Carta de control multivariada sin distribución para datos funcionales y vectoriales híbridos

dc.contributor.advisorGuevara González, Rubèn Daríospa
dc.contributor.authorRincon Torres, Andrey Duvanspa
dc.date.accessioned2024-01-16T18:56:13Z
dc.date.available2024-01-16T18:56:13Z
dc.date.issued2023-11-15
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEsta tesis propone una metodología de monitoreo en Fase II para procesos funcionales multivariados híbridos, que combinan una parte funcional y una parte vectorial multivariada. La Metodología emplea una carta de control que tiene en cuenta la correlación entre funciones y vectores, y se fundamenta en el análisis de componentes principales, híbridos y componentes sensibles. Mediante simulaciones, se evidencia la efectividad de la metodología para detectar cambios de distintas magnitudes en diferentes escenarios, tales como distribuciones, tamaños de muestra y configuraciones de media fuera de control. Además, se muestra que la metodología es más eficiente que el seguimiento por separado de las partes funcional y vectorial. Finalmente, se ilustra la aplicación de la metodología a casos reales de producción de maíz y ray-grass italiano, demostrando su utilidad para el control de calidad en la producción agrícola. (Texto tomado de la fuente).spa
dc.description.abstractThis thesis proposes a Phase II monitoring methodology for hybrid multivariate functional processes that combine a functional component and a multivariate vector component. The methodology employs a control chart that takes into account the correlation between functions and vectors, and it is grounded in the analysis of hybrid principal components and sensitive components. Through simulations, the effectiveness of the methodology in detecting changes of various magnitudes in different scenarios, such as distributions, sample sizes, and out-of-control mean configurations, is demonstrated. Furthermore, it is shown that the methodology is more efficient than separately monitoring the functional and vectorial components. Finally, the application of the methodology to real cases of corn and Italian ryegrass production is illustrated, demonstrating its utility for quality control in agricultural production.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaControl estadístico de calidad, análisis de datos funcionalesspa
dc.format.extentxii, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85334
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAhsan, Muhammad ; Mashuri, Muhammad ; Kuswanto, Heri ; Prastyo, Dedy D. [u. a.]: Intrusion detection system using multivariate control chart Hotelling’s T2 based on PCA. En: Int. J. Adv. Sci. Eng. Inf. Technol 8 (2018), Nr. 5, p. 1905–1911spa
dc.relation.referencesCasella, G ; Berger, RL. Statistical inference. vol. 2 Duxbury Pacific Grove. 2002spa
dc.relation.referencesChen, Nan ; Zi, Xuemin ; Zou, Changliang: A distribution-free multivariate control chart. En: Technometrics 58 (2016), Nr. 4, p. 448–459spa
dc.relation.referencesChen, Q. ; Kruger, U. ; Meronk, M. ; Leung, A.Y.T.: Synthesis of T2 and Q statistics for process monitoring. En: Control Engineering Practice 12 (2004), Nr. 6, p. 745–755spa
dc.relation.referencesFan, Shu-Kai S. ; Jen, Chih-Hung ; Lee, Tzu-Yi: Modeling and monitoring the nonlinear profile of heat treatment process data by using an approach based on a hyperbolic tangent function. En: Quality Engineering 29 (2017), Nr. 2, p. 226–243spa
dc.relation.referencesFerraty, Frédéric ; Vieu, Philippe: Nonparametric functional data analysis: theory and practice. Vol. 76. Springer, 2006spa
dc.relation.referencesGhashghaei, Reza ; Amiri, Amirhossein ; Khosravi, Peyman: New control charts for simultaneous monitoring of the mean vector and covariance matrix of multivariate multiple linear profiles. En: Communications in Statistics-Simulation and Computation 48 (2019), Nr. 5, p. 1382–1405spa
dc.relation.referencesGramacki, Artur: Nonparametric kernel density estimation and its computational aspects. Vol. 37. Springer, 2018spa
dc.relation.referencesHapp, Clara ; Greven, Sonja: Multivariate functional principal component analysis for data observed on different (dimensional) domains. En: Journal of the American Statistical Association 113 (2018), Nr. 522, p. 649–659spa
dc.relation.referencesHapp-Kurz, Clara: Object-Oriented Software for Functional Data. En: Journal of Statistical Software 93 (2020), Nr. 5, p. 1–38spa
dc.relation.referencesHarezlak, Jaroslaw ; Ruppert, David ; Wand, Matt P.: Semiparametric regression with R. Vol. 109. Springer, 2018spa
dc.relation.referencesHorváth, Lajos ; Kokoszka, Piotr: Inference for functional data with applications. Vol. 200. Springer Science & Business Media, 2012spa
dc.relation.referencesHuang, Wei-Heng ; Sun, Jing ; Yeh, Arthur B.: Monitoring and diagnostics of correlated quality variables of different types. En: Journal of Quality Technology 55 (2023), Nr. 2, p. 220–252spa
dc.relation.referencesHung, Ying-Chao ; Tsai,Wen-Chi ; Yang, Su-Fen ; Chuang, Shih-Chung ; Tseng, Yi-Kuan: Nonparametric profile monitoring in multi-dimensional data spaces. En: Journal of Process Control 22 (2012), Nr. 2, p. 397–403spa
dc.relation.referencesJang, Jeong H.: Principal component analysis of hybrid functional and vector data. En: Statistics in medicine 40 (2021), Nr. 24, p. 5152–5173spa
dc.relation.referencesJensen, Willis A. ; Birch, Jeffrey B. ; Woodall, William H.: Monitoring correlation within linear profiles using mixed models. En: Journal of Quality Technology 40 (2008), Nr. 2, p. 167–183spa
dc.relation.referencesJiang, Qingchao ; Yan, Xuefeng ; Zhao, Weixiang: Fault detection and diagnosis in chemical processes using sensitive principal component analysis. En: Industrial & Engineering Chemistry Research 52 (2013), Nr. 4, p. 1635–1644spa
dc.relation.referencesLei, Yong ; Zhang, Zhisheng ; Jin, Jionghua: Automatic tonnage monitoring for missing part detection in multi-operation forging processes. En: Journal of manufacturing science and engineering 132 (2010), Nr. 5spa
dc.relation.referencesMaleki, Mohammad R. ; Amiri, Amirhossein ; Castagliola, Philippe: An overview on recent profile monitoring papers (2008-2018) based on conceptual classification scheme. En: Computers & Industrial Engineering 126 (2018), p. 705–728spa
dc.relation.referencesMontgomery, Douglas C.: Introduction to statistical quality control. John Wiley & Sons, 2020spa
dc.relation.referencesNiaki, Seyed Taghi A. ; Abbasi, Babak: Fault diagnosis in multivariate control charts using artificial neural networks. En: Quality and reliability engineering international 21 (2005), Nr. 8, p. 825–840spa
dc.relation.referencesNoorossana, Rassoul ; Eyvazian, M ; Vaghefi, A: Phase II monitoring of multivariate simple linear profiles. En: Computers & Industrial Engineering 58 (2010), Nr. 4, p. 563–570spa
dc.relation.referencesPan, Jeh-Nan ; Li, Chung-I ; Lu, Meng Z.: Detecting the process changes for multivariate nonlinear profile data. En: Quality and Reliability Engineering International 35 (2019), Nr. 6, p. 1890–1910spa
dc.relation.referencesPaynabar, Kamran ; Jin, Jionghua ; Agapiou, John ; Deeds, Paula: Robust leak tests for transmission systems using nonlinear mixed-effect models. En: Journal of quality technology 44 (2012), Nr. 3, p. 265–278spa
dc.relation.referencesPaynabar, Kamran ; Jin, Jionghua ; Pacella, Massimo: Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated multilinear principal component analysis. En: Iie transactions 45 (2013), Nr. 11, p. 1235–1247spa
dc.relation.referencesPaynabar, Kamran ; Zou, Changliang ; Qiu, Peihua: A change-point approach for phase-I analysis in multivariate profile monitoring and diagnosis. En: Technometrics 58 (2016), Nr. 2, p. 191–204spa
dc.relation.referencesQi, Dequan ;Wang, Zhaojun ; Zi, Xuemin ; Li, Zhonghua: Phase II monitoring of generalized linear profiles using weighted likelihood ratio charts. En: Computers & Industrial Engineering 94 (2016), p. 178–187spa
dc.relation.referencesQiu, Peihua: Introduction to statistical process control. CRC press, 2013spa
dc.relation.referencesRen, Haojie ; Chen, Nan ; Wang, Zhaojun: Phase-II monitoring in multichannel profile observations. En: Journal of Quality Technology 51 (2019), Nr. 4, p. 338 352spa
dc.relation.referencesResearch, Eigenvector: NIR of Corn Samples for Standardization Benchmarking. (2005)spa
dc.relation.referencesRizzo, Caterina ; Chin, Swee-Teng ; van den Heuvel, Edwin ; Di Bucchianico, Alessandro: Performance measures of discrete and continuous time-between-events control charts. En: Quality and Reliability Engineering International 36 (2020), Nr. 8, p. 2754–2768spa
dc.relation.referencesRyan, Thomas P.: Statistical methods for quality improvement. John Wiley & Sons, 2011spa
dc.relation.referencesShams, MA B. ; Budman, HM ; Duever, TA: Fault detection, identification and diagnosis using CUSUM based PCA. En: Chemical Engineering Science 66 (2011), Nr. 20, p. 4488–4498spa
dc.relation.referencesSoleimani, Paria ; Noorossana, Rassoul ; Niaki, STA: Monitoring autocorrelated multivariate simple linear profiles. En: The International Journal of Advanced Manufacturing Technology 67 (2013), Nr. 5, p. 1857–1865spa
dc.relation.referencesWilliams, James D. ; Woodall, William H. ; Birch, Jeffrey B.: Statistical monitoring of nonlinear product and process quality profiles. En: Quality and Reliability Engineering International 23 (2007), Nr. 8, p. 925–941spa
dc.relation.referencesWold, Svante ; Esbensen, Kim ; Geladi, Paul: Principal component analysis. En: Chemometrics and intelligent laboratory systems 2 (1987), Nr. 1-3, p. 37–52spa
dc.relation.referencesYang, Zhongfu ; Nie, Gang ; Pan, Ling ; Zhang, Yan ; Huang, Linkai ; Ma, Xiao ; Zhang, Xinquan: Development and validation of near-infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. En: PeerJ 5 (2017), p. e3867spa
dc.relation.referencesZhang, Jiajia ; Ren, Haojie ; Yao, Rui ; Zou, Changliang ; Wang, Zhaojun: Phase I analysis of multivariate profiles based on regression adjustment. En: Computers & Industrial Engineering 85 (2015), p. 132–144spa
dc.relation.referencesZhou, Qin ; Zou, Changliang ; Wang, Zhaojun ; Jiang, Wei: Likelihood-based EWMA charts for monitoring Poisson count data with time-varying sample sizes. En: Journal of the American Statistical Association 107 (2012), Nr. 499, p. 1049–1062spa
dc.relation.referencesZou, Changliang ; Tsung, Fugee ; Wang, Zhaojun: Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. En: Technometrics 49 (2007), Nr. 4, p. 395–408spa
dc.relation.referencesZou, Changliang ; Tsung, Fugee ; Wang, Zhaojun: Monitoring profiles based on nonparametric regression methods. En: Technometrics 50 (2008), Nr. 4, p. 512–526spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalControl de calidadspa
dc.subject.proposalQuality controleng
dc.subject.proposalDatos funcionalesspa
dc.subject.proposalFunctional dataeng
dc.subject.proposalDatos funcionales multivariados híbridosspa
dc.subject.proposalHybrid multivariate functional dataeng
dc.subject.proposalCarta de controlspa
dc.subject.proposalControl charteng
dc.subject.proposalComponentes principalesspa
dc.subject.proposalPrincipal componentseng
dc.subject.proposalComponentes principales sensiblesspa
dc.subject.proposalSensitive principal componentseng
dc.subject.proposalProcedimiento no paramétricospa
dc.subject.proposalNonparametric procedurespa
dc.subject.unescoAnálisis estadísticospa
dc.subject.unescoStatistical analysiseng
dc.subject.unescoAnálisis multivariadospa
dc.subject.unescoMultivariate analysiseng
dc.subject.unescoControl de calidadspa
dc.subject.unescoQuality controleng
dc.titleCarta de control multivariada sin distribución para datos funcionales y vectoriales híbridosspa
dc.title.translatedDistribution-free multivariate control chart for hybrid functional and vector dataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1116553091.2023.pdf
Tamaño:
6.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: