Aplicación de modelamiento y simulación computacional para la predicción y optimización del tiempo-costo en proyectos y procesos constructivos edilicios
dc.contributor.advisor | Rua Machado, Carlos Andres | |
dc.contributor.advisor | Santa Escobar, Cristian David | |
dc.contributor.author | Restrepo Ramirez, Andres Felipe | |
dc.contributor.cvlac | Restrepo Ramirez, Andres Felipe [0001821940] | spa |
dc.contributor.googlescholar | Andres Felipe Restrepo Ramirez [https://scholar.google.com/citations?view_op=list_works&hl=es&user=qHQJ0YIAAAAJ] | spa |
dc.contributor.orcid | Restrepo Ramirez, Andres Felipe [0000-0002-1178-7780] | spa |
dc.contributor.researchgate | Restrepo , Andres [https://www.researchgate.net/profile/Andres-Restrepo-7] | spa |
dc.contributor.researchgroup | Innovación y Gestión de la Construcción (IGC). | spa |
dc.contributor.scopus | Restrepo , Andres Felipe [57237198900] | spa |
dc.date.accessioned | 2025-05-08T15:49:18Z | |
dc.date.available | 2025-05-08T15:49:18Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | Tradicionalmente la industria de la construcción se ha caracterizado por su reticencia al uso de tecnologías digitales y adopción de prácticas que permitan avanzar a una cultura de innovación y reinventarse frente a sus pobres resultados, especialmente frente a su capacidad de estimación de plazos y presupuestos. Sus recurrentes retrasos y sobrecostos en la ejecución de proyectos, así como particularmente un rezago en la adopción de nuevas tecnologías no le han permitido capitalizar avances de la ciencia y tecnología aplicable al sector para elevar su productividad (WEF, 2016) (Rahman et al., 2020). Otro aspecto preocupante es la forma en que se concibe el ciclo de vida de los proyectos, ya que reflejan una fragmentación (Mossman, 2020) que condiciona el desarrollo del aprendizaje por experiencia, es decir, lograr cambios adaptativos a los inputs de su entorno (Witteman, 1997) y aprovechar la evaluación de datos que le pueden servir como base de pronóstico (CII, 2013 a). La referenciación en otras industrias y la articulación de escenarios CAE (Clúster-Academia-Empresa) (Rúa Machado et al., 2022) pueden ser una vía para consolidar criterios y establecer formas de conocimiento basados en datos y uso tecnologías. Esta propuesta de investigación plantea el uso de nuevas tecnologías, como el modelamiento y la simulación computacional, para incentivar la apropiación de prácticas que permitan la predictibilidad y capacidad de estimar y optimizar tiempo-costo a partir de datos documentados su en el sector AECO (Architecture, Engineering, Construction and Operactions) en Colombia, aportando al desarrollo de confiabilidad y la disminución de sobrecostos y retrasos en las obras. (Tomado de la fuente) | spa |
dc.description.abstract | Traditionally, the construction industry has been characterized by its reluctance to use digital technologies and adopt practices that allow for advancing towards a culture of innovation and reinventing itself in the face of its poor results, especially regarding its ability to estimate timelines and budgets. Its recurrent delays and cost overruns in project execution, as well as a particular lag in the adoption of new technologies, have not allowed it to capitalize on advances in science and technology applicable to the sector to increase its productivity (WEF, 2016) (Rahman et al., 2020). Another concerning aspect is the way in which the project life cycle is conceived, as it reflects a fragmentation (Mossman, 2020) that conditions the development of learning from experience, that is, achieving adaptive changes to the inputs from its environment (Witteman, 1997) and taking advantage of data evaluation that can serve as a basis for forecasting (CII, 2013 a). Benchmarking in other industries and the articulation of CAE (ClusterAcademia-Enterprise) scenarios (Rúa Machado et al., 2022) can be a way to consolidate criteria and establish forms of knowledge based on data and use of technologies. This research proposal suggests the use of new technologies, such as computational modeling and simulation, to encourage the appropriation of practices that allow for predictability and the ability to estimate and optimize time-cost based on documented data in the AECO (Architecture, Engineering, Construction and Operations) sector in Colombia, contributing to the development of reliability and the reduction of cost overruns and delays in construction works. | eng |
dc.description.curriculararea | Construcción Y Hábitat.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Construcción | spa |
dc.description.researcharea | Innovación y Optimización de la Gestión | spa |
dc.description.researcharea | Tecnología en la construcción. | spa |
dc.format.extent | 234 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88154 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Arquitectura | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Arquitectura - Maestría en Construcción | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abdelgawad, M., & Fayek, A. (2010). Risk Management in the Construction Industry Using Combined Fuzzy FMEA and Fuzzy AHP. Journal of Construction Engineering and Management-Asce - J CONSTR ENG MANAGE-ASCE, 136. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210 | spa |
dc.relation.references | Abdelmegid, M., Gonzalez, V., Poshdar, M., O'Sullivan, M., Walker, C., Ying, F. (2020). Barriers to adopting simulation modelling in construction industry. Automation in Construction. 111. 103046. 10.1016/j.autcon.2019.103046. | spa |
dc.relation.references | Abdelouahed, S. M., Abla, R., Asmae, E., & Abdellah, A. (2024). Harnessing feature engineering to improve machine learning: A review of different data processing techniques. 2024 International Conference on Intelligent Systems and Computer Vision (ISCV), 1–6. https://doi.org/10.1109/ISCV60512.2024.10620105 | spa |
dc.relation.references | Abdomerovic, M. (2022). Project Management Planning. In From Practice to Applied Research. Peter Lang Verlag. https://doi.org/10.3726/b19696 | spa |
dc.relation.references | Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors: where are we and what needs to be done? Proc. VLDB Endow., 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518 | spa |
dc.relation.references | Aboura, K., Kljajić, M., & Eskandarian, A. (2012). The need for simulation in complex industrial systems. Organizacija, 45. https://doi.org/10.2478/v10051-012-0022-4 | spa |
dc.relation.references | AbouRizk, M. (2010). ‘Role of simulation in construction engineering and management’. In: Journal of Construction Engineering and Management 136.10, pp. 1140–1153. | spa |
dc.relation.references | Adekunle, S. A., Onatayo Damilola, A., Madubuike, O. C., Aigbavboa, C., & Ejohwomu, O. (2024). Machine Learning Algorithm Application in the Construction Industry – A Review. In S. Skatulla & H. Beushausen (Eds.), Advances in Information Technology in Civil and Building Engineering (pp. 263–271). Springer International Publishing. | spa |
dc.relation.references | Agarwal, A. L., & Mahajan, D. A. (2017). A Probability Analysis of Construction Project Schedule Using Risk Management Tool. MATTER: International Journal of Science and Technology, 3(1), 104 - 109. | spa |
dc.relation.references | Al-Baldawi Zainaband, A., & Hussein, I. (2021). Estimating the Optimum Completion Time of Project Using Binomial Distribution and Probabilistic PERT Network. In R.-X. and P. S. Peng Sheng-Lung and Hao (Ed.), Proceedings of First International Conference on Mathematical Modeling and Computational Science (pp. 627–637). Springer Singapore. | spa |
dc.relation.references | Albarello, N., & Welcomme, J.-B. (2012). A model-based method for the generation and optimization of complex systems architectures. 2012 IEEE International Systems Conference SysCon 2012, 1–6. https://doi.org/10.1109/SysCon.2012.6189456 | spa |
dc.relation.references | Ali, A. (2024). The utilization of the discrete event simulation method in scheduling repetitive construction. IOP Conference Series: Earth and Environmental Science, 1355, 012015. https://doi.org/10.1088/1755-1315/1355/1/012015 | spa |
dc.relation.references | Alzarrad, A. (2020). Fuzzy Monte Carlo Simulation to Optimize Resource Planning and Operations. https://doi.org/10.5772/intechopen.93632 | spa |
dc.relation.references | Amirzehni, P., Samadianfard, S., Nazemi, A., & Sadraddini, A. (2023). Evaluating capabilities of the spline and cubic spline interpolation functions in reference evapotranspiration estimation implementing satellite image data. Earth Science Informatics, 16. https://doi.org/10.1007/s12145-023-01127-z | spa |
dc.relation.references | Ankarali, H., Pasin, Ö., Gönenç, S., & Al Mahmood, A. K. (2023). Interaction between numerical variables in regression model, and its graphical interpretation. Bangladesh Journal of Medical Science, 22(1), 189–194. https://doi.org/10.3329/bjms.v22i1.63078 | spa |
dc.relation.references | Asfoor, H. M. A., AL-Jandeel, A. A. T., Igorevich, K. K., & Ivanovna, L. A. (2022). Control of Time, Cost and Quality of Construction Project Management. E3S Web Conf., 336. https://doi.org/10.1051/e3sconf/202233600072 | spa |
dc.relation.references | Babar, S., Thaheem, MJ y Ayub, B. (2017). Costo estimado al finalizar: integración del riesgo en la gestión del valor ganado. Revista de Ingeniería y Gestión de la Construcción , 143 (3). https://doi.org/10.1061/(asce)co.1943-7862.0001245 | spa |
dc.relation.references | Baghalzadeh Shishehgarkhaneh, M., Moehler, R. C., Fang, Y., Aboutorab, H., & Hijazi, A. A. (2024). Construction supply chain risk management. Automation in Construction, 162, 105396. https://doi.org/https://doi.org/10.1016/j.autcon.2024.105396 | spa |
dc.relation.references | Ballard, G. (2000). Sistema de ejecución de proyectos ajustados (Revisión 1). http://www.leanconstruction.org/pdf/WP8-LPDS.pdf | spa |
dc.relation.references | Ballard, G. (2008). El sistema de ejecución de proyectos Lean: una actualización. www.leanconstructionjournal.org | spa |
dc.relation.references | Barbu, A., & Zhu, S.-C. (2020). Introduction to Monte Carlo Methods. In A. Barbu & S.-C. Zhu (Eds.), Monte Carlo Methods (pp. 1–17). Springer Singapore. https://doi.org/10.1007/978-981-13-2971-5_1 | spa |
dc.relation.references | Bauce, G. (2007). El problema de investigación. Revista de La Facultad de Medicina, 30, 115–118. | spa |
dc.relation.references | Ben-Alon, L & Sacks R. (2017). ‘Simulating the behavior of trade crews in construction using agents and building information modeling’. In: Automation in Construction 74, pp. 12–27. | spa |
dc.relation.references | Berthold, M. R., Borgelt, C., Höppner, F., Klawonn, F., & Silipo, R. (2020). Deployment and Model Management. In M. R. Berthold, C. Borgelt, F. Höppner, F. Klawonn, & R. Silipo (Eds.), Guide to Intelligent Data Science: How to Intelligently Make Use of Real Data (pp. 319–328). Springer International Publishing. https://doi.org/10.1007/978-3-030-45574-3_10 | spa |
dc.relation.references | Bhattacharya, S. P. (2023). The Fundamentals of Resource Optimization in Construction Projects. In V. J. (Ed.), Building Construction and Technology (pp. 139–156). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3526-0_10 | spa |
dc.relation.references | Bhosale, T., Biradar, A., Bhat, K., Barhate, S., & Kotwal, J. (2023). Applied Deep Learning for Safety in Construction Industry. In I. J. Jacob, S. Kolandapalayam Shanmugam, & I. Izonin (Eds.), Data Intelligence and Cognitive Informatics (pp. 167–181). Springer Nature Singapore. | spa |
dc.relation.references | Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer, Berlin. https://link.springer.com/book/9780387310732 | spa |
dc.relation.references | Bokor, O., Florez-Perez, L., Osborne, A., Gledson, B. (2019). Overview of construction simulation approaches to model construction processes. Organization, Technology and Management in Construction: an International Journal. 11. 1853-1861. 10.2478/otmcj-2018-0018. | spa |
dc.relation.references | Botero, L. F. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construcción. Revista Universidad EAFIT. https://doi.org/10.1080/17549507.2022.2055145 | spa |
dc.relation.references | Brioso, X., Murguía, D., & Urbina, A. (2017). Comparación de tres métodos de programación utilizando modelos BIM en el sistema Last Planner. Organización, tecnología y gestión en la construcción: una revista internacional, 9 (1), 1604–1614. https://doi.org/10.1515/otmcj-2016-0024 | spa |
dc.relation.references | Cabrera, A. G. (2010). Simulación de procesos constructivos. Revista Ingenieria de Construccion, 25(1), 121–141. https://doi.org/10.4067/s0718-50732010000100006 | spa |
dc.relation.references | Camacol y Sena. (2015). Proyecto de investigación del sector de la construcción de edificación en Colombia . | spa |
dc.relation.references | Carvajal, H. (2013). EL DISEÑO DE EJECUCIÓN “Un planteamiento metodológico para la enseñanza de la planeación de obras a constructores, arquitectos e ingenieros civiles” (Primera edición). Universidad Nacional de Colombia - Sede Medellín. | spa |
dc.relation.references | Chiou, S. H., Xu, G., Yan, J., & Huang, C. Y. (2023). Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg. Journal of Statistical Software, 105(5), 1–34. https://doi.org/10.18637/jss.v105.i05 | spa |
dc.relation.references | CII. (2013a). Improving the Accuracy and Timeliness of Project Outcome Predictions. | spa |
dc.relation.references | CII. (2013 b). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación 291-2 . | spa |
dc.relation.references | CIRIA. (2013). Implementación de Lean en la construcción: descripción general de las guías CIRIA y una breve introducción a Lean . | spa |
dc.relation.references | Codina, L. (2022). Revisiones de la literatura y cómo llevarlas a cabo con garantías: systematic reviews y SALSA Framework. https://www.lluiscodina.com/revision-sistematica-salsa-framework/ | spa |
dc.relation.references | Cohen, S. (2021). Chapter 5 - Dealing with data: strategies of preprocessing data. In S. Cohen (Ed.), Artificial Intelligence and Deep Learning in Pathology (pp. 77–92). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-67538-3.00005-1 | spa |
dc.relation.references | Contreras, J. (2013). Aplicación de la herramienta time-lapse para la identificación y reducción de pérdidas en edificaciones con estructura en concreto | spa |
dc.relation.references | Cooke-Davies, T. (2011). Aspectos de complejidad: Gestión de Proyectos en un mundo complejo (Primera). Instituto de manejo proyectos. | spa |
dc.relation.references | Corlatti, L. (2021). Regression Models, Fantastic Beasts, and Where to Find Them: A Simple Tutorial for Ecologists Using R. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211051522 | spa |
dc.relation.references | Creswell, J. (2013). Qualitative Inquary & Research Design (V. Knight, Ed.; 3rd ed., Vol. 3). Sage. | spa |
dc.relation.references | Datta, S. D., Islam, M., Rahman Sobuz, Md. H., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26888 | spa |
dc.relation.references | Dave, B., Koskela, L., & Kiviniemi, A. (2013). Implementing Lean in construction. Assets.Highways.Gov.Uk, 44+29-44+29. http://assets.highways.gov.uk/specialist-information/knowledge-compendium/2011-13-knowledge-programme/Lean and the Sustainability Agenda.pdf | spa |
dc.relation.references | Dayal, V. (2020). Graphs for Time Series. In V. Dayal (Ed.), Quantitative Economics with R: A Data Science Approach (pp. 259–271). Springer Singapore. https://doi.org/10.1007/978-981-15-2035-8_13 | spa |
dc.relation.references | De Carvalho Servia, M. Á., & del Rio Chanona, E. A. (2023). Model Structure Identification. In D. Zhang & E. A. del Río Chanona (Eds.), Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications (Vol. 26, p. 0). Royal Society of Chemistry. https://doi.org/10.1039/BK9781837670178-00085 | spa |
dc.relation.references | Denzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative Research | spa |
dc.relation.references | Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics. https://api.semanticscholar.org/CorpusID:52967399 | spa |
dc.relation.references | Diaz, M. (2019). MEDIDAS ESTADÌSTICAS BIVARIANTES. https://www.goconqr.com/mapamental/17124557/medidas-estadisticas-bivariantes | spa |
dc.relation.references | Duarte, N., & Pinilla, J. J. (2014). Razón de costo-efectividad de la implementación de la metodología BIM y la metodología tradicional en la planeación y control de un proyecto de construcción de vivienda en Colombia. Pontificia Universidad Javeriana | spa |
dc.relation.references | Echeverry, J., & Giraldo, M. (2012). Mejoramiento de Procesos Constructivos de una Edificación a Partir de Simulación Digital y Videos Time Lapse. | spa |
dc.relation.references | Elhilbawi, H., Eldawlatly, S., & Mahdi, H. (2021). The Importance of Discretization Methods in Machine Learning Applications: A Case Study of Predicting ICU Mortality. In A.-E. Hassanien, K.-C. Chang, & T. Mincong (Eds.), Advanced Machine Learning Technologies and Applications (pp. 214–224). Springer International Publishing. | spa |
dc.relation.references | Elsahly, O. M., Ahmed, S., & Abdelfatah, A. (2023). Systematic Review of the Time-Cost Optimization Models in Construction Management. In Sustainability (Switzerland) (Vol. 15, Issue 6). MDPI. https://doi.org/10.3390/su15065578 | spa |
dc.relation.references | Ensign, P. C. (2009). Construction of Variables. In P. C. Ensign (Ed.), Knowledge Sharing among Scientists: Why Reputation Matters for R&D in Multinational Firms (pp. 63–93). Palgrave Macmillan US. https://doi.org/10.1057/9780230617131_4 | spa |
dc.relation.references | Fadjar, A., Nirmalawati, N., & Hidayat, N. (2022). Estimating Project Completion Time with Monte Carlo Simulation. REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development, 3(2), 21–26. https://doi.org/10.22487/renstra.v3i2.448 | spa |
dc.relation.references | Faraji, A., Rashidi, M., Perera, S., & Samali, B. (2022). Applicability-Compatibility Analysis of PMBOK Seventh Edition from the Perspective of the Construction Industry Distinctive Peculiarities. Buildings, 12(2). https://doi.org/10.3390/buildings12020210 | spa |
dc.relation.references | Faraway, J. J. (2016). Does data splitting improve prediction? Statistics and Computing, 26(1), 49–60. https://doi.org/10.1007/s11222-014-9522-9 | spa |
dc.relation.references | Fleming, Q. W., & Koppelman, J. M. (2016). Earned Value Project Management (Fourth Edition). Project Management Institute. https://books.google.com.co/books?id=yOSuDgAAQBAJ | spa |
dc.relation.references | Frącz, P., Dąbrowski, I., Wotzka, D., Zmarzły, D., & Mach, Ł. (2023). Identification of Differences in the Seasonality of the Developer and Individual Housing Market as a Basis for Its Sustainable Development. Buildings, 13(2). https://doi.org/10.3390/buildings13020316 | spa |
dc.relation.references | Gaitán, J. & Gómez-Cabrera, A. (2014). Uso de la metodología BRIM (Bridge Information Modeling) como herramienta para la planificación de la construcción de un puente de concreto en Colombia. Ciencia e Ingeniería Neogranadina. 24. 145. 10.18359/rcin.398. | spa |
dc.relation.references | Gantt, HL (1910). Trabajo, salario y beneficio. Nuevo. En The Engineering Magacine (Ed.), Biblioteca de Gestión Industrial (Segunda Edi). http://www.nber.org/papers/w16019 | spa |
dc.relation.references | Gell-Mann, M. (1995). El quark y el jaguar: Aventuras en lo simple y lo complejo (Tusquets, Ed.). | spa |
dc.relation.references | Geng, S. (2024). Analysis of the Different Statistical Metrics in Machine Learning. Highlights in Science, Engineering and Technology, 88, 350–356. https://doi.org/10.54097/jhq3tv19 | spa |
dc.relation.references | Gerasymenko, V., Protsenko, О., Bielykh, I., & Tymchenko, I. (2023). Implementation of Artificial Neural Networks and Fuzzy Logic in Civil and Industrial Construction. https://doi.org/10.21203/rs.3.rs-3669381/v1 | spa |
dc.relation.references | Ghosh, S., & Dasgupta, R. (2022). Model Selection for Machine Learning. In S. Ghosh & R. Dasgupta (Eds.), Machine Learning in Biological Sciences: Updates and Future Prospects (pp. 51–57). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8881-2_5 | spa |
dc.relation.references | Gómez-Cabrera, A. (2013). Implementación de metodologías BIM en el entorno Colombiano. | spa |
dc.relation.references | Gómez-Cabrera, A. Pulido, N. & Díaz, J. (2015). Simulación de eventos discretos y líneas de balance, aplicadas al mejoramiento del proceso constructivo de la cimentación de un edificio. Ingeniería y Ciencia. 11. 157-175. 10.17230/ingciencia.11.21.8. | spa |
dc.relation.references | González, Jaime & Suarez, Sandra.(2017).Evaluación de la influencia del pmi® sobre la triple restricción de un proyecto de consultoría de infraestructura: caso de estudio basado en diseños de obras civiles para servicio público domiciliario en Bogotá. | spa |
dc.relation.references | González-Cruz, M.-C., Ballesteros-Pérez, P., Lucko, G., & Zhang, J.-X. (2022). Critical Duration Index: Anticipating Project Delays from Deterministic Schedule Information. Journal of Construction Engineering and Management, 148(11), 4022121. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002387 | spa |
dc.relation.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. www.deeplearningbook.org | spa |
dc.relation.references | Government Accountability Office. (2015). Guía de evaluación de cronogramas: mejores prácticas para cronogramas de proyectos. | spa |
dc.relation.references | Granados, Alejandra & Ivonne, Perez.(2014).Simulación Para El Mejoramiento De La Logística De Materiales y Equipos En Un Proyecto De Edificación | spa |
dc.relation.references | Grau, D., Back, WE y Aguilar, GM (2013). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación , 291–292. | spa |
dc.relation.references | Grau, D., y Back, NOSOTROS (2015). Índice de previsibilidad: métrica novedosa para evaluar el costo y el rendimiento del cronograma. Revista de Ingeniería y Gestión de la Construcción , 141 (12), 1–8. https://doi.org/10.1061/(asce)co.1943-7862.0000994 | spa |
dc.relation.references | Gupta, M., Rajpoot, V., Chaturvedi, A., & Agrawal, R. (2022). A detailed Study of different Clustering Algorithms in Data Mining. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/CONIT55038.2022.9848233 | spa |
dc.relation.references | Gupta, P., & Bagchi, A. (2024). Machine Learning. In P. Gupta & A. Bagchi (Eds.), Essentials of Python for Artificial Intelligence and Machine Learning (pp. 283–448). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43725-0_8 | spa |
dc.relation.references | Hamdan, Samer Bu et al. (2015). ‘A BIM-based simulation model for inventory management in panelized construction’. In: Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 32. IAARC Publications, p. 1. | spa |
dc.relation.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics). | spa |
dc.relation.references | Heikki, Halttula., Harri, Haapasalo., Risto, Silvola. (2020). 3. Managing data flows in infrastructure projects: the lifecycle process model. Journal of Information | spa |
dc.relation.references | Hendradewa, A. (2019). Schedule Risk Analysis by Different Phases of Construction Project Using CPM-PERT and Monte-Carlo Simulation. IOP Conference Series: Materials Science and Engineering, 528, 012035. https://doi.org/10.1088/1757-899X/528/1/012035 | spa |
dc.relation.references | Hermano, V., & Martín-Cruz, N. (2019). Expanding the Knowledge on Project Management Standards: A Look into the PMBOK® with Dynamic Lenses. 19–34. https://doi.org/10.1007/978-3-319-92273-7_2 | spa |
dc.relation.references | Hernández R, Fernández C, Baptista P. Metodología de la Investigación. México: McGraw-Hill; 1998:9-13. | spa |
dc.relation.references | Hillson, D., & Simon, P. (2012). Practical project risk management : the ATOM methodology (Second edition). Management Concepts Press. http://site.ebrary.com/id/10850167 | spa |
dc.relation.references | Ho, V. L., Ho, N., & Pedersen, T. B. (2023). Mining Seasonal Temporal Patterns in Time Series. 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2249–2261. https://doi.org/10.1109/ICDE55515.2023.00174 | spa |
dc.relation.references | Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241 | spa |
dc.relation.references | Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F., & Chen, J. (2021). Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. In Advances in Civil Engineering (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6674980 | spa |
dc.relation.references | Huaping, X. (2024). Optimization Control of Construction Project Management Project Based on Deep Learning Algorithm. https://doi.org/10.1109/APCIT62007.2024.10673593 | spa |
dc.relation.references | IBM. (2024). ¿Qué es la simulación Montecarlo? https://www.ibm.com/es-es/topics/monte-carlo-simulation | spa |
dc.relation.references | IBM. (nd). Sistema de estadísticas IBM SPSS . Recuperado el 11 de agosto de 2023 de https://www.ibm.com/docs/es/spss-statistics/saas?topic=regression-nonlinear | spa |
dc.relation.references | Industrial Conconcreto S.A.S. (2019). Declaración Ambiental de Producto ARENA, TRITURADO 1” Y 3/8”. | spa |
dc.relation.references | Izquierdo, Luis R.; Galán, José M.;Santos, José I.;del Olmo, Ricardo (2008). Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas | spa |
dc.relation.references | Jaafari, A., Pazhouhan, I. y Bettinger, P. (2021). Modelado de aprendizaje automático de los costos de construcción de caminos forestales. Bosques , 12 (9). https://doi.org/10.3390/f12091169 | spa |
dc.relation.references | Jang, J.-S., Sun, C.-T., & Mizutani, E. (1997). In Neuro-Fuzzy and Soft Computing (Vol. 34). | spa |
dc.relation.references | Jie, D., & Wei, J. (2022). Estimating Construction Project Duration and Costs upon Completion Using Monte Carlo Simulations and Improved Earned Value Management. Buildings, 12(12). https://doi.org/10.3390/buildings12122173 | spa |
dc.relation.references | Kadang, T., Hidayah, P. W., Simarmata, K., Putri, N. A., & Krisvinus, K. (2024a). Analysis of Consultant Building Project Management Using the CPM (Critical Path Method). Journal of Business Management and Economic Development, 2(03), 1169–1179. https://doi.org/10.59653/jbmed.v2i03.891 | spa |
dc.relation.references | Kalita, J. K., Bhattacharyya, D. K., & Roy, S. (2024). 3 - Data preparation. In J. K. Kalita, D. K. Bhattacharyya, & S. Roy (Eds.), Fundamentals of Data Science (pp. 31–46). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-32-391778-0.00010-7 | spa |
dc.relation.references | Kamandang, Z. R. (2023). Risk Assessment of Construction Project Scheduling. In B. S. and S. M. and S. A. Kristiawan Stefanus Adi and Gan (Ed.), Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering (pp. 863–872). Springer Nature Singapore | spa |
dc.relation.references | Kedir, N., Siraj, N., & Fayek, A. R. (2023). Application of System Dynamics in Construction Engineering and Management: Content Analysis and Systematic Literature Review. Advances in Civil Engineering, 2023(1), 1058063. https://doi.org/https://doi.org/10.1155/2023/1058063 | spa |
dc.relation.references | Kenley, R. y Seppänen, O. (2009). Gestión de proyectos de construcción basada en la ubicación: parte de una nueva tipología de metodologías de programación de proyectos. En actas - Conferencia de simulación de invierno . https://doi.org/10.1109/WSC.2009.5429669 | spa |
dc.relation.references | Kerzner, H. (2022). Gestión de proyectos de innovación: métodos, estudios de casos y herramientas para la gestión de proyectos de innovación . Wiley. https://books.google.com.co/books?id=cWedEAAAQBAJ | spa |
dc.relation.references | Kerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons. | spa |
dc.relation.references | Klir, G.J. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall Inc., Upper Saddle River. | spa |
dc.relation.references | Kloppenborg, T. J., Anantatmula, V. S., & Wells, K. N. (2023). Contemporary Project Management: Organize, Lead, Plan, Perform. Cengage. https://books.google.com.co/books?id=XwU90AEACAAJ | spa |
dc.relation.references | Koren, M., Peretz, O., & Koren, O. (2023). Feature Engineering Procedure for Information Enrichment. 2023 International Conference on Advanced Enterprise Information System (AEIS), 28–34. https://doi.org/10.1109/AEIS61544.2023.00012 | spa |
dc.relation.references | Koreshi, Z. U. (2022). Chapter 7 - The Monte Carlo method. In Z. U. Koreshi (Ed.), Nuclear Engineering Mathematical Modeling and Simulation (pp. 305–336). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90618-0.00007-7 | spa |
dc.relation.references | Koskela, L., Ferrantelli, A., Niiranen, J., Pikas, E. y Dave, B. (2019). Explicación epistemológica de la construcción Lean. Revista de Ingeniería y Gestión de la Construcción , 145 (2), 1–10. https://doi.org/10.1061/(asce)co.1943-7862.0001597 | spa |
dc.relation.references | Koskela, LJ, Ballard, G. y Tommelein, I. (2002). Los fundamentos de la construcción lean . https://www.researchgate.net/publication/28578914 | spa |
dc.relation.references | Kostrzewa-Demczuk, P. (2024). Construction Schedule versus Various Constraints and Risks. Applied Sciences, 14(1). https://doi.org/10.3390/app14010196 | spa |
dc.relation.references | Koulinas, G. K., Sidas, K. A., & Koulouriotis, D. E. (2023). Project Makespan Prediction and Risk Analysis Using Simulation: Application in a Seawater Desalination Plant Construction Project. In N. F. Matsatsinis, F. C. Kitsios, M. A. Madas, & M. I. Kamariotou (Eds.), Operational Research in the Era of Digital Transformation and Business Analytics (pp. 149–157). Springer International Publishing. | spa |
dc.relation.references | Ladnykh, I. A., & Ibadov, N. (2024). Estimating the Duration of Construction Works Using Fuzzy Modeling to Assess the Impact of Risk Factors. Applied Sciences, 14(9). https://doi.org/10.3390/app14093847 | spa |
dc.relation.references | Law, Averill M and W David Kelton (2000). Simulation modeling and analysis. Vol. 3. McGraw-Hill New York. | spa |
dc.relation.references | Liu, B. D., Yang, B., Han, Y., Xiao, J. Z., & Dong, M. S. (2023). Establishment and Application of Multi-agent Simulation System Based on On-Site Construction Performers. In G. Geng, X. Qian, L. H. Poh, & S. D. Pang (Eds.), Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022 (pp. 284–304). Springer Nature Singapore. | spa |
dc.relation.references | Liu, M., Le, Y., Hu, Y., Xia, B., Skitmore, M., & Gao, X. (2019). System dynamics modeling for construction management research: critical review and future trends. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 25, 1–12. https://doi.org/10.3846/jcem.2019.10518 | spa |
dc.relation.references | Liu, W., Meng, Q., Zhi, H., Li, Z., & Hu, X. (2024). A REVIEW OF AGENT-BASED MODELING IN CONSTRUCTION MANAGEMENT: AN ANALYTICAL FRAMEWORK BASED ON MULTIPLE OBJECTIVES. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 30, 200–219. https://doi.org/10.3846/jcem.2024.20949 | spa |
dc.relation.references | Lukman, S., Nazaruddin, Y., ai, bo, He, R., & Joelianto, E. (2019). Estimation of Received Signal Power for 5G-Railway Communication Systems. https://doi.org/10.1109/ICEVT48285.2019.8994017 | spa |
dc.relation.references | Madrakhimov, S., Makharov, K., & Lolaev, M. (2021). Data preprocessing on input. AIP Conference Proceedings, 2365(1), 030003. https://doi.org/10.1063/5.0058132 | spa |
dc.relation.references | Mahesh Babu, P., Pedro, L., & GhaffarianHoseini, A. (2024). Construction projects: interactions of the causes of delays. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-11-2023-0334 | spa |
dc.relation.references | Mansoor, A., Liu, S., Ali, G. M., Bouferguene, A., & Al-Hussein, M. (2022). Scientometric analysis and critical review on the application of deep learning in the construction industry. Canadian Journal of Civil Engineering, 50(4), 253–269. https://doi.org/10.1139/cjce-2022-0379 | spa |
dc.relation.references | Marinelli, M., & Janardhanan, M. (2023). The Value Proposition of Machine Learning in Construction Management: Exploring the Trends in Construction 4.0 and Beyond (pp. 247–272). https://doi.org/10.4018/978-1-6684-5643-9.ch010 | spa |
dc.relation.references | Marsh, ER (1975). El armograma de Carol Adamiecki. Revista de la Academia de Gestión , 18 (2), 358–364. https://doi.org/10.2307/255537 | spa |
dc.relation.references | Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2017). Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Computing and Applications, 28(11), 3393–3411. https://doi.org/10.1007/s00521-016-2235-6 | spa |
dc.relation.references | Mohamed, HH, Ibrahim, AH y Soliman, AA (2021). Hacia la reducción del tiempo de entrega de proyectos de construcción con recursos limitados. Sostenibilidad (Suiza) , 13 (19), 1–17. https://doi.org/10.3390/su1 | spa |
dc.relation.references | Morín, E. (1990). Introducción al Pensamiento Complejo (Gedisa, Ed.; 10ª, 2011ª ed.). | spa |
dc.relation.references | Mosquera, R., Parra Osorio, L., & Castrillón, O. (2016). Metodología para la Predicción del Grado de Riesgo Psicosocial en Docentes de Colegios Colombianos utilizando Técnicas de Minería de Datos. Información Tecnológica, 27, 259–272. https://doi.org/10.4067/S0718-07642016000600026 | spa |
dc.relation.references | Mossman, A. (2020). Construction is Broken. In Lean construction blog (Issue 2003, pp. 1–18). https://leanconstructionblog.com/construction-is-broken.html | spa |
dc.relation.references | Mossman, A., Ballard, G., & Pasquire, & C. (2013). Lean Project Delivery - Innovation in Integrated Design & Delivery. The Design Manager’s Handbook, January, 165–190. https://doi.org/10.1002/9781118486184.app1 | spa |
dc.relation.references | Mykytyuk, P., Brych, V., Manzhula, V., Borysiak, O., Sachenko, A., Banasik, A., Kempa, W. M., Mykytyuk, Y., Czupryna-Nowak, A., & Lebid, I. (2024). Efficient Management of Material Resources in Low-Carbon Construction. Energies, 17(3). https://doi.org/10.3390/en17030575 | spa |
dc.relation.references | Nascimento, J., Silva, J., Cupertino Bernardes, R., Costa, G., & Emiliano, P. (2024). Statistical data transformation in agrarian sciences for variance analysis: a systematic review. F1000Research, 13, 459. https://doi.org/10.12688/f1000research.144805.2 | spa |
dc.relation.references | Neethidevan, V., & Anand, S. (2022). Implementing and evaluating the performance of various Machine Learning algorithms with different datasets. International Journal of Health Sciences, 4684–4694. https://doi.org/10.53730/ijhs.v6nS1.5890 | spa |
dc.relation.references | Ogunbayo, B. F., Ramabodu, M. S., Adewale, B. A., & Ogundipe, K. E. (2024). Strategies for Successful Monitoring and Evaluation Practices in Construction Projects. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–7. https://doi.org/10.1109/SEB4SDG60871.2024.10630137 | spa |
dc.relation.references | Olivieri, H., Seppänen, O. y Denis Granja, A. (2018). Mejorar el flujo de trabajo y el uso de recursos en los cronogramas de construcción a través del sistema de gestión basado en la ubicación (LBMS). Gestión y economía de la construcción , 36 (2), 109–124. https://doi.org/10.1080/01446193.2017.1410561 | spa |
dc.relation.references | Olubajo, O., Hughes, W., & Schweber, L. (2019). Construction Programmes and Programming: A Critical Review. In I. Lill & E. Witt (Eds.), 10th Nordic Conference on Construction Economics and Organization (Vol. 2, pp. 189–194). Emerald Publishing Limited. https://doi.org/10.1108/S2516-285320190000002045 | spa |
dc.relation.references | Orozco, A. (2012). Estos nuevos escenarios teóricos, se plantearon variando la cantidad y tipos de recursos. | spa |
dc.relation.references | Ortiz-Pimiento, N. R. (2020). Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria Solution model to the resource constrained project scheduling problem RCPSP with insertion task and random duration. | spa |
dc.relation.references | Osorio-Sandoval, C. A. (2021). BIM-based construction simulation modelling. | spa |
dc.relation.references | Parhizkar, T. (2022). Simulation-based Probabilistic Risk Assessment. | spa |
dc.relation.references | Pascual, J. (2021, July 17). Regresión Logística para clasificadores de Machine Learning I: la curva de regresión logística. https://analisisyprogramacionoop.blogspot.com/2021/07/regresion-logistica-machine-learning.html | spa |
dc.relation.references | Paterson, SJC (2017). Desarrollo de un modelo de puntuación utilizando las mejores prácticas de evaluación de cronogramas de la GAO: vol. VI . www.pmworldlibrary.net | spa |
dc.relation.references | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12. | spa |
dc.relation.references | Pellerin, R. y Perrier, N. (2019). Una revisión de métodos, técnicas y herramientas para la planificación y control de proyectos. Revista internacional de investigación de producción , 57 (7), 2160–2178. https://doi.org/10.1080/00207543.2018.1524168 | spa |
dc.relation.references | Peña, D. (2001). «Deducción de distribuciones: el método de Monte Carlo», en Fundamentos de Estadística. Madrid: Alianza Editorial. ISBN 84-206-8696-4. | spa |
dc.relation.references | Perez-Cruz, F., Van Vaerenbergh, S., Murillo-Fuentes, J., Lázaro-Gredilla, M., & Santamaria, I. (2013). Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. Signal Processing Magazine, IEEE, 30, 40–50. https://doi.org/10.1109/MSP.2013.2250352 | spa |
dc.relation.references | Pilnik, N., Pospelov, I. G., & Stankevich, I. (2015). On the Use of Dummy Variables to Solve the Problem of Seasonality in General Equilibrium Models. HSE Economic Journal, 19, 249–270. https://api.semanticscholar.org/CorpusID:119708184 | spa |
dc.relation.references | Plebankiewicz, E., Zima, K., & Wieczorek, D. (2021). Modelling of time, cost and risk of construction with using fuzzy logic. Journal of Civil Engineering and Management, 27, 412–426. https://doi.org/10.3846/jcem.2021.15255 | spa |
dc.relation.references | PMI. (2016). Extensión de construcción de la guía PMBOK® (Inc. Project Management Institute, Ed.; 2ª ed.). | spa |
dc.relation.references | PMI. (2017). Guía de los fundamentos para la dirección de proyectos (Guía del PMBOK) (Inc. Project Management Institute, Ed.; Sexta Edic). Project Management Institute, Inc. | spa |
dc.relation.references | PMI. (2021). A guide to the project management body of knowledge (PMBOK guide) (Seventh ed). Project Management Institute. | spa |
dc.relation.references | Popîrlan, C., & Popîrlan, C.-I. (2023). New Techniques in Numerical Analysis for Artificial Intelligence. 2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 76–81. https://doi.org/10.1109/SYNASC61333.2023.00017 | spa |
dc.relation.references | Portland Cement Association. (2014). Declaración Ambiental de Producto Cementos adicionados (según ASTM C595, ASTM C1157, AASHTOM240, o CSA A3001). www.astm.org | spa |
dc.relation.references | Poslavskaya, E., & Korolev, A. (2023). Encoding categorical data: Is there yet anything “hotter” than one-hot encoding? https://arxiv.org/abs/2312.16930 | spa |
dc.relation.references | Rafieian, B., Hermosilla, P., & Vázquez, P.-P. (2023). Improving Dimensionality Reduction Projections for Data Visualization. Applied Sciences, 13(17). https://doi.org/10.3390/app13179967 | spa |
dc.relation.references | Rahman, A. U., Alam, S. M., Dallasega, P., Marengo, E., & Nutt, W. (2020). Increasing Control in Construction Processes: The Role of Digitalization. Lecture Notes in Business Information Processing, 397(May), 263–275. https://doi.org/10.1007/978-3-030-66498-5_20 | spa |
dc.relation.references | Rao, S., & Moon, K. (2021). Literature Search for Systematic Reviews. In S. Patole (Ed.), Principles and Practice of Systematic Reviews and Meta-Analysis (pp. 11–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-71921-0_2 | spa |
dc.relation.references | Ravitch, S., & Carl, N. M. (2016). Qualitative Research: Bridging the Conceptual, Theoretical, and Methodological. Thousand Oaks, CA: Sage Publications. | spa |
dc.relation.references | Remington, K., & Pollack, J. (2016). Tools for Complex Projects (Vol. 1). Routledge. | spa |
dc.relation.references | Restrepo, A. F., Rúa, C. A., & Arias, Y. P. (2024). OPTIMIZATION IN THE DESIGN OF CONCRETE MIXES FOR THE SUSTAINABILITY OF A SOUTH AMERICAN METROPOLITAN AREA BY IMPLEMENTING MATERIAL LIFE CYCLE ANALYSIS. Habitat Sustentable, 14(1), 44–65. https://doi.org/10.22320/07190700.2024.14.01.04 | spa |
dc.relation.references | Rios Quiroz, M. F. (2018). Propuesta de mejora en la productividad de mano de obra y equipos del proceso ejecución de obra del área de operaciones en empresa especializada en construcciones civiles de instalación del servicio de agua en sistemas de irrigación. Universidad Peruana de Ciencias Aplicadas (UPC). http://hdl.handle.net/10757/622894 | spa |
dc.relation.references | Rodríguez-Ponce, R. (2022). MAC-based Artificial Neural network for voice command recognition. Revista Del Diseño Innovativo, 19–25. https://doi.org/10.35429/JID.2022.15.6.19.25 | spa |
dc.relation.references | Rojas, M. (2017).Guía de gestión de la calidad para los proyectos constructivos de la empresa Navarro y Avilés S.A. | spa |
dc.relation.references | Rúa Machado, C. A., Arboleda López, S. A., & Serna Machado, N. (2022). Pilotos para la transferencia de conocimiento entorno a la digitalización en la construcción en Medellín, Colombia. Revista M, 19. https://doi.org/10.15332/rev.m.v19i1.2833 | spa |
dc.relation.references | Rúa-Machado, C. A. (2022). Gestión de la construcción para una era digital. Tecnología, transformación y cooperación como retos del ejercicio pedagógico en la gestión del diseño y la construcción de edificios. In Universidad Nacional de Colombia Sede Medellín (Ed.), Construcción Temas y reflexiones (pp. 121–155). Facultad de Arquitectura. | spa |
dc.relation.references | Rudeli, N. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora. | spa |
dc.relation.references | Rudeli, N., Santilli, A., Puente, I., & Viles, E. (2017). Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database. Journal of Construction Engineering and Management, 143(11). https://doi.org/10.1061/(asce)co.1943-7862.0001396 | spa |
dc.relation.references | Rudeli, N., Viles, E. y Santilli, A. (2018). Una herramienta de gestión de la construcción: determinación de los comportamientos típicos del cronograma de un proyecto mediante el análisis de conglomerados. Academia Mundial de Ciencia, Ingeniería y Tecnología Revista Internacional de Ingeniería Civil y Ambiental Vol:12, No:5, 2018 , 12 (5), 485–492. https://doi.org/10.1999/1307-6892/10008879 | spa |
dc.relation.references | Rudeli, Natalia. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora. | spa |
dc.relation.references | Russell, S.J. and Norvig, P. (2016) Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia. | spa |
dc.relation.references | Sawhney, A., Reley, M. e Irizarry, J. (2020). Construcción 4.0. Una plataforma de innovación para el entorno construido. En Routledge . Routledge es una marca de Taylor & Francis Group, una empresa informa ©. | spa |
dc.relation.references | Senses, S., & Kumral, M. (2024). Trade-off between time and cost in project planning: a simulation-based optimization approach. SIMULATION, 100(2), 127–143. https://doi.org/10.1177/00375497231196889 | spa |
dc.relation.references | S. y McCarthy, D. (2019). Causas de retrasos y herramientas digitales emergentes: un modelo novedoso de análisis de retrasos, que incluye la entrega integrada de proyectos y el PMBOK. En edificios (Vol. 9, Número 9). https://doi.org/10.3390/buildings9090191 | spa |
dc.relation.references | Serna-Gutiérrez, E. (2023). Propuesta metodológica para la planificación y control de proyectos de construcción basada en un complemento informático. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/84031 | spa |
dc.relation.references | Shubham, S., Saloni, S., & Sidra-Tul-Muntaha. (2023). Optimizing construction processes and improving building performance through data engineering and computation. World Journal of Advanced Research and Reviews, 18, 390–398. https://doi.org/10.30574/wjarr.2023.18.1.0614 | spa |
dc.relation.references | Singh, U. P. (2023). Decision Making and Predictive Analysis for Real Time Data. In Advances in Data Science and Analytics (pp. 21–38). https://doi.org/https://doi.org/10.1002/9781119792826.ch2 | spa |
dc.relation.references | Sreram, P. K., & Thomas, A. (2023). A Value Stream Mapping-Based Discrete Event Simulation Template For Lean Off-Site Construction Activities. 2023 Winter Simulation Conference (WSC), 2768–2776. https://doi.org/10.1109/WSC60868.2023.10407723 | spa |
dc.relation.references | Stake, R. (1999). Investigación con estudios de caso. In Mejía Lequerica (Ed.), Investigacion con estudios de casos (Ediciones Morata, Vol. 2). Sage Publication. https://www.redalyc.org/pdf/2810/281021548015.pdf | spa |
dc.relation.references | Surya-Prakash, S., Joseph, S. M., Kishore, D., & Yamini-Devi, Y. (2023). Stochastic Computing Solutions Challenges and Application. Advances in Transdisciplinary Engineering, 32, 71–77. https://doi.org/10.3233/ATDE221239 | spa |
dc.relation.references | Szeliski, R. (2010) Computer Vision: Algorithms and Applications. Springer, London, UK. | spa |
dc.relation.references | SZÓSTAK, M. (2023). Forecasting the Course of Cumulative Cost Curves for Different Construction Projects. Civil and Environmental Engineering Reports, 33(1), 71–89. https://doi.org/10.59440/ceer-2023-0005 | spa |
dc.relation.references | Taghaddos, Hosein (2010). ‘Developing a generic resource allocation framework for construction simulation’. Doctoral dissertation. University of Alberta. | spa |
dc.relation.references | Tan, J., Yang, J., Wu, S., Chen, G., & Zhao, J. (2021). A critical look at the current train/test split in machine learning. https://doi.org/10.48550/arXiv.2106.04525 | spa |
dc.relation.references | Templ, M. (2023). Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values. Mathematics, 11(12). https://doi.org/10.3390/math11122729 | spa |
dc.relation.references | Theingi Aung, Liana, SR, Htet, A. y Amiya Bhaumik. (2023). Uso del aprendizaje automático para predecir sobrecostos en proyectos de construcción. Revista de Innovación Tecnológica y Energía , 2 (2), 1–7. https://doi.org/10.56556/jtie.v2i2.511 | spa |
dc.relation.references | Tsegaye, M. (2019). Procedimiento Eficiente para la Programación de Proyectos de Construcción en la Fase de Planificación. Revista Báltica de Economía Inmobiliaria y Gestión de la Construcción , 7 , 60–80. https://doi.org/10.2478/bjreecm-2019-0004 | spa |
dc.relation.references | Vanhoucke, M. (2012). Gestión de proyectos con programación dinámica (págs. 11 a 35). https://doi.org/10.1007/978-3-642-25175-7_2 | spa |
dc.relation.references | Vanhoucke, M. (2013). Gestión de proyectos con programación dinámica. En Gestión de Proyectos con Programación Dinámica . https://doi.org/10.1007/978-3-642-40438-2 | spa |
dc.relation.references | Velandia, J. (2022). Estudio de rendimientos y consumos de la mano de obra en actividades de cimentación en la construcción de vivienda unifamiliar en el municipio de Tame, departamento de Arauca. Universidad Nacional de Colombia. | spa |
dc.relation.references | Velásquez, J. D. (2015). Una guía corta para escribir revisiones sistemáticas de literatura parte 3. DYNA (Colombia), 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931 | spa |
dc.relation.references | Venkatesh, K. A., Mishra, D., & Manimozhi, T. (2023). 9 - Model selection and regularization. In T. Goswami & G. R. Sinha (Eds.), Statistical Modeling in Machine Learning (pp. 159–178). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-91776-6.24001-3 | spa |
dc.relation.references | Wang, Shihyi & Halpin, Daniel. (2005). Simulation experiment for improving construction processes. Proceedings - Winter Simulation Conference. 2. 1252- 1259 vol.2. 10.1109/WSC.2004.1371457. | spa |
dc.relation.references | WEF, Rodríguez de Almeida, P., Solas, M., Renz, A., Bühler, MM, Gerbert, P., Castagnino, S. y Rothballer, C. (2016). Dar forma al futuro de la construcción: un gran avance en la mentalidad y la tecnología (Foro Económico Mundial). https://doi.org/10.13140/RG.2.2.21381.37605 | spa |
dc.relation.references | WEF. (2016). Construction A Breakthrough in Mindset and Technology. In World Economic Forum (WEF) (Issue May). https://www.bcgperspectives.com/Images/Shaping_the_Future_of_Construction_may_2016.pdf | spa |
dc.relation.references | WEF. (2020). El Informe Global de Riesgos 2020 . www.weforum.org | spa |
dc.relation.references | Wesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134–152. https://doi.org/10.1108/ECAM-02-2016-0045 | spa |
dc.relation.references | White, R. W., & Hassan Awadallah, A. (2019). Task Duration Estimation. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 636–644. https://doi.org/10.1145/3289600.3290997 | spa |
dc.relation.references | Whiting, N. W., Roy, C. J., Duque, E., Lawrence, S., & Oberkampf, W. L. (2023). Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty. Journal of Verification, Validation and Uncertainty Quantification, 8(1). https://doi.org/10.1115/1.4056285 | spa |
dc.relation.references | Witteman, H P J (1997). Styles of Learning and Regulation in an Interactive Learning Group System, Nijgh & Van Ditmar | spa |
dc.relation.references | Wu, CL y Chau, KW (2013). Predicción de series temporales de precipitaciones mediante métodos modulares de computación blanda. Aplicaciones de ingeniería de la inteligencia artificial , 26 (3), 1–20. | spa |
dc.relation.references | Wu, L., AbouRizk, S., & Li, K. (2022). System Dynamics Modeling of the Construction Supply Chain in Industrial Modularized Construction Projects. 2022 Winter Simulation Conference (WSC), 2409–2420. https://doi.org/10.1109/WSC57314.2022.10015329 | spa |
dc.relation.references | Xing-xia, W., & Jian-wen, H. (2009). Risk Analysis of Construction Schedule Based on Monte Carlo Simulation. https://doi.org/10.1109/CNMT.2009.5374816 | spa |
dc.relation.references | Yahaya, B. H., Ahmed, A. A., & Anikajogun, B. O. (2023). Economic Sustainability of Building and Construction Projects Based on Artificial Intelligence Techniques. The Asian Review of Civil Engineering, 12(1), 34–40. https://doi.org/10.51983/tarce-2023.12.1.3677 | spa |
dc.relation.references | Yazıcıoğlu, E. y Kanoglu, A. (2022). Un modelo de adquisición de proyectos que permite la competencia por concepto de diseño mediante la integración de herramientas de evaluación basada en el desempeño (PBA), estimación basada en procesos (PBE) y modelado de redes de costos (CNM) . 12 , 65–92. https://doi.org/10.14424/ijcscm120222-65-92 | spa |
dc.relation.references | Yin, M., Iannelli, A., & Smith, R. S. (2022). Data-Driven Prediction with Stochastic Data: Confidence Regions and Minimum Mean-Squared Error Estimates. 2022 European Control Conference (ECC), 853–858. https://doi.org/10.23919/ECC55457.2022.9838046 | spa |
dc.relation.references | Yu, X., & Zuo, H. (2022). Intelligent Construction Optimization Control of Construction Project Schedule Based on the Fuzzy Logic Neural Network Algorithm. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/8111504 | spa |
dc.relation.references | Yudistira, A., Nariswari, R., Arifin, S., Abdillah, A. A., Prasetyo, P., & Susyanto, N. (2024). Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method. CommIT (Communication and Information Technology) Journal, 18, 67–76. https://doi.org/10.21512/commit.v18i1.8495 | spa |
dc.relation.references | Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X | spa |
dc.relation.references | Zargar, S. H., Sadeghi, J., & Brown, N. C. (2022). Agent-based modelling for early-stage optimization of spatial structures. International Journal of Architectural Computing, 21(1), 84–99. https://doi.org/10.1177/14780771221143493 | spa |
dc.relation.references | Zeng, Z., & Gao, Y. (2024). Cost Control Management of Construction Projects Based on Fuzzy Logic and Auction Theory. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2024.3438291 | spa |
dc.relation.references | Zhang, H. (2015). Discrete-Event Simulation for Estimating Emissions from Construction Processes. Journal of Management in Engineering, 31, 04014034. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000236 | spa |
dc.relation.references | Zhang, Q. (2024). Building Engineering Cost Prediction Based On Deep Learning: Model Construction and Real - Time Optimization. Journal of Electrical Systems, 20, 151–164. https://doi.org/10.52783/jes.1887 | spa |
dc.relation.references | Zhang, S., & Li, X. (2022). A comparative study of machine learning regression models for predicting construction duration. Journal of Asian Architecture and Building Engineering, 1–17. https://doi.org/10.1080/13467581.2023.2278887 | spa |
dc.relation.references | Zhou, S., & Chen, Y. (2022). Explaining Covariance Structure: Principal Components. In Industrial Data Analytics for Diagnosis and Prognosis (pp. 61–80). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119666271.ch4 | spa |
dc.relation.references | Zhou, Y., Wang, X., Gosling, J., & Naim, M. (2023). The System Dynamics of Engineer-to-Order Construction Projects: Past, Present, and Future. Journal of Construction Engineering and Management, 149. https://doi.org/10.1061/JCEMD4.COENG-12926 | spa |
dc.relation.references | Zowghi, M., Haghighi, M. y Zohouri, B. (2011). Enfoque de control de costos y cronogramas en un entorno difuso. Editor de la Academia de Ciencias Revista internacional de investigación y reseñas en ciencias de la información , 1 , 2046–6439. | spa |
dc.relation.references | Галина, Р., Honcharenko, T., Predun, K., Petrukha, N., Malykhina, O., & Khomenko, O. (2023). Using of Fuzzy Logic for Risk Assessment of Construction Enterprise Management System. https://doi.org/10.1109/SIST58284.2023.10223560 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 690 - Construcción de edificios | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.lemb | Construcción - Métodos de simulación | |
dc.subject.lemb | Construcción - Simulación por computadores | |
dc.subject.lemb | Construcción - Control de costos | |
dc.subject.lemb | Construcción - Presupuestos | |
dc.subject.lemb | Industria de la construcción - Planificación | |
dc.subject.lemb | Industria de la construcción - Predicciones | |
dc.subject.proposal | Proyecto de Construcción | spa |
dc.subject.proposal | Modelamiento de procesos de construcción | spa |
dc.subject.proposal | Simulaciones Computacionales en construcción | spa |
dc.subject.proposal | Predicción Costo y cronograma | spa |
dc.subject.proposal | Construction Project | eng |
dc.subject.proposal | Model construction processes | eng |
dc.subject.proposal | Computer Simulations In construction | eng |
dc.subject.proposal | Prediction | eng |
dc.subject.proposal | Cost and schedule | eng |
dc.title | Aplicación de modelamiento y simulación computacional para la predicción y optimización del tiempo-costo en proyectos y procesos constructivos edilicios | spa |
dc.title.translated | Application of computational modeling and simulation for the prediction and optimization of time-cost performance in building construction projects and processes. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Estimación de escenarios, tasas de productividad y análisis de probabilidad para la optimización de cronogramas de proyectos de construcción empleando simulaciones híbridas. (Proyecto Hermes 57017). | spa |
oaire.awardtitle | Desarrollo de una herramienta metodológica como instrumento de gestión y control de gases de efecto invernadero (Segunda fase). (Proyecto Hermes 56944). | spa |
oaire.awardtitle | The Wood Innovation and Design Centre: Internship in experimental investigations on reinforced timber elements. | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
oaire.fundername | Globalink Research Internship Award, MITACS | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017241131.2025.pdf
- Tamaño:
- 33.11 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Construcción
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: