Aplicación de modelamiento y simulación computacional para la predicción y optimización del tiempo-costo en proyectos y procesos constructivos edilicios

dc.contributor.advisorRua Machado, Carlos Andres
dc.contributor.advisorSanta Escobar, Cristian David
dc.contributor.authorRestrepo Ramirez, Andres Felipe
dc.contributor.cvlacRestrepo Ramirez, Andres Felipe [0001821940]spa
dc.contributor.googlescholarAndres Felipe Restrepo Ramirez [https://scholar.google.com/citations?view_op=list_works&hl=es&user=qHQJ0YIAAAAJ]spa
dc.contributor.orcidRestrepo Ramirez, Andres Felipe [0000-0002-1178-7780]spa
dc.contributor.researchgateRestrepo , Andres [https://www.researchgate.net/profile/Andres-Restrepo-7]spa
dc.contributor.researchgroupInnovación y Gestión de la Construcción (IGC).spa
dc.contributor.scopusRestrepo , Andres Felipe [57237198900]spa
dc.date.accessioned2025-05-08T15:49:18Z
dc.date.available2025-05-08T15:49:18Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractTradicionalmente la industria de la construcción se ha caracterizado por su reticencia al uso de tecnologías digitales y adopción de prácticas que permitan avanzar a una cultura de innovación y reinventarse frente a sus pobres resultados, especialmente frente a su capacidad de estimación de plazos y presupuestos. Sus recurrentes retrasos y sobrecostos en la ejecución de proyectos, así como particularmente un rezago en la adopción de nuevas tecnologías no le han permitido capitalizar avances de la ciencia y tecnología aplicable al sector para elevar su productividad (WEF, 2016) (Rahman et al., 2020). Otro aspecto preocupante es la forma en que se concibe el ciclo de vida de los proyectos, ya que reflejan una fragmentación (Mossman, 2020) que condiciona el desarrollo del aprendizaje por experiencia, es decir, lograr cambios adaptativos a los inputs de su entorno (Witteman, 1997) y aprovechar la evaluación de datos que le pueden servir como base de pronóstico (CII, 2013 a). La referenciación en otras industrias y la articulación de escenarios CAE (Clúster-Academia-Empresa) (Rúa Machado et al., 2022) pueden ser una vía para consolidar criterios y establecer formas de conocimiento basados en datos y uso tecnologías. Esta propuesta de investigación plantea el uso de nuevas tecnologías, como el modelamiento y la simulación computacional, para incentivar la apropiación de prácticas que permitan la predictibilidad y capacidad de estimar y optimizar tiempo-costo a partir de datos documentados su en el sector AECO (Architecture, Engineering, Construction and Operactions) en Colombia, aportando al desarrollo de confiabilidad y la disminución de sobrecostos y retrasos en las obras. (Tomado de la fuente)spa
dc.description.abstractTraditionally, the construction industry has been characterized by its reluctance to use digital technologies and adopt practices that allow for advancing towards a culture of innovation and reinventing itself in the face of its poor results, especially regarding its ability to estimate timelines and budgets. Its recurrent delays and cost overruns in project execution, as well as a particular lag in the adoption of new technologies, have not allowed it to capitalize on advances in science and technology applicable to the sector to increase its productivity (WEF, 2016) (Rahman et al., 2020). Another concerning aspect is the way in which the project life cycle is conceived, as it reflects a fragmentation (Mossman, 2020) that conditions the development of learning from experience, that is, achieving adaptive changes to the inputs from its environment (Witteman, 1997) and taking advantage of data evaluation that can serve as a basis for forecasting (CII, 2013 a). Benchmarking in other industries and the articulation of CAE (ClusterAcademia-Enterprise) scenarios (Rúa Machado et al., 2022) can be a way to consolidate criteria and establish forms of knowledge based on data and use of technologies. This research proposal suggests the use of new technologies, such as computational modeling and simulation, to encourage the appropriation of practices that allow for predictability and the ability to estimate and optimize time-cost based on documented data in the AECO (Architecture, Engineering, Construction and Operations) sector in Colombia, contributing to the development of reliability and the reduction of cost overruns and delays in construction works.eng
dc.description.curricularareaConstrucción Y Hábitat.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Construcciónspa
dc.description.researchareaInnovación y Optimización de la Gestiónspa
dc.description.researchareaTecnología en la construcción.spa
dc.format.extent234 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88154
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Arquitecturaspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Arquitectura - Maestría en Construcciónspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdelgawad, M., & Fayek, A. (2010). Risk Management in the Construction Industry Using Combined Fuzzy FMEA and Fuzzy AHP. Journal of Construction Engineering and Management-Asce - J CONSTR ENG MANAGE-ASCE, 136. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210spa
dc.relation.referencesAbdelmegid, M., Gonzalez, V., Poshdar, M., O'Sullivan, M., Walker, C., Ying, F. (2020). Barriers to adopting simulation modelling in construction industry. Automation in Construction. 111. 103046. 10.1016/j.autcon.2019.103046.spa
dc.relation.referencesAbdelouahed, S. M., Abla, R., Asmae, E., & Abdellah, A. (2024). Harnessing feature engineering to improve machine learning: A review of different data processing techniques. 2024 International Conference on Intelligent Systems and Computer Vision (ISCV), 1–6. https://doi.org/10.1109/ISCV60512.2024.10620105spa
dc.relation.referencesAbdomerovic, M. (2022). Project Management Planning. In From Practice to Applied Research. Peter Lang Verlag. https://doi.org/10.3726/b19696spa
dc.relation.referencesAbedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors: where are we and what needs to be done? Proc. VLDB Endow., 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518spa
dc.relation.referencesAboura, K., Kljajić, M., & Eskandarian, A. (2012). The need for simulation in complex industrial systems. Organizacija, 45. https://doi.org/10.2478/v10051-012-0022-4spa
dc.relation.referencesAbouRizk, M. (2010). ‘Role of simulation in construction engineering and management’. In: Journal of Construction Engineering and Management 136.10, pp. 1140–1153.spa
dc.relation.referencesAdekunle, S. A., Onatayo Damilola, A., Madubuike, O. C., Aigbavboa, C., & Ejohwomu, O. (2024). Machine Learning Algorithm Application in the Construction Industry – A Review. In S. Skatulla & H. Beushausen (Eds.), Advances in Information Technology in Civil and Building Engineering (pp. 263–271). Springer International Publishing.spa
dc.relation.referencesAgarwal, A. L., & Mahajan, D. A. (2017). A Probability Analysis of Construction Project Schedule Using Risk Management Tool. MATTER: International Journal of Science and Technology, 3(1), 104 - 109.spa
dc.relation.referencesAl-Baldawi Zainaband, A., & Hussein, I. (2021). Estimating the Optimum Completion Time of Project Using Binomial Distribution and Probabilistic PERT Network. In R.-X. and P. S. Peng Sheng-Lung and Hao (Ed.), Proceedings of First International Conference on Mathematical Modeling and Computational Science (pp. 627–637). Springer Singapore.spa
dc.relation.referencesAlbarello, N., & Welcomme, J.-B. (2012). A model-based method for the generation and optimization of complex systems architectures. 2012 IEEE International Systems Conference SysCon 2012, 1–6. https://doi.org/10.1109/SysCon.2012.6189456spa
dc.relation.referencesAli, A. (2024). The utilization of the discrete event simulation method in scheduling repetitive construction. IOP Conference Series: Earth and Environmental Science, 1355, 012015. https://doi.org/10.1088/1755-1315/1355/1/012015spa
dc.relation.referencesAlzarrad, A. (2020). Fuzzy Monte Carlo Simulation to Optimize Resource Planning and Operations. https://doi.org/10.5772/intechopen.93632spa
dc.relation.referencesAmirzehni, P., Samadianfard, S., Nazemi, A., & Sadraddini, A. (2023). Evaluating capabilities of the spline and cubic spline interpolation functions in reference evapotranspiration estimation implementing satellite image data. Earth Science Informatics, 16. https://doi.org/10.1007/s12145-023-01127-zspa
dc.relation.referencesAnkarali, H., Pasin, Ö., Gönenç, S., & Al Mahmood, A. K. (2023). Interaction between numerical variables in regression model, and its graphical interpretation. Bangladesh Journal of Medical Science, 22(1), 189–194. https://doi.org/10.3329/bjms.v22i1.63078spa
dc.relation.referencesAsfoor, H. M. A., AL-Jandeel, A. A. T., Igorevich, K. K., & Ivanovna, L. A. (2022). Control of Time, Cost and Quality of Construction Project Management. E3S Web Conf., 336. https://doi.org/10.1051/e3sconf/202233600072spa
dc.relation.referencesBabar, S., Thaheem, MJ y Ayub, B. (2017). Costo estimado al finalizar: integración del riesgo en la gestión del valor ganado. Revista de Ingeniería y Gestión de la Construcción , 143 (3). https://doi.org/10.1061/(asce)co.1943-7862.0001245spa
dc.relation.referencesBaghalzadeh Shishehgarkhaneh, M., Moehler, R. C., Fang, Y., Aboutorab, H., & Hijazi, A. A. (2024). Construction supply chain risk management. Automation in Construction, 162, 105396. https://doi.org/https://doi.org/10.1016/j.autcon.2024.105396spa
dc.relation.referencesBallard, G. (2000). Sistema de ejecución de proyectos ajustados (Revisión 1). http://www.leanconstruction.org/pdf/WP8-LPDS.pdfspa
dc.relation.referencesBallard, G. (2008). El sistema de ejecución de proyectos Lean: una actualización. www.leanconstructionjournal.orgspa
dc.relation.referencesBarbu, A., & Zhu, S.-C. (2020). Introduction to Monte Carlo Methods. In A. Barbu & S.-C. Zhu (Eds.), Monte Carlo Methods (pp. 1–17). Springer Singapore. https://doi.org/10.1007/978-981-13-2971-5_1spa
dc.relation.referencesBauce, G. (2007). El problema de investigación. Revista de La Facultad de Medicina, 30, 115–118.spa
dc.relation.referencesBen-Alon, L & Sacks R. (2017). ‘Simulating the behavior of trade crews in construction using agents and building information modeling’. In: Automation in Construction 74, pp. 12–27.spa
dc.relation.referencesBerthold, M. R., Borgelt, C., Höppner, F., Klawonn, F., & Silipo, R. (2020). Deployment and Model Management. In M. R. Berthold, C. Borgelt, F. Höppner, F. Klawonn, & R. Silipo (Eds.), Guide to Intelligent Data Science: How to Intelligently Make Use of Real Data (pp. 319–328). Springer International Publishing. https://doi.org/10.1007/978-3-030-45574-3_10spa
dc.relation.referencesBhattacharya, S. P. (2023). The Fundamentals of Resource Optimization in Construction Projects. In V. J. (Ed.), Building Construction and Technology (pp. 139–156). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3526-0_10spa
dc.relation.referencesBhosale, T., Biradar, A., Bhat, K., Barhate, S., & Kotwal, J. (2023). Applied Deep Learning for Safety in Construction Industry. In I. J. Jacob, S. Kolandapalayam Shanmugam, & I. Izonin (Eds.), Data Intelligence and Cognitive Informatics (pp. 167–181). Springer Nature Singapore.spa
dc.relation.referencesBishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer, Berlin. https://link.springer.com/book/9780387310732spa
dc.relation.referencesBokor, O., Florez-Perez, L., Osborne, A., Gledson, B. (2019). Overview of construction simulation approaches to model construction processes. Organization, Technology and Management in Construction: an International Journal. 11. 1853-1861. 10.2478/otmcj-2018-0018.spa
dc.relation.referencesBotero, L. F. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construcción. Revista Universidad EAFIT. https://doi.org/10.1080/17549507.2022.2055145spa
dc.relation.referencesBrioso, X., Murguía, D., & Urbina, A. (2017). Comparación de tres métodos de programación utilizando modelos BIM en el sistema Last Planner. Organización, tecnología y gestión en la construcción: una revista internacional, 9 (1), 1604–1614. https://doi.org/10.1515/otmcj-2016-0024spa
dc.relation.referencesCabrera, A. G. (2010). Simulación de procesos constructivos. Revista Ingenieria de Construccion, 25(1), 121–141. https://doi.org/10.4067/s0718-50732010000100006spa
dc.relation.referencesCamacol y Sena. (2015). Proyecto de investigación del sector de la construcción de edificación en Colombia .spa
dc.relation.referencesCarvajal, H. (2013). EL DISEÑO DE EJECUCIÓN “Un planteamiento metodológico para la enseñanza de la planeación de obras a constructores, arquitectos e ingenieros civiles” (Primera edición). Universidad Nacional de Colombia - Sede Medellín.spa
dc.relation.referencesChiou, S. H., Xu, G., Yan, J., & Huang, C. Y. (2023). Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg. Journal of Statistical Software, 105(5), 1–34. https://doi.org/10.18637/jss.v105.i05spa
dc.relation.referencesCII. (2013a). Improving the Accuracy and Timeliness of Project Outcome Predictions.spa
dc.relation.referencesCII. (2013 b). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación 291-2 .spa
dc.relation.referencesCIRIA. (2013). Implementación de Lean en la construcción: descripción general de las guías CIRIA y una breve introducción a Lean .spa
dc.relation.referencesCodina, L. (2022). Revisiones de la literatura y cómo llevarlas a cabo con garantías: systematic reviews y SALSA Framework. https://www.lluiscodina.com/revision-sistematica-salsa-framework/spa
dc.relation.referencesCohen, S. (2021). Chapter 5 - Dealing with data: strategies of preprocessing data. In S. Cohen (Ed.), Artificial Intelligence and Deep Learning in Pathology (pp. 77–92). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-67538-3.00005-1spa
dc.relation.referencesContreras, J. (2013). Aplicación de la herramienta time-lapse para la identificación y reducción de pérdidas en edificaciones con estructura en concretospa
dc.relation.referencesCooke-Davies, T. (2011). Aspectos de complejidad: Gestión de Proyectos en un mundo complejo (Primera). Instituto de manejo proyectos.spa
dc.relation.referencesCorlatti, L. (2021). Regression Models, Fantastic Beasts, and Where to Find Them: A Simple Tutorial for Ecologists Using R. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211051522spa
dc.relation.referencesCreswell, J. (2013). Qualitative Inquary & Research Design (V. Knight, Ed.; 3rd ed., Vol. 3). Sage.spa
dc.relation.referencesDatta, S. D., Islam, M., Rahman Sobuz, Md. H., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26888spa
dc.relation.referencesDave, B., Koskela, L., & Kiviniemi, A. (2013). Implementing Lean in construction. Assets.Highways.Gov.Uk, 44+29-44+29. http://assets.highways.gov.uk/specialist-information/knowledge-compendium/2011-13-knowledge-programme/Lean and the Sustainability Agenda.pdfspa
dc.relation.referencesDayal, V. (2020). Graphs for Time Series. In V. Dayal (Ed.), Quantitative Economics with R: A Data Science Approach (pp. 259–271). Springer Singapore. https://doi.org/10.1007/978-981-15-2035-8_13spa
dc.relation.referencesDe Carvalho Servia, M. Á., & del Rio Chanona, E. A. (2023). Model Structure Identification. In D. Zhang & E. A. del Río Chanona (Eds.), Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications (Vol. 26, p. 0). Royal Society of Chemistry. https://doi.org/10.1039/BK9781837670178-00085spa
dc.relation.referencesDenzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative Researchspa
dc.relation.referencesDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics. https://api.semanticscholar.org/CorpusID:52967399spa
dc.relation.referencesDiaz, M. (2019). MEDIDAS ESTADÌSTICAS BIVARIANTES. https://www.goconqr.com/mapamental/17124557/medidas-estadisticas-bivariantesspa
dc.relation.referencesDuarte, N., & Pinilla, J. J. (2014). Razón de costo-efectividad de la implementación de la metodología BIM y la metodología tradicional en la planeación y control de un proyecto de construcción de vivienda en Colombia. Pontificia Universidad Javerianaspa
dc.relation.referencesEcheverry, J., & Giraldo, M. (2012). Mejoramiento de Procesos Constructivos de una Edificación a Partir de Simulación Digital y Videos Time Lapse.spa
dc.relation.referencesElhilbawi, H., Eldawlatly, S., & Mahdi, H. (2021). The Importance of Discretization Methods in Machine Learning Applications: A Case Study of Predicting ICU Mortality. In A.-E. Hassanien, K.-C. Chang, & T. Mincong (Eds.), Advanced Machine Learning Technologies and Applications (pp. 214–224). Springer International Publishing.spa
dc.relation.referencesElsahly, O. M., Ahmed, S., & Abdelfatah, A. (2023). Systematic Review of the Time-Cost Optimization Models in Construction Management. In Sustainability (Switzerland) (Vol. 15, Issue 6). MDPI. https://doi.org/10.3390/su15065578spa
dc.relation.referencesEnsign, P. C. (2009). Construction of Variables. In P. C. Ensign (Ed.), Knowledge Sharing among Scientists: Why Reputation Matters for R&D in Multinational Firms (pp. 63–93). Palgrave Macmillan US. https://doi.org/10.1057/9780230617131_4spa
dc.relation.referencesFadjar, A., Nirmalawati, N., & Hidayat, N. (2022). Estimating Project Completion Time with Monte Carlo Simulation. REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development, 3(2), 21–26. https://doi.org/10.22487/renstra.v3i2.448spa
dc.relation.referencesFaraji, A., Rashidi, M., Perera, S., & Samali, B. (2022). Applicability-Compatibility Analysis of PMBOK Seventh Edition from the Perspective of the Construction Industry Distinctive Peculiarities. Buildings, 12(2). https://doi.org/10.3390/buildings12020210spa
dc.relation.referencesFaraway, J. J. (2016). Does data splitting improve prediction? Statistics and Computing, 26(1), 49–60. https://doi.org/10.1007/s11222-014-9522-9spa
dc.relation.referencesFleming, Q. W., & Koppelman, J. M. (2016). Earned Value Project Management (Fourth Edition). Project Management Institute. https://books.google.com.co/books?id=yOSuDgAAQBAJspa
dc.relation.referencesFrącz, P., Dąbrowski, I., Wotzka, D., Zmarzły, D., & Mach, Ł. (2023). Identification of Differences in the Seasonality of the Developer and Individual Housing Market as a Basis for Its Sustainable Development. Buildings, 13(2). https://doi.org/10.3390/buildings13020316spa
dc.relation.referencesGaitán, J. & Gómez-Cabrera, A. (2014). Uso de la metodología BRIM (Bridge Information Modeling) como herramienta para la planificación de la construcción de un puente de concreto en Colombia. Ciencia e Ingeniería Neogranadina. 24. 145. 10.18359/rcin.398.spa
dc.relation.referencesGantt, HL (1910). Trabajo, salario y beneficio. Nuevo. En The Engineering Magacine (Ed.), Biblioteca de Gestión Industrial (Segunda Edi). http://www.nber.org/papers/w16019spa
dc.relation.referencesGell-Mann, M. (1995). El quark y el jaguar: Aventuras en lo simple y lo complejo (Tusquets, Ed.).spa
dc.relation.referencesGeng, S. (2024). Analysis of the Different Statistical Metrics in Machine Learning. Highlights in Science, Engineering and Technology, 88, 350–356. https://doi.org/10.54097/jhq3tv19spa
dc.relation.referencesGerasymenko, V., Protsenko, О., Bielykh, I., & Tymchenko, I. (2023). Implementation of Artificial Neural Networks and Fuzzy Logic in Civil and Industrial Construction. https://doi.org/10.21203/rs.3.rs-3669381/v1spa
dc.relation.referencesGhosh, S., & Dasgupta, R. (2022). Model Selection for Machine Learning. In S. Ghosh & R. Dasgupta (Eds.), Machine Learning in Biological Sciences: Updates and Future Prospects (pp. 51–57). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8881-2_5spa
dc.relation.referencesGómez-Cabrera, A. (2013). Implementación de metodologías BIM en el entorno Colombiano.spa
dc.relation.referencesGómez-Cabrera, A. Pulido, N. & Díaz, J. (2015). Simulación de eventos discretos y líneas de balance, aplicadas al mejoramiento del proceso constructivo de la cimentación de un edificio. Ingeniería y Ciencia. 11. 157-175. 10.17230/ingciencia.11.21.8.spa
dc.relation.referencesGonzález, Jaime & Suarez, Sandra.(2017).Evaluación de la influencia del pmi® sobre la triple restricción de un proyecto de consultoría de infraestructura: caso de estudio basado en diseños de obras civiles para servicio público domiciliario en Bogotá.spa
dc.relation.referencesGonzález-Cruz, M.-C., Ballesteros-Pérez, P., Lucko, G., & Zhang, J.-X. (2022). Critical Duration Index: Anticipating Project Delays from Deterministic Schedule Information. Journal of Construction Engineering and Management, 148(11), 4022121. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002387spa
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. www.deeplearningbook.orgspa
dc.relation.referencesGovernment Accountability Office. (2015). Guía de evaluación de cronogramas: mejores prácticas para cronogramas de proyectos.spa
dc.relation.referencesGranados, Alejandra & Ivonne, Perez.(2014).Simulación Para El Mejoramiento De La Logística De Materiales y Equipos En Un Proyecto De Edificaciónspa
dc.relation.referencesGrau, D., Back, WE y Aguilar, GM (2013). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación , 291–292.spa
dc.relation.referencesGrau, D., y Back, NOSOTROS (2015). Índice de previsibilidad: métrica novedosa para evaluar el costo y el rendimiento del cronograma. Revista de Ingeniería y Gestión de la Construcción , 141 (12), 1–8. https://doi.org/10.1061/(asce)co.1943-7862.0000994spa
dc.relation.referencesGupta, M., Rajpoot, V., Chaturvedi, A., & Agrawal, R. (2022). A detailed Study of different Clustering Algorithms in Data Mining. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/CONIT55038.2022.9848233spa
dc.relation.referencesGupta, P., & Bagchi, A. (2024). Machine Learning. In P. Gupta & A. Bagchi (Eds.), Essentials of Python for Artificial Intelligence and Machine Learning (pp. 283–448). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43725-0_8spa
dc.relation.referencesHamdan, Samer Bu et al. (2015). ‘A BIM-based simulation model for inventory management in panelized construction’. In: Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 32. IAARC Publications, p. 1.spa
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics).spa
dc.relation.referencesHeikki, Halttula., Harri, Haapasalo., Risto, Silvola. (2020). 3. Managing data flows in infrastructure projects: the lifecycle process model. Journal of Informationspa
dc.relation.referencesHendradewa, A. (2019). Schedule Risk Analysis by Different Phases of Construction Project Using CPM-PERT and Monte-Carlo Simulation. IOP Conference Series: Materials Science and Engineering, 528, 012035. https://doi.org/10.1088/1757-899X/528/1/012035spa
dc.relation.referencesHermano, V., & Martín-Cruz, N. (2019). Expanding the Knowledge on Project Management Standards: A Look into the PMBOK® with Dynamic Lenses. 19–34. https://doi.org/10.1007/978-3-319-92273-7_2spa
dc.relation.referencesHernández R, Fernández C, Baptista P. Metodología de la Investigación. México: McGraw-Hill; 1998:9-13.spa
dc.relation.referencesHillson, D., & Simon, P. (2012). Practical project risk management : the ATOM methodology (Second edition). Management Concepts Press. http://site.ebrary.com/id/10850167spa
dc.relation.referencesHo, V. L., Ho, N., & Pedersen, T. B. (2023). Mining Seasonal Temporal Patterns in Time Series. 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2249–2261. https://doi.org/10.1109/ICDE55515.2023.00174spa
dc.relation.referencesHuang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241spa
dc.relation.referencesHuang, Y., Shi, Q., Zuo, J., Pena-Mora, F., & Chen, J. (2021). Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. In Advances in Civil Engineering (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6674980spa
dc.relation.referencesHuaping, X. (2024). Optimization Control of Construction Project Management Project Based on Deep Learning Algorithm. https://doi.org/10.1109/APCIT62007.2024.10673593spa
dc.relation.referencesIBM. (2024). ¿Qué es la simulación Montecarlo? https://www.ibm.com/es-es/topics/monte-carlo-simulationspa
dc.relation.referencesIBM. (nd). Sistema de estadísticas IBM SPSS . Recuperado el 11 de agosto de 2023 de https://www.ibm.com/docs/es/spss-statistics/saas?topic=regression-nonlinearspa
dc.relation.referencesIndustrial Conconcreto S.A.S. (2019). Declaración Ambiental de Producto ARENA, TRITURADO 1” Y 3/8”.spa
dc.relation.referencesIzquierdo, Luis R.; Galán, José M.;Santos, José I.;del Olmo, Ricardo (2008). Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemasspa
dc.relation.referencesJaafari, A., Pazhouhan, I. y Bettinger, P. (2021). Modelado de aprendizaje automático de los costos de construcción de caminos forestales. Bosques , 12 (9). https://doi.org/10.3390/f12091169spa
dc.relation.referencesJang, J.-S., Sun, C.-T., & Mizutani, E. (1997). In Neuro-Fuzzy and Soft Computing (Vol. 34).spa
dc.relation.referencesJie, D., & Wei, J. (2022). Estimating Construction Project Duration and Costs upon Completion Using Monte Carlo Simulations and Improved Earned Value Management. Buildings, 12(12). https://doi.org/10.3390/buildings12122173spa
dc.relation.referencesKadang, T., Hidayah, P. W., Simarmata, K., Putri, N. A., & Krisvinus, K. (2024a). Analysis of Consultant Building Project Management Using the CPM (Critical Path Method). Journal of Business Management and Economic Development, 2(03), 1169–1179. https://doi.org/10.59653/jbmed.v2i03.891spa
dc.relation.referencesKalita, J. K., Bhattacharyya, D. K., & Roy, S. (2024). 3 - Data preparation. In J. K. Kalita, D. K. Bhattacharyya, & S. Roy (Eds.), Fundamentals of Data Science (pp. 31–46). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-32-391778-0.00010-7spa
dc.relation.referencesKamandang, Z. R. (2023). Risk Assessment of Construction Project Scheduling. In B. S. and S. M. and S. A. Kristiawan Stefanus Adi and Gan (Ed.), Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering (pp. 863–872). Springer Nature Singaporespa
dc.relation.referencesKedir, N., Siraj, N., & Fayek, A. R. (2023). Application of System Dynamics in Construction Engineering and Management: Content Analysis and Systematic Literature Review. Advances in Civil Engineering, 2023(1), 1058063. https://doi.org/https://doi.org/10.1155/2023/1058063spa
dc.relation.referencesKenley, R. y Seppänen, O. (2009). Gestión de proyectos de construcción basada en la ubicación: parte de una nueva tipología de metodologías de programación de proyectos. En actas - Conferencia de simulación de invierno . https://doi.org/10.1109/WSC.2009.5429669spa
dc.relation.referencesKerzner, H. (2022). Gestión de proyectos de innovación: métodos, estudios de casos y herramientas para la gestión de proyectos de innovación . Wiley. https://books.google.com.co/books?id=cWedEAAAQBAJspa
dc.relation.referencesKerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons.spa
dc.relation.referencesKlir, G.J. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall Inc., Upper Saddle River.spa
dc.relation.referencesKloppenborg, T. J., Anantatmula, V. S., & Wells, K. N. (2023). Contemporary Project Management: Organize, Lead, Plan, Perform. Cengage. https://books.google.com.co/books?id=XwU90AEACAAJspa
dc.relation.referencesKoren, M., Peretz, O., & Koren, O. (2023). Feature Engineering Procedure for Information Enrichment. 2023 International Conference on Advanced Enterprise Information System (AEIS), 28–34. https://doi.org/10.1109/AEIS61544.2023.00012spa
dc.relation.referencesKoreshi, Z. U. (2022). Chapter 7 - The Monte Carlo method. In Z. U. Koreshi (Ed.), Nuclear Engineering Mathematical Modeling and Simulation (pp. 305–336). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90618-0.00007-7spa
dc.relation.referencesKoskela, L., Ferrantelli, A., Niiranen, J., Pikas, E. y Dave, B. (2019). Explicación epistemológica de la construcción Lean. Revista de Ingeniería y Gestión de la Construcción , 145 (2), 1–10. https://doi.org/10.1061/(asce)co.1943-7862.0001597spa
dc.relation.referencesKoskela, LJ, Ballard, G. y Tommelein, I. (2002). Los fundamentos de la construcción lean . https://www.researchgate.net/publication/28578914spa
dc.relation.referencesKostrzewa-Demczuk, P. (2024). Construction Schedule versus Various Constraints and Risks. Applied Sciences, 14(1). https://doi.org/10.3390/app14010196spa
dc.relation.referencesKoulinas, G. K., Sidas, K. A., & Koulouriotis, D. E. (2023). Project Makespan Prediction and Risk Analysis Using Simulation: Application in a Seawater Desalination Plant Construction Project. In N. F. Matsatsinis, F. C. Kitsios, M. A. Madas, & M. I. Kamariotou (Eds.), Operational Research in the Era of Digital Transformation and Business Analytics (pp. 149–157). Springer International Publishing.spa
dc.relation.referencesLadnykh, I. A., & Ibadov, N. (2024). Estimating the Duration of Construction Works Using Fuzzy Modeling to Assess the Impact of Risk Factors. Applied Sciences, 14(9). https://doi.org/10.3390/app14093847spa
dc.relation.referencesLaw, Averill M and W David Kelton (2000). Simulation modeling and analysis. Vol. 3. McGraw-Hill New York.spa
dc.relation.referencesLiu, B. D., Yang, B., Han, Y., Xiao, J. Z., & Dong, M. S. (2023). Establishment and Application of Multi-agent Simulation System Based on On-Site Construction Performers. In G. Geng, X. Qian, L. H. Poh, & S. D. Pang (Eds.), Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022 (pp. 284–304). Springer Nature Singapore.spa
dc.relation.referencesLiu, M., Le, Y., Hu, Y., Xia, B., Skitmore, M., & Gao, X. (2019). System dynamics modeling for construction management research: critical review and future trends. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 25, 1–12. https://doi.org/10.3846/jcem.2019.10518spa
dc.relation.referencesLiu, W., Meng, Q., Zhi, H., Li, Z., & Hu, X. (2024). A REVIEW OF AGENT-BASED MODELING IN CONSTRUCTION MANAGEMENT: AN ANALYTICAL FRAMEWORK BASED ON MULTIPLE OBJECTIVES. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 30, 200–219. https://doi.org/10.3846/jcem.2024.20949spa
dc.relation.referencesLukman, S., Nazaruddin, Y., ai, bo, He, R., & Joelianto, E. (2019). Estimation of Received Signal Power for 5G-Railway Communication Systems. https://doi.org/10.1109/ICEVT48285.2019.8994017spa
dc.relation.referencesMadrakhimov, S., Makharov, K., & Lolaev, M. (2021). Data preprocessing on input. AIP Conference Proceedings, 2365(1), 030003. https://doi.org/10.1063/5.0058132spa
dc.relation.referencesMahesh Babu, P., Pedro, L., & GhaffarianHoseini, A. (2024). Construction projects: interactions of the causes of delays. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-11-2023-0334spa
dc.relation.referencesMansoor, A., Liu, S., Ali, G. M., Bouferguene, A., & Al-Hussein, M. (2022). Scientometric analysis and critical review on the application of deep learning in the construction industry. Canadian Journal of Civil Engineering, 50(4), 253–269. https://doi.org/10.1139/cjce-2022-0379spa
dc.relation.referencesMarinelli, M., & Janardhanan, M. (2023). The Value Proposition of Machine Learning in Construction Management: Exploring the Trends in Construction 4.0 and Beyond (pp. 247–272). https://doi.org/10.4018/978-1-6684-5643-9.ch010spa
dc.relation.referencesMarsh, ER (1975). El armograma de Carol Adamiecki. Revista de la Academia de Gestión , 18 (2), 358–364. https://doi.org/10.2307/255537spa
dc.relation.referencesMohagheghi, V., Mousavi, S. M., & Vahdani, B. (2017). Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Computing and Applications, 28(11), 3393–3411. https://doi.org/10.1007/s00521-016-2235-6spa
dc.relation.referencesMohamed, HH, Ibrahim, AH y Soliman, AA (2021). Hacia la reducción del tiempo de entrega de proyectos de construcción con recursos limitados. Sostenibilidad (Suiza) , 13 (19), 1–17. https://doi.org/10.3390/su1spa
dc.relation.referencesMorín, E. (1990). Introducción al Pensamiento Complejo (Gedisa, Ed.; 10ª, 2011ª ed.).spa
dc.relation.referencesMosquera, R., Parra Osorio, L., & Castrillón, O. (2016). Metodología para la Predicción del Grado de Riesgo Psicosocial en Docentes de Colegios Colombianos utilizando Técnicas de Minería de Datos. Información Tecnológica, 27, 259–272. https://doi.org/10.4067/S0718-07642016000600026spa
dc.relation.referencesMossman, A. (2020). Construction is Broken. In Lean construction blog (Issue 2003, pp. 1–18). https://leanconstructionblog.com/construction-is-broken.htmlspa
dc.relation.referencesMossman, A., Ballard, G., & Pasquire, & C. (2013). Lean Project Delivery - Innovation in Integrated Design & Delivery. The Design Manager’s Handbook, January, 165–190. https://doi.org/10.1002/9781118486184.app1spa
dc.relation.referencesMykytyuk, P., Brych, V., Manzhula, V., Borysiak, O., Sachenko, A., Banasik, A., Kempa, W. M., Mykytyuk, Y., Czupryna-Nowak, A., & Lebid, I. (2024). Efficient Management of Material Resources in Low-Carbon Construction. Energies, 17(3). https://doi.org/10.3390/en17030575spa
dc.relation.referencesNascimento, J., Silva, J., Cupertino Bernardes, R., Costa, G., & Emiliano, P. (2024). Statistical data transformation in agrarian sciences for variance analysis: a systematic review. F1000Research, 13, 459. https://doi.org/10.12688/f1000research.144805.2spa
dc.relation.referencesNeethidevan, V., & Anand, S. (2022). Implementing and evaluating the performance of various Machine Learning algorithms with different datasets. International Journal of Health Sciences, 4684–4694. https://doi.org/10.53730/ijhs.v6nS1.5890spa
dc.relation.referencesOgunbayo, B. F., Ramabodu, M. S., Adewale, B. A., & Ogundipe, K. E. (2024). Strategies for Successful Monitoring and Evaluation Practices in Construction Projects. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–7. https://doi.org/10.1109/SEB4SDG60871.2024.10630137spa
dc.relation.referencesOlivieri, H., Seppänen, O. y Denis Granja, A. (2018). Mejorar el flujo de trabajo y el uso de recursos en los cronogramas de construcción a través del sistema de gestión basado en la ubicación (LBMS). Gestión y economía de la construcción , 36 (2), 109–124. https://doi.org/10.1080/01446193.2017.1410561spa
dc.relation.referencesOlubajo, O., Hughes, W., & Schweber, L. (2019). Construction Programmes and Programming: A Critical Review. In I. Lill & E. Witt (Eds.), 10th Nordic Conference on Construction Economics and Organization (Vol. 2, pp. 189–194). Emerald Publishing Limited. https://doi.org/10.1108/S2516-285320190000002045spa
dc.relation.referencesOrozco, A. (2012). Estos nuevos escenarios teóricos, se plantearon variando la cantidad y tipos de recursos.spa
dc.relation.referencesOrtiz-Pimiento, N. R. (2020). Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria Solution model to the resource constrained project scheduling problem RCPSP with insertion task and random duration.spa
dc.relation.referencesOsorio-Sandoval, C. A. (2021). BIM-based construction simulation modelling.spa
dc.relation.referencesParhizkar, T. (2022). Simulation-based Probabilistic Risk Assessment.spa
dc.relation.referencesPascual, J. (2021, July 17). Regresión Logística para clasificadores de Machine Learning I: la curva de regresión logística. https://analisisyprogramacionoop.blogspot.com/2021/07/regresion-logistica-machine-learning.htmlspa
dc.relation.referencesPaterson, SJC (2017). Desarrollo de un modelo de puntuación utilizando las mejores prácticas de evaluación de cronogramas de la GAO: vol. VI . www.pmworldlibrary.netspa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12.spa
dc.relation.referencesPellerin, R. y Perrier, N. (2019). Una revisión de métodos, técnicas y herramientas para la planificación y control de proyectos. Revista internacional de investigación de producción , 57 (7), 2160–2178. https://doi.org/10.1080/00207543.2018.1524168spa
dc.relation.referencesPeña, D. (2001). «Deducción de distribuciones: el método de Monte Carlo», en Fundamentos de Estadística. Madrid: Alianza Editorial. ISBN 84-206-8696-4.spa
dc.relation.referencesPerez-Cruz, F., Van Vaerenbergh, S., Murillo-Fuentes, J., Lázaro-Gredilla, M., & Santamaria, I. (2013). Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. Signal Processing Magazine, IEEE, 30, 40–50. https://doi.org/10.1109/MSP.2013.2250352spa
dc.relation.referencesPilnik, N., Pospelov, I. G., & Stankevich, I. (2015). On the Use of Dummy Variables to Solve the Problem of Seasonality in General Equilibrium Models. HSE Economic Journal, 19, 249–270. https://api.semanticscholar.org/CorpusID:119708184spa
dc.relation.referencesPlebankiewicz, E., Zima, K., & Wieczorek, D. (2021). Modelling of time, cost and risk of construction with using fuzzy logic. Journal of Civil Engineering and Management, 27, 412–426. https://doi.org/10.3846/jcem.2021.15255spa
dc.relation.referencesPMI. (2016). Extensión de construcción de la guía PMBOK® (Inc. Project Management Institute, Ed.; 2ª ed.).spa
dc.relation.referencesPMI. (2017). Guía de los fundamentos para la dirección de proyectos (Guía del PMBOK) (Inc. Project Management Institute, Ed.; Sexta Edic). Project Management Institute, Inc.spa
dc.relation.referencesPMI. (2021). A guide to the project management body of knowledge (PMBOK guide) (Seventh ed). Project Management Institute.spa
dc.relation.referencesPopîrlan, C., & Popîrlan, C.-I. (2023). New Techniques in Numerical Analysis for Artificial Intelligence. 2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 76–81. https://doi.org/10.1109/SYNASC61333.2023.00017spa
dc.relation.referencesPortland Cement Association. (2014). Declaración Ambiental de Producto Cementos adicionados (según ASTM C595, ASTM C1157, AASHTOM240, o CSA A3001). www.astm.orgspa
dc.relation.referencesPoslavskaya, E., & Korolev, A. (2023). Encoding categorical data: Is there yet anything “hotter” than one-hot encoding? https://arxiv.org/abs/2312.16930spa
dc.relation.referencesRafieian, B., Hermosilla, P., & Vázquez, P.-P. (2023). Improving Dimensionality Reduction Projections for Data Visualization. Applied Sciences, 13(17). https://doi.org/10.3390/app13179967spa
dc.relation.referencesRahman, A. U., Alam, S. M., Dallasega, P., Marengo, E., & Nutt, W. (2020). Increasing Control in Construction Processes: The Role of Digitalization. Lecture Notes in Business Information Processing, 397(May), 263–275. https://doi.org/10.1007/978-3-030-66498-5_20spa
dc.relation.referencesRao, S., & Moon, K. (2021). Literature Search for Systematic Reviews. In S. Patole (Ed.), Principles and Practice of Systematic Reviews and Meta-Analysis (pp. 11–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-71921-0_2spa
dc.relation.referencesRavitch, S., & Carl, N. M. (2016). Qualitative Research: Bridging the Conceptual, Theoretical, and Methodological. Thousand Oaks, CA: Sage Publications.spa
dc.relation.referencesRemington, K., & Pollack, J. (2016). Tools for Complex Projects (Vol. 1). Routledge.spa
dc.relation.referencesRestrepo, A. F., Rúa, C. A., & Arias, Y. P. (2024). OPTIMIZATION IN THE DESIGN OF CONCRETE MIXES FOR THE SUSTAINABILITY OF A SOUTH AMERICAN METROPOLITAN AREA BY IMPLEMENTING MATERIAL LIFE CYCLE ANALYSIS. Habitat Sustentable, 14(1), 44–65. https://doi.org/10.22320/07190700.2024.14.01.04spa
dc.relation.referencesRios Quiroz, M. F. (2018). Propuesta de mejora en la productividad de mano de obra y equipos del proceso ejecución de obra del área de operaciones en empresa especializada en construcciones civiles de instalación del servicio de agua en sistemas de irrigación. Universidad Peruana de Ciencias Aplicadas (UPC). http://hdl.handle.net/10757/622894spa
dc.relation.referencesRodríguez-Ponce, R. (2022). MAC-based Artificial Neural network for voice command recognition. Revista Del Diseño Innovativo, 19–25. https://doi.org/10.35429/JID.2022.15.6.19.25spa
dc.relation.referencesRojas, M. (2017).Guía de gestión de la calidad para los proyectos constructivos de la empresa Navarro y Avilés S.A.spa
dc.relation.referencesRúa Machado, C. A., Arboleda López, S. A., & Serna Machado, N. (2022). Pilotos para la transferencia de conocimiento entorno a la digitalización en la construcción en Medellín, Colombia. Revista M, 19. https://doi.org/10.15332/rev.m.v19i1.2833spa
dc.relation.referencesRúa-Machado, C. A. (2022). Gestión de la construcción para una era digital. Tecnología, transformación y cooperación como retos del ejercicio pedagógico en la gestión del diseño y la construcción de edificios. In Universidad Nacional de Colombia Sede Medellín (Ed.), Construcción Temas y reflexiones (pp. 121–155). Facultad de Arquitectura.spa
dc.relation.referencesRudeli, N. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.spa
dc.relation.referencesRudeli, N., Santilli, A., Puente, I., & Viles, E. (2017). Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database. Journal of Construction Engineering and Management, 143(11). https://doi.org/10.1061/(asce)co.1943-7862.0001396spa
dc.relation.referencesRudeli, N., Viles, E. y Santilli, A. (2018). Una herramienta de gestión de la construcción: determinación de los comportamientos típicos del cronograma de un proyecto mediante el análisis de conglomerados. Academia Mundial de Ciencia, Ingeniería y Tecnología Revista Internacional de Ingeniería Civil y Ambiental Vol:12, No:5, 2018 , 12 (5), 485–492. https://doi.org/10.1999/1307-6892/10008879spa
dc.relation.referencesRudeli, Natalia. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.spa
dc.relation.referencesRussell, S.J. and Norvig, P. (2016) Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia.spa
dc.relation.referencesSawhney, A., Reley, M. e Irizarry, J. (2020). Construcción 4.0. Una plataforma de innovación para el entorno construido. En Routledge . Routledge es una marca de Taylor & Francis Group, una empresa informa ©.spa
dc.relation.referencesSenses, S., & Kumral, M. (2024). Trade-off between time and cost in project planning: a simulation-based optimization approach. SIMULATION, 100(2), 127–143. https://doi.org/10.1177/00375497231196889spa
dc.relation.referencesS. y McCarthy, D. (2019). Causas de retrasos y herramientas digitales emergentes: un modelo novedoso de análisis de retrasos, que incluye la entrega integrada de proyectos y el PMBOK. En edificios (Vol. 9, Número 9). https://doi.org/10.3390/buildings9090191spa
dc.relation.referencesSerna-Gutiérrez, E. (2023). Propuesta metodológica para la planificación y control de proyectos de construcción basada en un complemento informático. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/84031spa
dc.relation.referencesShubham, S., Saloni, S., & Sidra-Tul-Muntaha. (2023). Optimizing construction processes and improving building performance through data engineering and computation. World Journal of Advanced Research and Reviews, 18, 390–398. https://doi.org/10.30574/wjarr.2023.18.1.0614spa
dc.relation.referencesSingh, U. P. (2023). Decision Making and Predictive Analysis for Real Time Data. In Advances in Data Science and Analytics (pp. 21–38). https://doi.org/https://doi.org/10.1002/9781119792826.ch2spa
dc.relation.referencesSreram, P. K., & Thomas, A. (2023). A Value Stream Mapping-Based Discrete Event Simulation Template For Lean Off-Site Construction Activities. 2023 Winter Simulation Conference (WSC), 2768–2776. https://doi.org/10.1109/WSC60868.2023.10407723spa
dc.relation.referencesStake, R. (1999). Investigación con estudios de caso. In Mejía Lequerica (Ed.), Investigacion con estudios de casos (Ediciones Morata, Vol. 2). Sage Publication. https://www.redalyc.org/pdf/2810/281021548015.pdfspa
dc.relation.referencesSurya-Prakash, S., Joseph, S. M., Kishore, D., & Yamini-Devi, Y. (2023). Stochastic Computing Solutions Challenges and Application. Advances in Transdisciplinary Engineering, 32, 71–77. https://doi.org/10.3233/ATDE221239spa
dc.relation.referencesSzeliski, R. (2010) Computer Vision: Algorithms and Applications. Springer, London, UK.spa
dc.relation.referencesSZÓSTAK, M. (2023). Forecasting the Course of Cumulative Cost Curves for Different Construction Projects. Civil and Environmental Engineering Reports, 33(1), 71–89. https://doi.org/10.59440/ceer-2023-0005spa
dc.relation.referencesTaghaddos, Hosein (2010). ‘Developing a generic resource allocation framework for construction simulation’. Doctoral dissertation. University of Alberta.spa
dc.relation.referencesTan, J., Yang, J., Wu, S., Chen, G., & Zhao, J. (2021). A critical look at the current train/test split in machine learning. https://doi.org/10.48550/arXiv.2106.04525spa
dc.relation.referencesTempl, M. (2023). Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values. Mathematics, 11(12). https://doi.org/10.3390/math11122729spa
dc.relation.referencesTheingi Aung, Liana, SR, Htet, A. y Amiya Bhaumik. (2023). Uso del aprendizaje automático para predecir sobrecostos en proyectos de construcción. Revista de Innovación Tecnológica y Energía , 2 (2), 1–7. https://doi.org/10.56556/jtie.v2i2.511spa
dc.relation.referencesTsegaye, M. (2019). Procedimiento Eficiente para la Programación de Proyectos de Construcción en la Fase de Planificación. Revista Báltica de Economía Inmobiliaria y Gestión de la Construcción , 7 , 60–80. https://doi.org/10.2478/bjreecm-2019-0004spa
dc.relation.referencesVanhoucke, M. (2012). Gestión de proyectos con programación dinámica (págs. 11 a 35). https://doi.org/10.1007/978-3-642-25175-7_2spa
dc.relation.referencesVanhoucke, M. (2013). Gestión de proyectos con programación dinámica. En Gestión de Proyectos con Programación Dinámica . https://doi.org/10.1007/978-3-642-40438-2spa
dc.relation.referencesVelandia, J. (2022). Estudio de rendimientos y consumos de la mano de obra en actividades de cimentación en la construcción de vivienda unifamiliar en el municipio de Tame, departamento de Arauca. Universidad Nacional de Colombia.spa
dc.relation.referencesVelásquez, J. D. (2015). Una guía corta para escribir revisiones sistemáticas de literatura parte 3. DYNA (Colombia), 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931spa
dc.relation.referencesVenkatesh, K. A., Mishra, D., & Manimozhi, T. (2023). 9 - Model selection and regularization. In T. Goswami & G. R. Sinha (Eds.), Statistical Modeling in Machine Learning (pp. 159–178). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-91776-6.24001-3spa
dc.relation.referencesWang, Shihyi & Halpin, Daniel. (2005). Simulation experiment for improving construction processes. Proceedings - Winter Simulation Conference. 2. 1252- 1259 vol.2. 10.1109/WSC.2004.1371457.spa
dc.relation.referencesWEF, Rodríguez de Almeida, P., Solas, M., Renz, A., Bühler, MM, Gerbert, P., Castagnino, S. y Rothballer, C. (2016). Dar forma al futuro de la construcción: un gran avance en la mentalidad y la tecnología (Foro Económico Mundial). https://doi.org/10.13140/RG.2.2.21381.37605spa
dc.relation.referencesWEF. (2016). Construction A Breakthrough in Mindset and Technology. In World Economic Forum (WEF) (Issue May). https://www.bcgperspectives.com/Images/Shaping_the_Future_of_Construction_may_2016.pdfspa
dc.relation.referencesWEF. (2020). El Informe Global de Riesgos 2020 . www.weforum.orgspa
dc.relation.referencesWesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134–152. https://doi.org/10.1108/ECAM-02-2016-0045spa
dc.relation.referencesWhite, R. W., & Hassan Awadallah, A. (2019). Task Duration Estimation. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 636–644. https://doi.org/10.1145/3289600.3290997spa
dc.relation.referencesWhiting, N. W., Roy, C. J., Duque, E., Lawrence, S., & Oberkampf, W. L. (2023). Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty. Journal of Verification, Validation and Uncertainty Quantification, 8(1). https://doi.org/10.1115/1.4056285spa
dc.relation.referencesWitteman, H P J (1997). Styles of Learning and Regulation in an Interactive Learning Group System, Nijgh & Van Ditmarspa
dc.relation.referencesWu, CL y Chau, KW (2013). Predicción de series temporales de precipitaciones mediante métodos modulares de computación blanda. Aplicaciones de ingeniería de la inteligencia artificial , 26 (3), 1–20.spa
dc.relation.referencesWu, L., AbouRizk, S., & Li, K. (2022). System Dynamics Modeling of the Construction Supply Chain in Industrial Modularized Construction Projects. 2022 Winter Simulation Conference (WSC), 2409–2420. https://doi.org/10.1109/WSC57314.2022.10015329spa
dc.relation.referencesXing-xia, W., & Jian-wen, H. (2009). Risk Analysis of Construction Schedule Based on Monte Carlo Simulation. https://doi.org/10.1109/CNMT.2009.5374816spa
dc.relation.referencesYahaya, B. H., Ahmed, A. A., & Anikajogun, B. O. (2023). Economic Sustainability of Building and Construction Projects Based on Artificial Intelligence Techniques. The Asian Review of Civil Engineering, 12(1), 34–40. https://doi.org/10.51983/tarce-2023.12.1.3677spa
dc.relation.referencesYazıcıoğlu, E. y Kanoglu, A. (2022). Un modelo de adquisición de proyectos que permite la competencia por concepto de diseño mediante la integración de herramientas de evaluación basada en el desempeño (PBA), estimación basada en procesos (PBE) y modelado de redes de costos (CNM) . 12 , 65–92. https://doi.org/10.14424/ijcscm120222-65-92spa
dc.relation.referencesYin, M., Iannelli, A., & Smith, R. S. (2022). Data-Driven Prediction with Stochastic Data: Confidence Regions and Minimum Mean-Squared Error Estimates. 2022 European Control Conference (ECC), 853–858. https://doi.org/10.23919/ECC55457.2022.9838046spa
dc.relation.referencesYu, X., & Zuo, H. (2022). Intelligent Construction Optimization Control of Construction Project Schedule Based on the Fuzzy Logic Neural Network Algorithm. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/8111504spa
dc.relation.referencesYudistira, A., Nariswari, R., Arifin, S., Abdillah, A. A., Prasetyo, P., & Susyanto, N. (2024). Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method. CommIT (Communication and Information Technology) Journal, 18, 67–76. https://doi.org/10.21512/commit.v18i1.8495spa
dc.relation.referencesZadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-Xspa
dc.relation.referencesZargar, S. H., Sadeghi, J., & Brown, N. C. (2022). Agent-based modelling for early-stage optimization of spatial structures. International Journal of Architectural Computing, 21(1), 84–99. https://doi.org/10.1177/14780771221143493spa
dc.relation.referencesZeng, Z., & Gao, Y. (2024). Cost Control Management of Construction Projects Based on Fuzzy Logic and Auction Theory. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2024.3438291spa
dc.relation.referencesZhang, H. (2015). Discrete-Event Simulation for Estimating Emissions from Construction Processes. Journal of Management in Engineering, 31, 04014034. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000236spa
dc.relation.referencesZhang, Q. (2024). Building Engineering Cost Prediction Based On Deep Learning: Model Construction and Real - Time Optimization. Journal of Electrical Systems, 20, 151–164. https://doi.org/10.52783/jes.1887spa
dc.relation.referencesZhang, S., & Li, X. (2022). A comparative study of machine learning regression models for predicting construction duration. Journal of Asian Architecture and Building Engineering, 1–17. https://doi.org/10.1080/13467581.2023.2278887spa
dc.relation.referencesZhou, S., & Chen, Y. (2022). Explaining Covariance Structure: Principal Components. In Industrial Data Analytics for Diagnosis and Prognosis (pp. 61–80). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119666271.ch4spa
dc.relation.referencesZhou, Y., Wang, X., Gosling, J., & Naim, M. (2023). The System Dynamics of Engineer-to-Order Construction Projects: Past, Present, and Future. Journal of Construction Engineering and Management, 149. https://doi.org/10.1061/JCEMD4.COENG-12926spa
dc.relation.referencesZowghi, M., Haghighi, M. y Zohouri, B. (2011). Enfoque de control de costos y cronogramas en un entorno difuso. Editor de la Academia de Ciencias Revista internacional de investigación y reseñas en ciencias de la información , 1 , 2046–6439.spa
dc.relation.referencesГалина, Р., Honcharenko, T., Predun, K., Petrukha, N., Malykhina, O., & Khomenko, O. (2023). Using of Fuzzy Logic for Risk Assessment of Construction Enterprise Management System. https://doi.org/10.1109/SIST58284.2023.10223560spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificiosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembConstrucción - Métodos de simulación
dc.subject.lembConstrucción - Simulación por computadores
dc.subject.lembConstrucción - Control de costos
dc.subject.lembConstrucción - Presupuestos
dc.subject.lembIndustria de la construcción - Planificación
dc.subject.lembIndustria de la construcción - Predicciones
dc.subject.proposalProyecto de Construcciónspa
dc.subject.proposalModelamiento de procesos de construcciónspa
dc.subject.proposalSimulaciones Computacionales en construcciónspa
dc.subject.proposalPredicción Costo y cronogramaspa
dc.subject.proposalConstruction Projecteng
dc.subject.proposalModel construction processeseng
dc.subject.proposalComputer Simulations In constructioneng
dc.subject.proposalPredictioneng
dc.subject.proposalCost and scheduleeng
dc.titleAplicación de modelamiento y simulación computacional para la predicción y optimización del tiempo-costo en proyectos y procesos constructivos ediliciosspa
dc.title.translatedApplication of computational modeling and simulation for the prediction and optimization of time-cost performance in building construction projects and processes.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstimación de escenarios, tasas de productividad y análisis de probabilidad para la optimización de cronogramas de proyectos de construcción empleando simulaciones híbridas. (Proyecto Hermes 57017).spa
oaire.awardtitleDesarrollo de una herramienta metodológica como instrumento de gestión y control de gases de efecto invernadero (Segunda fase). (Proyecto Hermes 56944).spa
oaire.awardtitleThe Wood Innovation and Design Centre: Internship in experimental investigations on reinforced timber elements.spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameGlobalink Research Internship Award, MITACSspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017241131.2025.pdf
Tamaño:
33.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Construcción

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: