar. 2014, doi: 10.1007/s12155-013-9366-8.spa
dc.relation.referencesT. Happi Emaga, C. Robert, S. N. Ronkart, B. Wathelet, and M. Paquot, “Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties,” Bioresour Technol, vol. 99, no. 10, pp. 4346–4354, Jul. 2008, doi: 10.1016/j.biortech.2007.08.030.spa
dc.relation.referencesH. Rabemanolontsoa and S. Saka, “Comparative study on chemical composition of various biomass species,” RSC Adv, vol. 3, no. 12, p. 3946, 2013, doi: 10.1039/c3ra22958k.spa
dc.relation.referencesH. Rabemanolontsoa and S. Saka, “Comparative study on chemical composition of various biomass species,” RSC Adv, vol. 3, no. 12, p. 3946, 2013, doi: 10.1039/c3ra22958k.spa
dc.relation.referencesM. Boluda-Aguilar, L. García-Vidal, F. del P. González-Castañeda, and A. López-Gómez, “Mandarin peel wastes pretreatment with steam explosion for bioethanol production,” Bioresour Technol, vol. 101, no. 10, pp. 3506–3513, May 2010, doi: 10.1016/j.biortech.2009.12.063.spa
dc.relation.referencesC. Di Blasi, C. Branca, and A. Galgano, “Biomass Screening for the Production of Furfural via Thermal Decomposition,” Ind Eng Chem Res, vol. 49, no. 6, pp. 2658–2671, Mar. 2010, doi: 10.1021/ie901731u.spa
dc.relation.referencesD. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A Review on Chemical Pretreatment Methods of Lignocellulosic Biomass: Recent Advances and Progress,” Applied Science and Engineering Progress, Aug. 2022, doi: 10.14416/j.asep.2022.08.001.spa
dc.relation.referencesJ. Vasco-Correa, X. Ge, and Y. Li, “Biological Pretreatment of Lignocellulosic Biomass,” in Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, Elsevier, 2016, pp. 561–585. doi: 10.1016/B978-0-12-802323-5.00024-4.spa
dc.relation.referencesM. Jędrzejczyk, E. Soszka, M. Czapnik, A. M. Ruppert, and J. Grams, “Physical and chemical pretreatment of lignocellulosic biomass,” in Second and Third Generation of Feedstocks, Elsevier, 2019, pp. 143–196. doi: 10.1016/B978-0-12-815162-4.00006-9.spa
dc.relation.referencesF. R. Amin et al., “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, vol. 7, no. 1, p. 72, Dec. 2017, doi: 10.1186/s13568-017-0375-4.spa
dc.relation.referencesY. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review,” Bioresour Technol, vol. 83, no. 1, pp. 1–11, May 2002, doi: 10.1016/S0960-8524(01)00212-7.spa
dc.relation.referencesM. Kumar, Y. Sun, R. Rathour, A. Pandey, I. S. Thakur, and D. C. W. Tsang, “Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges,” Science of The Total Environment, vol. 716, p. 137116, May 2020, doi: 10.1016/j.scitotenv.2020.137116.spa
dc.relation.referencesBarranco Cristian, J. Ortega, J. Mendoza, and Gonzalez Yahir, “Elaboración de biocombustibles sólidos densificados a partir de tusa de maíz, bioaglomerante de yuca y carbón mineral del departamento de Córdoba,” Revista chilena de ingeniería, vol. 25, no. 4, 2017.spa
dc.relation.referencesM. K. Pasha, L. Dai, D. Liu, M. Guo, and W. Du, “An overview to process design, simulation and sustainability evaluation of biodiesel production,” Biotechnol Biofuels, vol. 14, no. 1, p. 129, Jun. 2021, doi: 10.1186/s13068-021-01977-z.spa
dc.relation.referencesKrzysztof Ziemiński, “Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms,” Afr J Biotechnol, vol. 11, no. 18, Mar. 2012, doi: 10.5897/AJBX11.054.spa
dc.relation.referencesE. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H.-J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresour Technol, vol. 298, p. 122386, Feb. 2020, doi: 10.1016/j.biortech.2019.122386.spa
dc.relation.referencesL. Rani et al., “Recent advances in the production of renewable biofuels using microalgae,” in Artificial Intelligence for Renewable Energy Systems, Elsevier, 2022, pp. 173–187. doi: 10.1016/B978-0-323-90396-7.00012-2.spa
dc.relation.referencesL. Zhang, C. (Charles) Xu, and P. Champagne, “Overview of recent advances in thermo-chemical conversion of biomass,” Energy Convers Manag, vol. 51, no. 5, pp. 969–982, May 2010, doi: 10.1016/j.enconman.2009.11.038.spa
dc.relation.referencesH. WIKBERG et al., “Hydrothermal refining of biomass - an overview and future perspectives,” Tappi J, vol. 14, no. 3, pp. 195–207, Apr. 2015, doi: 10.32964/TJ14.3.195.spa
dc.relation.referencesS. Czarnecki and R.-A. Düring, “Closed-vessel miniaturised microwave-assisted EDTA extraction to determine trace metals in plant materials,” Int J Environ Anal Chem, vol. 94, no. 8, pp. 801–811, Jun. 2014, doi: 10.1080/03067319.2013.879299.spa
dc.relation.referencesP. Srivastava and R. Malviya, “Sources of pectin, extraction and its applications in pharmaceutical industry - An overview,” Indian J Nat Prod Resour, vol. 2, no. 1, pp. 10–18, 2011.spa
dc.relation.referencesM. F. Adams and B. Ettling, in Industrial Gums – Polysaccharides and their Derivates , 2nd ed. New York: Academic Press Inc , 1973.spa
dc.relation.referencesJ. V. Rissanen, H. Grénman, C. Xu, S. Willför, D. Y. Murzin, and T. Salmi, “Obtaining Spruce Hemicelluloses of Desired Molar Mass by using Pressurized Hot Water Extraction,” ChemSusChem, vol. 7, no. 10, pp. 2947–2953, Oct. 2014, doi: 10.1002/cssc.201402282.spa
dc.relation.referencesV. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnol Adv, vol. 29, no. 6, pp. 675–685, Nov. 2011, doi: 10.1016/j.biotechadv.2011.05.005.spa
dc.relation.referencesA. Funke and F. Ziegler, “Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering,” Biofuels, Bioproducts and Biorefining, vol. 4, no. 2, pp. 160–177, Mar. 2010, doi: 10.1002/bbb.198.spa
dc.relation.referencesB. Hu, S.-H. Yu, K. Wang, L. Liu, and X.-W. Xu, “Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process,” Dalton Transactions, no. 40, p. 5414, 2008, doi: 10.1039/b804644c.spa
dc.relation.referencesD. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, “Hydrothermal liquefaction of biomass: Developments from batch to continuous process,” Bioresour Technol, vol. 178, pp. 147–156, Feb. 2015, doi: 10.1016/j.biortech.2014.09.132.spa
dc.relation.referencesO. Boutin and J. Lédé, “Use of a Concentrated Radiation for the Determination of Cellulose Thermal Decomposition Mechanisms,” in Progress in Thermochemical Biomass Conversion, Wiley, 2001, pp. 1034–1045. doi: 10.1002/9780470694954.ch84spa
dc.relation.referencesF. H. Isikgor and C. R. Becer, “Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers,” Polym Chem, vol. 6, no. 25, pp. 4497–4559, 2015, doi: 10.1039/C5PY00263J.spa
dc.relation.referencesF. Cherubini and A. H. Strømman, “Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems,” Biofuels, Bioproducts and Biorefining, vol. 5, no. 5, pp. 548–561, Sep. 2011, doi: 10.1002/bbb.297.spa
dc.relation.referencesR. S. Assary, T. Kim, J. J. Low, J. Greeley, and L. A. Curtiss, “Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods,” Physical Chemistry Chemical Physics, vol. 14, no. 48, p. 16603, 2012, doi: 10.1039/c2cp41842h.spa
dc.relation.referencesL. Li, F. Shen, R. L. Smith, and X. Qi, “Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature,” Green Chemistry, vol. 19, no. 1, pp. 76–81, 2017, doi: 10.1039/C6GC02443B.spa
dc.relation.referencesP. Patakova et al., “Microbial production of butanol from food industry waste,” in Food Industry Wastes, Elsevier, 2020, pp. 163–180. doi: 10.1016/B978-0-12-817121-9.00008-5.spa
dc.relation.referencesB. García, A. Orozco-Saumell, M. López Granados, J. Moreno, and J. Iglesias, “Catalytic Transfer Hydrogenation of Glucose to Sorbitol with Raney Ni Catalysts Using Biomass-Derived Diols as Hydrogen Donors,” ACS Sustain Chem Eng, vol. 9, no. 44, pp. 14857–14867, Nov. 2021, doi: 10.1021/acssuschemeng.1c04957.spa
dc.relation.referencesR. Ooms et al., “Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation,” Green Chem., vol. 16, no. 2, pp. 695–707, 2014, doi: 10.1039/C3GC41431K.spa
dc.relation.referencesW. Fan, C. Verrier, Y. Queneau, and F. Popowycz, “5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals,” Curr Org Synth, vol. 16, no. 4, pp. 583–614, Jul. 2019, doi: 10.2174/1570179416666190412164738.spa
dc.relation.referencesB. T. Olea, I. F. Nuñez, C. G. Sancho, J. A. Cecilia, R. M. Tost, and P. M. Torres, “Production of Biofuels by 5-Hydroxymethylfurfural Etherification Using Ion-Exchange Resins as Solid Acid Catalysts,” in The 1st International Electronic Conference on Catalysis Sciences, Basel Switzerland: MDPI, Nov. 2020, p. 34. doi: 10.3390/ECCS2020-07587.spa
dc.relation.referencesU. M. Shapla, Md. Solayman, N. Alam, Md. I. Khalil, and S. H. Gan, “5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health,” Chem Cent J, vol. 12, no. 1, p. 35, Dec. 2018, doi: 10.1186/s13065-018-0408-3.spa
dc.relation.referencesA. Phanopoulos, A. J. P. White, N. J. Long, and P. W. Miller, “Catalytic Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using Ruthenium– N -Triphos Complexes,” ACS Catal, vol. 5, no. 4, pp. 2500–2512, Apr. 2015, doi: 10.1021/cs502025t.spa
dc.relation.referencesG. C. Hayes and C. R. Becer, “Levulinic acid: a sustainable platform chemical for novel polymer architectures,” Polym Chem, vol. 11, no. 25, pp. 4068–4077, 2020, doi: 10.1039/D0PY00705F.spa
dc.relation.referencesA. Kumar, D. Z. Shende, and K. L. Wasewar, “Production of levulinic acid: A promising building block material for pharmaceutical and food industry,” Mater Today Proc, vol. 29, pp. 790–793, 2020, doi: 10.1016/j.matpr.2020.04.749.spa
dc.relation.referencesP. S. Nigam and A. Singh, “Production of liquid biofuels from renewable resources,” Prog Energy Combust Sci, vol. 37, no. 1, pp. 52–68, Feb. 2011, doi: 10.1016/j.pecs.2010.01.003.spa
dc.relation.referencesD. J. Hayes, S. Fitzpatrick, M. H. B. Hayes, and J. R. H. Ross, “The Biofine Process – Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks,” in Biorefineries‐Industrial Processes and Products, Wiley, 2005, pp. 139–164. doi: 10.1002/9783527619849.ch7.spa
dc.relation.referencesJ. Liesivuori, “Formic Acid,” in Encyclopedia of Toxicology, Elsevier, 2014, pp. 659–661. doi: 10.1016/B978-0-12-386454-3.00989-1.spa
dc.relation.referencesJ. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, and H. Kieczka, “Formic Acid,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, 2016, pp. 1–22. doi: 10.1002/14356007.a12_013.pub3.spa
dc.relation.referencesN. Vivek, M. Christopher, M. K. Kumar, E. Castro, P. Binod, and A. Pandey, “Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production,” Renew Energy, vol. 129, pp. 794–799, Dec. 2018, doi: 10.1016/j.renene.2017.01.055.spa
dc.relation.referencesJ. Jae et al., “Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis,” Energy Environ Sci, vol. 3, no. 3, p. 358, 2010, doi: 10.1039/b924621p.spa
dc.relation.referencesL. T. Mika, E. Cséfalvay, and Á. Németh, “Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability,” Chem Rev, vol. 118, no. 2, pp. 505–613, Jan. 2018, doi: 10.1021/acs.chemrev.7b00395.spa
dc.relation.referencesD. Dasgupta, S. Bandhu, D. K. Adhikari, and D. Ghosh, “Challenges and prospects of xylitol production with whole cell bio-catalysis: A review,” Microbiol Res, vol. 197, pp. 9–21, Apr. 2017, doi: 10.1016/j.micres.2016.12.012.spa
dc.relation.referencesJ. Wisniak, M. Hershkowitz, R. Leibowitz, and S. Stein, “Hydrogenation of Xylose to Xylitol,” Product R&D, vol. 13, no. 1, pp. 75–79, Mar. 1974, doi: 10.1021/i360049a015.spa
dc.relation.referencesDATAtab Team, “Design of Experiments (DoE),” https://datatab.net/statistics-calculator/design-of-experiments.spa
dc.relation.referencesChemistry steps, “Determining Reaction Order Using Graphs,” https://general.chemistrysteps.com/determining-reaction-order-using-graphs/.spa
dc.relation.referencesInternational Labour Organization, “Fichas Internacionales de Seguridad Química (ICSCs),” https://www.ilo.org/dyn/icsc/showcard.listcards3?p_lang=es.spa
dc.relation.referencesAEFI, Validación de métodos analíticos. 2001.spa
dc.relation.referencesD. V. Phuong, L. P. Tan Quoc, P. Van Tan, and L. N. Doan Duy, “Production of bioethanol from Robusta coffee pulp (Coffea robusta L.) in Vietnam,” Foods and Raw Materials, pp. 10–17, Oct. 2019, doi: 10.21603/2308-4057-2019-1-10-17.spa
dc.relation.referencesR. Manrique, D. Vásquez, C. Ceballos, F. Chejne, and A. Amell, “Evaluation of the Energy Density for Burning Disaggregated and Pelletized Coffee Husks,” ACS Omega, vol. 4, no. 2, pp. 2957–2963, Feb. 2019, doi: 10.1021/acsomega.8b02591.spa
dc.relation.referencesJ. E. Park, G. B. Lee, C. J. Jeong, H. Kim, and C. G. Kim, “Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization,” Energies (Basel), vol. 14, no. 20, p. 6551, Oct. 2021, doi: 10.3390/en14206551.spa
dc.relation.referencesM. Boutaieb, M. Guiza, S. Román, B. Ledesma Cano, S. Nogales, and A. Ouederni, “Hydrothermal carbonization as a preliminary step to pine cone pyrolysis for bioenergy production,” Comptes Rendus. Chimie, vol. 23, no. 11–12, pp. 607–621, Feb. 2021, doi: 10.5802/crchim.47.spa
dc.relation.referencesUSDA Natural Resources Conservation Service, “Carbon to Nitrogen Ratios in Cropping Systems,” North Carolina, 2011.spa
dc.relation.referencesR. A. R. Frómeta, J. L. Sánchez, and J. M. R. García, “Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation,” Emir J Food Agric, p. 117, Mar. 2020, doi: 10.9755/ejfa.2020.v32.i2.2068.spa
dc.relation.referencesA. Colantoni et al., “Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process,” Sci Rep, vol. 11, no. 1, p. 5119, Mar. 2021, doi: 10.1038/s41598-021-84772-y.spa
dc.relation.referencesS. Cheng, A. Huang, S. Wang, and Q. Zhang, “Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood,” Bioresources, vol. 11, no. 2, Mar. 2016, doi: 10.15376/biores.11.2.4006-4016.spa
dc.relation.referencesD. A. Granados, R. A. Ruiz, L. Y. Vega, and F. Chejne, “Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process,” Energy, vol. 139, pp. 818–827, Nov. 2017, doi: 10.1016/j.energy.2017.08.013.spa
dc.relation.referencesJ. M. Rodríguez-Díaz, J. O. P. García, L. R. B. Sánchez, M. G. C. da Silva, V. L. da Silva, and L. E. Arteaga-Pérez, “Comprehensive Characterization of Sugarcane Bagasse Ash for Its Use as an Adsorbent,” Bioenergy Res, vol. 8, no. 4, pp. 1885–1895, Dec. 2015, doi: 10.1007/s12155-015-9646-6.spa
dc.relation.referencesA. A. Shah et al., “The Role of Catalysts in Biomass Hydrothermal Liquefaction and Biocrude Upgrading,” Processes, vol. 10, no. 2, p. 207, Jan. 2022, doi: 10.3390/pr10020207.spa
dc.relation.referencesW. Yang, X. Li, S. Liu, and L. Feng, “Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts,” Energy Convers Manag, vol. 87, pp. 938–945, Nov. 2014, doi: 10.1016/j.enconman.2014.08.004.spa
dc.relation.referencesR. Kaur, B. Biswas, J. Kumar, M. K. Jha, and T. Bhaskar, “Catalytic hydrothermal liquefaction of castor residue to bio-oil: Effect of alkali catalysts and optimization study,” Ind Crops Prod, vol. 149, p. 112359, Jul. 2020, doi: 10.1016/j.indcrop.2020.112359.spa
dc.relation.referencesS. Yin and Z. Tan, “Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions,” Appl Energy, vol. 92, pp. 234–239, Apr. 2012, doi: 10.1016/j.apenergy.2011.10.041.spa
dc.relation.referencesS. Liu, K. Wang, H. Yu, B. Li, and S. Yu, “Catalytic preparation of levulinic acid from cellobiose via Brønsted-Lewis acidic ionic liquids functional catalysts,” Sci Rep, vol. 9, no. 1, p. 1810, Feb. 2019, doi: 10.1038/s41598-018-38051-y.spa
dc.relation.referencesW. L. Marshall and E. U. Franck, “Ion product of water substance, 0–1000 °C, 1–10,000 bars New International Formulation and its background,” J Phys Chem Ref Data, vol. 10, no. 2, pp. 295–304, Apr. 1981, doi: 10.1063/1.555643.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.lembProductos Quimicosspa
dc.subject.lembChemicalseng
dc.subject.lembProductos quimicos de la biomasaspa
dc.subject.lembBiomass chemicalseng
dc.subject.lembResiduos del cafespa
dc.subject.lembCoffee wasteeng
dc.subject.proposalValorización hidrotermalspa
dc.subject.proposalResiduos de caféspa
dc.subject.proposalHTCspa
dc.subject.proposalLHWspa
dc.subject.proposalProductos Químicos plataformaspa
dc.subject.proposalCatalizadoresspa
dc.subject.proposalBiomasseng
dc.subject.proposalHydrotermal valorizationeng
dc.subject.proposalCoffee Wasteeng
dc.subject.proposalHydrotermal carbonizationeng
dc.subject.proposalLiquid Hot Watereng
dc.subject.proposalCinéticaspa
dc.subject.proposalKineticseng
dc.titleBiorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratoriospa
dc.title.translatedHydrothermal biorefinery for the production of platform chemicals from agro-industrial coffee waste: laboratory scaleeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleImplementación de una biorrefinería hidrotermal para la producción de productos químicos de alto valor agregado, mediante el uso de biomasas residuales de procesos agroindustriales, en alianza intersectorial (academia-industria) - Código 1101-914-91642.spa
oaire.fundernameMINCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032500315_2024.pdf
Tamaño:
5.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: