Detección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phureja

dc.contributor.advisorHoyos Sánchez, Rodrigo Alberto
dc.contributor.advisorGutiérrez Sánchez, Pablo Andrés
dc.contributor.authorGarcía Torres, Andrea Stefania
dc.contributor.educationalvalidatorMarìn Montoya, Mauricio Alejandro
dc.contributor.educationalvalidatorCorrea Londoño, Guillermo Antonio
dc.contributor.researchgroupBiotecnología Microbianaspa
dc.contributor.researchgroupBiotecnología Vegetal Unalmed Cibspa
dc.date.accessioned2022-09-02T21:32:26Z
dc.date.available2022-09-02T21:32:26Z
dc.date.issued2022-08-20
dc.descriptionilustraciones, tablasspa
dc.description.abstractEn Colombia, el cultivo de papa (Solanum tuberosum y S. phureja) es uno de los renglones agrícolas más importantes para la zona Andina. Con el fin de aportar nuevos elementos al conocimiento de la situación virológica de la papa en el país, y especialmente en Antioquia, en este proyecto se utilizaron diversas técnicas moleculares (RT-PCR, qPCR, secuenciación Sanger y HTS) para el diagnóstico, identificación, y caracterización genómica de los virus presentes en el material de siembra certificado y no certificado de los cultivares Diacol Capiro y Criolla Colombia, comercializados en Antioquia y en menor proporción en la sabana Cundiboyacense. Los resultados indicaron la presencia de los virus de RNA: virus Y de la papa (Potato virus Y - PVY), virus S de la papa (Potato virus S - PVS), virus X de la papa (Potato virus X - PVX), virus del amarillamiento de las venas de la papa (Potato yellow vein virus - PYVV), virus del enrollamiento de la hoja de papa (Potato leafroll virus - PLRV), virus mop-top de la papa (Potato mop-top virus - PMTV), virus V de la papa (Potato virus V- PVV) y virus B de la papa (Potato virus B - PVB), en ambos cultivares de papa y en ambos tipos de material de siembra. En las evaluaciones directas sobre tubérculos obtenidos en la sabana Cundiboyacense, se detectaron siete (PVY, PVX, PVS, PLRV, PYVV, PMTV y PVB) de los ocho virus en material de siembra certificado de cv. Diacol Capiro, mientras que, en los tubérculos no certificados, se encontraron seis de los virus (PVY, PVX, PVS, PYVV, PLRV y PMTV). Para el caso de Antioquia, las evaluaciones se dividieron en las zonas del oriente y norte del departamento. En el oriente, se detectaron los ocho virus en ambos cultivares; en cuánto al norte, se encontraron siete de los virus (PVY, PVS, PVX, PLRV, PYVV, PMTV y PVB) en el cv. Diacol Capiro. Para el material del cv. Criolla Colombia, no fue posible obtener material certificado en la zona del norte, pero si se detectaron los ocho virus en los tubérculos no certificados. Utilizando la secuenciación masiva de alto rendimiento, se aumentó el número de secuencias disponibles de genomas de los virus PVY, PVV, PVX, PVS, PMTV y PVB, además se realizó el primer reporte de una secuencia de PVV infectando el cv. Diacol Capiro en Colombia y el primer registro del virus D de la necrosis del tabaco (Tobacco necrosis virus D - TNV-D) en el país. Adicionalmente, se realizó un ensayo piloto sobre la distribución viral en brotes de diferentes tubérculos pertenecientes a un mismo lote de semilla, encontrándose que para alcanzar una precisión del 90% en la detección viral, es necesario evaluar de manera independiente al menos tres tubérculos por lote y de dos a tres brotes por tubérculo. Por último, se evaluó el efecto de terapias in vitro para la eliminación viral en plántulas ambos cultivares, evidenciándose una reducción en la proporción de infección en vitroplantas sometidas a quimioterapia por 45 días con respeto a los tratamientos control, de los virus PVY, PVS, PVX, PLRV y PYVV en todas las dosis de ribavirina (50, 75 y 100 ppm); asimismo en las evaluaciones de termoterapia se registraron disminuciones en los virus PVY, PYVV y PMTV en las plántulas sometidas a 35°C, PVV, PVS, PYVV, PMTV y PVX en 36°C, PVS, PVX, PMTV y PYVV en 37°C, y PVS y PLRV en vitroplantas a 38°C por dos semanas. Se espera que los resultados obtenidos en esta tesis se constituyan en un aporte importante para el apoyo de los programas de manejo integrado de las enfermedades virales en papa. (Texto tomado de la fuente)spa
dc.description.abstractIn Colombia, potato (Solanum tuberosum y S. phureja) is one of the most important staple food crops in the Andean region. This work was designed to update our current knowledge of the potato virome in Colombia using a wide range of molecular tools (RT-PCR, qPCR, Sanger and HTS) for the diagnostics, identification and genomic characterization of the viruses present in certified and uncertified planting material used by potato farmers in the province of Antioquia, and some regions of Cundinamarca and Boyacá. The results presented here, reveal a high prevalence of the RNA viruses Potato virus Y (PVY), Potato virus S (PVS), Potato virus X (PVX), Potato yellow vein virus (PYVV), Potato leafroll virus (PLRV), Potato mop-top virus (PMTV), Potato virus V (PVV) and Potato virus B (PVB) in planting material from both cultivars. Direct testing on seed-tubers produced in the highlands of Boyacá and Cundinamarca revealed widespread infection with PVY, PVX, PVS, PLRV, PYVV, PMTV, and PVB in certified cv. Diacol Capiro seeds, and PVY, PVX, PVS, PYVV, PLRV, and PMTV, in uncertified ones. In eastern Antioquia, this investigation detected all eight viruses infecting both cultivars. As for northern Antioquia, seven viruses (PVY, PVS, PVX, PLRV, PYVV, PMTV y PVB) were found in cv. Diacol Capiro. All eight viruses under study were identified in uncertified Criolla Colombia seeds, unfortunately, certified seeds for this cultivar were not available in northern Antioquia at the time of study. HTS allowed either the partial or complete genome characterization of new PVY, PVV, PVX, PVS, PMTV and PVB isolates, in addition to the first PVV isolate infecting S. tuberosum in Colombia, and the first report for Tobacco necrosis virus D - TNV-D. A pilot study on the distribution of viruses across sprouts within the same tuber was performed revealing that to achieve 90% accuracy it is necessary to test a minimum of two or three sprouts from three different tubers per lot. Finally, this work also tested the effect of chemotherapy with ribavirin at 50, 75, and 100 ppm for 45 days; and thermotherapy at 35, 36, 37 and 38°C for 15 days, in reducing the proportion of vitroplants infected with PVY, PVV, PVS, PVX, PYVV, PLRV and PMTV in potato cultivars Diacol Capiro and Criolla Colombia. Chemotherapy proved to be effective in reducing the proportion of PVY, PVS, PVX, PLRV y PYVV at all ribavirin concentrations (50, 75 and 100 ppm). Additionally, thermotherapy reduced the proportion of vitroplants infected with PVY, PYVV and PMTV at 35°C, PVV, PVS, PYVV, PMTV and PVX at 36°C, PVS, PVX, PMTV and PYVV at 37°C, and PVS and PLRV at 38°C. These results are expected to be an important contribution in support of viral disease management programs of potato in Colombia.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaFitopatologíaspa
dc.description.sponsorshipEsta tesis fue financiada por el Fondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías del Departamento de Antioquia (Colombia) (Convenio No. 4600007658–779), a través del Proyecto: "Desarrollo de una plataforma molecular y bioinformática para el diagnóstico de virus en cultivos y material de siembra de papa (Solanum tuberosum y S. phureja) en Antioquia" (Código: 1101-805-62787), ejecutado por la Universidad Nacional de Colombia sede Medellín, Universidad CES y Fedepapa. El proyecto fue supervisado por la Secretaria de Agricultura y Desarrollo Rural de Antioquia y por el Ministerio de Ciencia, Tecnología e Innovación de Colombia. Las muestras vegetales fueron colectadas bajo el Permiso marco de la Universidad Nacional de Colombia y el permiso RGE152-27 del Ministerio del Medio Ambiente y Desarrollo Sostenible (Resolución 0208, 9/03/2020).spa
dc.format.extentxxiii, 325 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82244
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAbdelnour, A. y Escalant, J. (1994). Conceptos básicos del cultivo de tejidos vegetales. Turrialba: CATIE.spa
dc.relation.referencesAdolf, B., Andrade-Piedra, J., Molina, F. B., Przetakiewicz, J., Hausladen, H., Kromann, P., Lees, A., Lindqvist-Kreuze, H., Perez, W. y Secor, G. (2020). Fungal, oomycete, and plasmodiophorid diseases of potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 307-350). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2spa
dc.relation.referencesAgronet. (2019). Área cosechada, producción y rendimiento de Papa, 2006-2019. Recuperado el 5 de julio de 2021 de https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.referencesAgronet. (2020). Cultivos de papa son más productivos en altitudes medias. Recuperado el 5 de julio de 2021 de https://www.agronet.gov.co/Noticias/Paginas/Cultivos-de-papa-son-m%C3%A1s-productivos-en-altitudes-medias.aspxspa
dc.relation.referencesAgrosavia. (2022). Minitubérculos (minis) de papa. Recuperado el 24 de abril de 2022 de https://www.agrosavia.co/productos-y-servicios/oferta-tecnologica/0496-minituberculos-minis-de-papaspa
dc.relation.referencesAguirre, A. y Martínez, G. (2001). Obtención de plantas sanas de papa, Solanum tuberosum L. Variedad Salentuna, a través de las técnicas de termoterapia y cultivo de meristemas in vitro. Revista Facultad Nacional de Agronomía Medellín, 54,1351–1366.spa
dc.relation.referencesAlcántara, J., Castilla, M. y Sánchez, R. (2017). Importancia de los cultivos vegetales in vitro para establecer bancos de germoplasma y su uso en investigación. Biociencias, 1, 71-83.spa
dc.relation.referencesAlMaarri, K., Massa, R. y AlBiski, F. (2012). Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. Plant Biotechnology, 29, 237-243. https://doi.org/10.5511/plantbiotechnology.12.0215aspa
dc.relation.referencesAlmasi, M., Jafary, H., Moradi, A., Zand, N., Ojaghkandi, M. y Aghaei, S. (2013). Detection of Coat Protein Gene of the Potato Leafroll Virus by Reverse Transcription Loop-Mediated Isothermal Amplification. Journal of Plant Pathology & Microbiology, 4, 1. https://doi.org/10.4172/2157-7471.1000156spa
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W. y Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2spa
dc.relation.referencesAndrade, R. (2017). Agricultura - El cultivo de la patata. Infoagro. Recuperado el 15 de abril de 2020 de http://www.infoagro.com/hortalizas/patata.htmspa
dc.relation.referencesArsenic, R., Treue, D., Lehmann, A., Hummel, M., Dietel, M., Denkert, C. y Budczies, J. (2015). Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clinical Pathology, 15, 1–9. https://doi.org/10.1186/s12907-015-0020-6.spa
dc.relation.referencesAseel, D. G. y Hafez, E. E. (2017). The comparison of antibodies raised against PLRV with two different approaches - viral particles purification and recombinant production of CP. Journal of Plant Pathology & Microbiology, 8, 5. https://doi.org/10.4172/2157-7471.1000407spa
dc.relation.referencesAvrahami-Moyal, L., Tam, Y., Brumin, M., Prakash, S., Leibman, D., Pearlsman, M., Bornstein, M., Sela, N., Zeidan, M., Dar, Z., Zig, U., Gal-On, A. y Gaba, V. (2017). Detection of Potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica, 45, 591-598. https://doi.org/10.1007/s12600-017-0612-z.spa
dc.relation.referencesAzcón-Bieto, J. y Talón, M. (2013). Fundamentos de fisiología vegetal. (2a ed.). Barcelona.spa
dc.relation.referencesBahner, L. Lamb, J., Mayo, M. A. y Hay R. T. (1990). Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. Journal of General Virology, 71, 2251-2256.spa
dc.relation.referencesBains, P. S., Bennypaul, H. S., Lynch, D. R., Kawchuk, L. M. y Schaupmeyer, C. A. (2002). Rhizoctonia disease 66 of potatoes (Rhizoctonia solani): Fungicidal efficacy and cultivar susceptibility. American Journal of Potato Research, 79, 99–106. https://doi.org/10.1007/BF0288151spa
dc.relation.referencesBankevich, A., Nurk, S., Antipoy, D., Gurevich, A. A., Dvorkin, M., Kulikov, A., Lesin, V., Nikolenko, S., Pham, S., Prjibelski, A., Pyshkin, A., Sirotkin, A., Vyahhi, N., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021spa
dc.relation.referencesBeemster, A. y Bokx, A. (1987). Survey of properties and symptoms. Bokx, J. A. y Want, J. (Ed). Viruses of potatoes and seed-potato production (2a ed.). (pp. 84-113). Netherland: Wageningen University. https://doi.org/10.1007/bf02357877spa
dc.relation.referencesBenavides, I. y Pozo, M. (2008). Elaboración de una bebida alcohólica destilada (Vodka) a partir de tres variedades de papa (Solanum tuberosum) utilizando dos tipos de enzima. Universidad Técnica del Norte. http://repositorio.utn.edu.ec/handle/123456789/327spa
dc.relation.referencesBhat, A. I. y Rao, G.P. (2020). Characterization of Plant Viruses. Springer Protocols Handbooks. https://link.springer.com/book/10.1007/978-1-0716-0334-5spa
dc.relation.referencesBirch, P. R. J., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M., Torrance, L y Toth, I. (2012). Crops that feed the world 8: Potato: Are the trends of increased global production sustainable?. Food Security. 4, 477–508. https://doi.org/10.1007/s12571-012-0220-1.spa
dc.relation.referencesBlanc, S. (2008). Vector transmission of plant viruses. Mahy, B. W.y Van Regenmortel, M. H. (Ed). Desk encyclopedia of plant and fungal Virology. (pp. 35-48). New York: Academic Press.spa
dc.relation.referencesBokelmann, G. S. y Roest, S. (1983). Plant Regeneration from Protoplasts of Potato (Solarium tuberosum cv. Bintje). Zeitschrift Für Pflanzenphysiologie, 109, 259-265. https://doi.org/10.1016/s0044-328x(83)80228-1.spa
dc.relation.referencesBoonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J. y Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20-31. https://doi.org/10.1016/j.virusres.2013.12.007spa
dc.relation.referencesBoratyn, G., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. y Madden, T. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 20. https://doi.org/10.1186/s12859-019-2996-x.spa
dc.relation.referencesBraun, C. J. y Hemenway, C. L. (1992). Expression of amino-terminal portions or full-length vira1 replicase genes in transgenic plants confers resistance to Potato Virus X infection. Plant Cell, 4, 735–44. https://doi.org/10.1105/tpc.4.6.735spa
dc.relation.referencesBrown, J., Pirrung, M. y Mccue, L. (2017). FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33, 3137-3139. https://doi.org/10.1093/bioinformatics/btx373spa
dc.relation.referencesBurlingame, B., Mouillé, B. y Charrondière, R. (2009). Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. Journal of Food Composition and Analysis, 22, 494–502. https://doi.org/10.1016/j.jfca.2009.09.001spa
dc.relation.referencesBushmanova, E., Antipov, D., Lapidus, A. y D Prjibelski, A. (2019). rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience, 8(9), 1-13. https://doi.org/10.1093/gigascience/giz100spa
dc.relation.referencesCamacho, C., Coulouris, G., Avagyan, Ma, N., Papadopoulos, J., Bealer, K. y Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(421). https://doi.org/10.1186/1471-2105-10-421spa
dc.relation.referencesCampos, H. y Ortiz, O. (2020). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2spa
dc.relation.referencesCarbajal, N. (2018). Termoterapia y cultivo in vitro de ajo (Allium sativum L.) para la eliminación del virus del enanismo amarillo de la cebolla. Tesis Maestría, Universidad Autónoma de Nuevo León. https://doi.org/10.1017/CBO9781107415324.004.spa
dc.relation.referencesCarreño, N., Vargas, A., Bernal, A. J. y Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora, Alternaria y Ralstonia en Colombia. Una revisión. Agronomía Colombiana, 25(2), 320-329.spa
dc.relation.referencesCasaca, A., Sierra, E., Cruz, J. y Arellano, R. (2005). El cultivo de la papa. Banco Interamericano de Desarrollo, 1–14. http://www.dicta.gob.hn/files/2005,-El-cultivo-de-la-papa,-F.pdfspa
dc.relation.referencesCastillo, A. (2004). Propagación de plantas por cultivo in vitro: una biotecnología que nos acompaña hace mucho tiempo. INIA Las Brujas.spa
dc.relation.referencesCastro, I. y Contreras, A. (2011). Manejo de plagas y enfermedades en el cultivo de la papa. Imprenta Austral.Valdivia.spa
dc.relation.referencesCharkowski, A., Sharma, K., Parker, M., Secor, G. y Elphinstone, J. (2020). Bacterial Diseases of Potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 351-388). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2spa
dc.relation.referencesChaves, S. C., Rodríguez, M. C., Mideros, M. F., Lucca, F., Ñústez, C. E. y Restrepo, S. (2019). Determining whether geographic origin and potato genotypes shape the population structure of Phytophthora infestans in the central region of Colombia. Phytopathology,109(1), 145–154. https://doi.org/10.1094/PHYTO-05-18-0157-Rspa
dc.relation.referencesCIP. (2015a). Cómo crecen las papas - International Potato Center. Recuperado el 15 de abril de 2020 de https://cipotato.org/es/lapapa/como-crecen-las-papas/spa
dc.relation.referencesCIP. (2015b). Dato y cifras de la papa - International Potato Center. Recuperado el 15 de abril de 2020 de https://cipotato.org/es/potato/potato-facts-and-figures/spa
dc.relation.referencesCobos, R. M., Becerra–Rozo, W. M. y Castellanos, G. L. (2019). Richness and abundance of the land slugs in four crops of Pamplona, Norte de Santander, Colombia. Bistua: Revista de la Facultad de Ciencias Básicas, 17(2), 229-233. https://doi.org/10.24054/01204211.v2.n2.2019.3538.spa
dc.relation.referencesCosta, T. M., Inoue-Nagata, A. K., Vidal, A. H., Ribeiro, S. G. y Nagata, T. (2020). The recombinant isolate of cucurbit aphid-borne yellows virus form Brazil is a polerovirus transmitted by whiteflies. Plant Pathology, 69(6), 1042-1050. https://doi.org/10.1111/ppa.13186spa
dc.relation.referencesCox, B. A. y Jones, R. A. C. (2010). Genetic variability in the coat protein gene of Potato virus X and the current relationship between phylogenetic placement and resistance groupings, Archives of Virology, 155, 1349-1356. https://doi.org/10.1007/s00705-010-0711-3spa
dc.relation.referencesCrosslin, J. M., Hamlin, L. L., Buchman, J. L. y Munyaneza, J. E. (2011). Transmission of Potato Purple Top Phytoplasma to Potato Tubers and Daughter Plants. American Journal of Potato Research, 88, 339-345. https://doi.org/10.1007/s12230-011-9199-yspa
dc.relation.referencesCubero, J. (2002). Introducción a la mejora genética vegetal. MundiPrensa.spa
dc.relation.referencesDalca, A. y Brudno, M. (2010). Genome variation discovery with high-throughput sequencing data. Briefings in bioinformatics, 11(1), 3-14. https://doi.org/10.1093/bib/bbp058spa
dc.relation.referencesDanci, O., Erdei, L., Vidacs, L., Danci, M., Baciu, A., David, I. y Berbentea, F. (2009) Influence of ribavirin on potato plants regeneration and virus eradication. Journal of Horticulture, Forestry and Biotechnology, 13, 421-425.spa
dc.relation.referencesDuarte, Y., Pino, O., Infante, D., Sánchez, Y., Travieso, C. y Martínez, B. (2013). Efecto in vitro de aceites esenciales sobre Alternaria solani Sorauer. Revista Protección Vegetal, 28(1), 54-59.spa
dc.relation.referencesDuarte-Delgado, D., Narváez-Cuenca, C., Restrepo-Sánchez, L., Kushalappa, A. y Mosquera-Vásquez, T. (2015). Development and validation of a liquid chromatographic method to quantify sucrose, glucose, and fructose in tubers of Solanum tuberosum Group Phureja. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 975, 18-23. https://doi.org/10.1016/j.jchromb.2014.10.039.spa
dc.relation.referencesEscallón, R., Ramírez, M. y Ñústez, C. (2005). Evaluación del potencial de rendimiento y de la resistencia a Phytophthora infestans (Mont. de Bary) en la colección de papas redondas amarillas de la especie Solanum phureja (Juz. et Buk.). Agronomía Colombiana, 23(1), 35-41.spa
dc.relation.referencesElhiti, M., Stasolla, C. y Wang, A. (2013). Molecular regulation of plant somatic embryogenesis. In Vitro Cellular and Developmental Biology – Plant, 49, 631-642. https://doi.org/10.1007/s11627-013-9547-3.spa
dc.relation.referencesEllis, D., Salas, A., Chavez, O., Gomez, R. y Anglin, N. (2020). Ex situ conservation of potato [Solanum section Petota (Solanaceae)] genetic resources in Genebanks. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 109-138). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2spa
dc.relation.referencesEstrada, R., Tovar, P. y Dodds, J. H. (1986). Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tissue Organ Culture, 7, 3-10. https://doi.org/10.1007/BF00043915spa
dc.relation.referencesEwels, P., Magnusson, M., Lundin, S. y Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354.spa
dc.relation.referencesFAO. (2008a). El mundo de la papa: Producción y consumo. Recuperado el 15 de abril de 2020 de http://www.fao.org/potato-2008/es/mundo/index.htmlspa
dc.relation.referencesFAO. (2008b). La papa: Cultivo. Recuperado el 17 de abril de 2020 de http://www.fao.org/potato-2008/es/lapapa/cultivo.html.spa
dc.relation.referencesFedepapa. (2017). Normatividad del Sector de la Papa. Recuperado el 12 de abril de 2020 de https://fedepapa.com/wp-content/uploads/2017/01/Normatividad-del-Sector-de-la-Papa.pdfspa
dc.relation.referencesFedepapa. (2018). Revista Papa: Una papa bien preparada te alegra, 43:48. Recuperado el 15 de abril de 2020 de https://drive.google.com/file/d/1lcX1XrthQdV6GmAHpX3ErrY3QoJyKBVf/viewspa
dc.relation.referencesFedepapa. (2019). Revista papa: Se trazó la ruta para consolidar la rentabilidad del sector agropecuario, 48, 46–52 Recuperado el 17 de abril del 2020 de https://fedepapa.com/wp-content/uploads/2017/01/REVISTA-48-COMPLETA.pdfspa
dc.relation.referencesFERA. (2017). Potato post-harvest virus testing sample submission form. Recuperado el 20 de noviembre del 2020 de https://www.fera.co.uk/media/wysiwyg/crop_health/Crop_Health_Post-Harvest_Virus_Testing_of_Potato_Tubers_Sample_Submission-2019.pdfspa
dc.relation.referencesFiliz, E. (2020). Emerging Plant Viruses. Ennaji, M. (Ed). Emerging and reemerging viral pathogens. (pp.1041-1062). New York: Academic Press.spa
dc.relation.referencesFNFP. (2006). Informe de gestión 2006, 136. Recuperado el 21 de abril de 2020 de https://fedepapa.com/wpcontent/uploads/2017/01/INFORME-DE-GESTIO%CC%81N-FNFP-ANUAL-2016.pdfspa
dc.relation.referencesFNFP y Fedepapa. (2019a). Informe trimestral de coyuntura económica del subsector papa II trimestre – 2019. Recuperado el 15 de abril de 2020 de https://fedepapa.com/wp-content/uploads/2017/01/Informe-deCoyuntura-2do-trimestre-2019.pdfspa
dc.relation.referencesFNFP y Fedepapa. (2019b). Informe de gestión. Vigencia 2019. Recuperado el 5 de junio de 2021 de https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdfspa
dc.relation.referencesFNFP y Fedepapa. (2020). Boletin regional No. 05. Recuperado el 24 de abril de 2022 de https://fedepapa.com/wp-content/uploads/2021/09/NACIONAL-2020.pdfspa
dc.relation.referencesForbes, G. A., Charkowski, A., Andrade-Piedra, J., Parker, M. L. y Schulte-Geldermann, E. (2020). Potato seed systems. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 431-450). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2spa
dc.relation.referencesFranco; L. (2006). Producción de plantas in vitro libres de virus CymMV en un híbrido comercial de Cattleya (Orchidaceae) utilizando Ribavirin. Instituto Tecnológico de Costa Rica.spa
dc.relation.referencesFranco-Lara, F., Soto, C. y Guzmán, B. (2009). Detección de los virus PVX, PVS PVY y PLRV en La colección central colombiana de papa por medio de la técnica de Inmunoimpresión (IMI). Facultad de Ciencias Básicas, 5, 130-139. https://doi.org/10.18359/rfcb.2126spa
dc.relation.referencesFry, W. (2008). Phytophthora infestans: The plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385-402. https://doi.org/10.1111/j.1364-3703.2007.00465.xspa
dc.relation.referencesGałązka, A. y Grządziel, J. (2016). The Molecular‐based methods used for studying bacterial diversity in soils contaminated with PAHs (The Review). Larramendy, M. y Soloneski, S. (Ed). Soil contamination – current consequences and further solutions. (pp. 85-101). Intech. http://dx.doi.org/10.5772/64772spa
dc.relation.referencesGallo, Y., Sierra, A., Marín, M. y Gutiérrez, P. A. (2021). Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 66-78. https://dx.doi.org/10.18684spa
dc.relation.referencesGarcía, D., Olarte, M., Gutiérrez, P. y Marín, M. (2016). Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. & Bukasov) en Antioquia, Colombia. Revista Colombiana de Biotecnología, 18(1), 104-111. https://doi.org/10.15446/rev.colomb.biote.v18n1.51389spa
dc.relation.referencesGeorge, E. F. (2008). Plant Tissue Culture Procedure – Background. George, E. F., Hall, M. A. y Klerk, G. de (Ed). Plant propagation by tissue culture (3a ed). (pp. 1-28). The Background. The Netherlands.spa
dc.relation.referencesGeorge, E.F. y Debergh, P. C. (2008). Micropropagation: Uses and Methods. George, E. F., Hall, M. A. y Klerk, G. de (Ed). Plant propagation by tissue culture (3a ed.). (pp. 29-64). The Netherlands: Springer.spa
dc.relation.referencesGhosh, S., Kanakala, S. y Lebedev, G., Kontsedalov, S., Silverman, D., Alon, T., Mor, N., Sela, N., Luria, N., Dombrovsky, A., Mawassi, M., Haviv, S., Czosnek, H. y Ghanim, M. (2019). Transmission of a new polerovirus infecting pepper by the whitefly Bemisia tabaco. Journal of Virology, 93(15), e00488- 19. https://doi.org/0.1128/JVI.00488-19spa
dc.relation.referencesGilchrist, E., Soler, J., Merz, U. y Reynaldi, S. (2011). Powdery scab effect on the potato Solanum tuberosum ssp. andigena growth and yield. Tropical Plant Pathology, 36(6), 350-355. https://doi.org/10.1590/s1982-56762011000600002.spa
dc.relation.referencesGiraldo, S., Sierra, A., Ospina, M., Higuita, M., Gallo, Y., Gutiérrez, P. y Marín, M. (2022). Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana, 27(2), 258-268. https://doi.org/10.15446/abc.v27n2.89422spa
dc.relation.referencesGómez, T. M., López, J. B., Pineda, R., Galindo, L. F., Arango, R. y Morales, J. G. (2012). Cytogenetic characterization of five “Criolla” potato genotypes, Solanum phureja (Juz. et Buk.). Revista Facultad Nacional de Agronomía Medellín, 65(1), 6379-6387.spa
dc.relation.referencesGrabherr, M., Haas, B., Yassour, M., Levin, L., Thompson, D., Amit, I., Diconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B., Nusbaum, C., Lindblad-Toh, K., Friedman, N. y Regev, A. (2013). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29, 644-652. https://doi.org/10.1038/nbt.1883.Trinity.spa
dc.relation.referencesGreen, K., Quintero-Ferrer, A., Chikh-Ali, M., Jones, R. y Karasev, A. (2020). Genetic diversity of nine non-recombinant Potato virus Y isolates from three biological strain groups: historical and geographical insights. Plant Disease, 104(9), 2317-2323. https://doi.org/10.1094/PDIS-05-20-0961-SCspa
dc.relation.referencesGutiérrez-Sánchez, P., Alzate-Restrepo, J. y Marín-Montoya, M. (2014). Caracterización del viroma de ARN de tejido radical de Solanum phureja mediante pirosecuenciación 454 GS-FLX. Bioagro, 26(2), 89-98.spa
dc.relation.referencesGutiérrez, P., Rivillas, A., Tejada, D., Giraldo, S., Restrepo, A., Ospina, M, Cadavid, S., Gallo, Y. y Marín, M. (2021). PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology, 113, 101604. https://doi.org/10.1016/j.pmpp.2021.101604spa
dc.relation.referencesGuzmán-Barney, M., Hernández, A. K. y Franco-Lara, L. (2012). Tracking Foliar Symptoms Caused by Tuber-Borne Potato Yellow Vein Virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia.” American Journal of Potato Research, 90, 84-93. https://doi.org/10.1007/s12230-013-9303-6.spa
dc.relation.referencesHalterman, D., Charkowski, A. y Verchot, J. (2012). Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Technology, 6(1), 1-14.spa
dc.relation.referencesHameed, A., Iqbal, Z., Asad, S. y Mansoor, S. (2014). Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathology Journal, 30, 407-415. https://doi.org/10.5423/PPJ.OA.05.2014.0039spa
dc.relation.referencesHančinsk, R., Mihálik, D., Mrkvová, M., Candresse, T. y Glasa, M. (2020). Plant Viruses Infecting Solanacea Family Members in the Cultivated and Wild Environments: A Review. Plants, 9(5), 667. https://doi.org/10.3390/plants9050667spa
dc.relation.referencesHawkes, J. G. (1990). The potato: Evolution, biodi- versity, and genetic resources. Washington, D.C: Belhaven Press.spa
dc.relation.referencesHernández, A., y Diaz, H. (2019). Inducción in vitro de callo embriogénico a partir del cultivo de anteras en "papa amarilla" Solanum goniocalyx Juz. & Bukasov (Solanaceae). Arnaldoa, 26(1), 277-286. http://dx.doi.org/10.22497/arnaldoa.261.26111.spa
dc.relation.referencesHuarte, M. y Capezio, S. (2013). Cultivo de papa. Unidad Integrada Balcarce INTA-FCA UNMdP. https://inta.gob.ar/sites/default/files/script-tmp-inta-_huarte_capezio_papa2013.pdfspa
dc.relation.referencesHull, R. (2009). Comparative Plant Virology (2a ed). New York: Academic Press. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesHull, R. (2014). Plant Virology (5a ed). New York: Academic Press.spa
dc.relation.referencesICA. (2011). Manejo fitosanitario del cultivo de la papa. Bogotá. Recuperado el 10 de abril de 2020 de https://www.ica.gov.co/getattachment/b2645c33-d4b4-4d9d-84ac-197c55e7d3d0/Manejo-fitosanitario-del-cultiva-de-la-papa-nbsp;-.aspxspa
dc.relation.referencesICA. (2015). Resolución 3168 de 2015. Recuperado el 10 de septiembre de 2020 de https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx.spa
dc.relation.referencesICA. (2017). Plagas exóticas para Colombia en el cultivo de la papa. ISBN 978-9. Recuperado el 10 de septiembre de 2020 de https://www.ica.gov.co/getattachment/294bc210-2562-4ee3-a5dd-152247779f0a/Plagas-exoticas-para-Colombia-en-cultivo-de-papa.aspxspa
dc.relation.referencesICTV. International Committee on Taxonomy of Viruses. (2014). Recuperado el 15 de abril de 2020 de http://www.ictvonline.org/.spa
dc.relation.referencesICTV. International Committee on Taxonomy of Viruses. (2020). Recuperado el 22 de agosto de 2021 de https://talk.ictvonline.org/taxonomy/spa
dc.relation.referencesJatala, P. (1986). Nematodos Parásitos de la Papa. CIP. Recuperado el 15 de abril de 2020 de https://cursa.ihmc.us/rid=1JL7FNT7R-NPN9Q7-Y6D/Nematodos%20parasitos.CIP.pdfspa
dc.relation.referencesJeevalatha, A., Kaundal, P., Shandil, R. K., Sharma, N. N., Chakrabarti, S. K., y Singh, B. P. (2013). Complete genome sequence of Potato leafroll virus isolates infecting potato in the different geographical areas of India shows low level genetic diversity. Indian Journal of Virology, 24(2), 199–204. https://doi.org/10.1007/s13337- 013-0138-zspa
dc.relation.referencesJeffries, C. (1998). Potato FAO/IPGRI Technical guidelines for the safe movement of germplasm No 19. FAO/ IPGRI, 19.spa
dc.relation.referencesJeong, J.J., Ju, H. J. y Noh, J. A. (2014). Review of Detection Methods for the Plant Viruses. Research in Plant Disease, 20, 173-181. https://doi.org/10.5423/rpd.2014.20.3.173.spa
dc.relation.referencesJones, R.A.C. (2021). Global Plant Virus Disease Pandemics and Epidemics. Plants 2021, 10, 233. https://doi.org/10.3390/plants10020233spa
dc.relation.referencesJuyó, D. K., Gerena, H. N., y Mosquera, T. (2011). Evaluación de marcadores moleculares asociados con resistencia a gota (Phytophthora infestans L.) en papas diploides y tetraploides. Revista Colombiana de Biotecnología, 13(2), 51-62. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/27917spa
dc.relation.referencesKarasev, A., Hu, X., Brown, C., Kerlan, C., Nikolaeva, O., Crosslin, J. y Gray, S. (2011). Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of recombinant PVY Strains. Phytopathology, 101(7), 778-785. https://10.1094/PHYTO-10-10-0284spa
dc.relation.referencesKchouk, M., Gibrat, J. F. y Elloumi, M. (2017). Generations of sequencing technologies: from first to next generation. Biology and Medicine, 9(3), 1000395. https://doi.org/ 10.4172/0974-8369.1000395spa
dc.relation.referencesKerlan, C. (2008). Potato viruses. Mahy, B. W. y Van Regenmortel, M. H. (Ed). Desk encyclopedia of plant and fungal virology, Academic Press, 458-471.spa
dc.relation.referencesKozlowska-Makulska, A., Guilley, H., Szyndel, M., Beuve, M., Lemaire, O., Herrbach, E. y Bouzoubaa, S. (2010). P0 proteins of European beet-infecting poleroviruses display variable RNA silencing suppression activity. Journal of General Virology, 91, 1082–1091. https://doi.org/10.1099/vir.0.016360-0spa
dc.relation.referencesKreuze, J. F., Souza-Dias, J. A. C., Jeevalatha, A., Figueira, A. R., Valkonen, J. P. T. y Jones R. A. C. (2020). Viral diseases in potato. Campos, H. y Ortiz, O. (Ed). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. (pp. 389-431). International Potato Center. Springer. https://doi.org/10.1007/978-94-011-2340-2spa
dc.relation.referencesKumar, S., Mishra, S. y Mishra, A. P. (2009). Plant tissue culture: theory and techniques. India: Scientific Publishers.spa
dc.relation.referencesKumar, J., Ranjan, T., Kumar, R. R., Ansar, M., Rajani, K., Kumar, M., Kumar, V., y Kumar, A. (2019a). In silico characterization and homology modelling of Potato Leaf Roll Virus (PLRV) coat protein. Current Journal of Applied Science and Technology, 33(2), 1-8. https://doi.org/10.9734/cjast/2019/v33i230054spa
dc.relation.referencesKumar, R., Kumar Tiwari, R., Jeevalatha, A., Kaundal, P., Sharma, S. y Chakrabarti, S. K. (2019b). Potato viruses and their diagnostic techniques: An overview. Journal of Pharmacognosy and Phytochemistry, 8(6), 1932-1944.spa
dc.relation.referencesLópez-Delgado, H., Mora-Herrera, M., Zavaleta-Mancera, H., Cadena-Hinojosa, M. y Scott, I. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81, 171-176. https://doi.org/10.1007/BF02871746.spa
dc.relation.referencesLópez-Pazos, S. A. y Cerón, J. (2010). Proteínas Cry de Bacillus thuringiensis y su interacción con coleópteros. Nova, 8(14), 183 - 194. https://doi.org/10.22490/24629448.44spa
dc.relation.referencesLopéz, J. (2011). Primer medicamento contra la hepatitis C (13 de mayo de 2011).spa
dc.relation.referencesInfofarmacia.com. Recuperado el 10 de septiembre de 2020 de http://www.info-farmacia.com/medico-farmaceuticos/revisiones-farmaceuticas/primer-medicamento-contra-la-hepatitis-c-13-de-mayo-de-2011spa
dc.relation.referencesMADR. (2018). La producción de papa en 2018 podría llegar 2 millones 690 mil toneladas. Recuperado el 15 de abril de 2020 de https://www.minagricultura.gov.co/noticias/Paginas/La producción de papa en 2018 podría llegar 2 millones 690 mil toneladas.aspx.spa
dc.relation.referencesMADR. (2020). Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales. Junio. Recuperado el 17 de agosto de 2021 de https://sioc.minagricultura.gov.co/Papa/Documentos/2020-06-30%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesMansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S., Machado, M., Toth, I., Salmondm G. y Foster G. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364- 3703.2012.00804.xspa
dc.relation.referencesMaree, H. J., Fox, A., Al Rwahnih, M., Boonham, N.y Candresse, T. (2018). Application of HTS for routine plant virus diagnostics: state of the art and challenges. Frontiers in Plant Science, 9, 1- 4. https://doi.org/10.3389/fpls.2018.01082.spa
dc.relation.referencesMarín, M. y Gutiérrez, P. (2016). Principios de virología molecular de plantas tropicales. Mosquera: Corpoica.spa
dc.relation.referencesMartinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Boschetti, M., Goulart, L., Davis, C. y Dandekar, A. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35, 1-25. https://doi.org/10.1007/s13593-014-0246-1.spa
dc.relation.referencesMartínez, W. y Cerón, J. (2002). Evaluación de la toxicidad de proteínas de Bacillus Thuringiensis Berliner hacia el gusano blanco de la papa Premnotrypes. Agronomía Colombiana, 19(1-2), 89-95.spa
dc.relation.referencesMatousek, J., Schubert, J., Ptácek, J., Kozlová, P. y Dedic, P. (2005). Complete nucleotide sequence and molecular probing of Potato virus S genome. Acta Virologica, 49, 195-205.spa
dc.relation.referencesMesa, M., Gonzále, M., Gutiérrez, P., y Marín, M. (2016). Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia, Colombia. Acta Agronómica, 65(2), 204-210. https://doi.org/10.15446/acag.v65n2.50764spa
dc.relation.referencesMuñoz, D., Gutiérrez, P. y Marín, M. (2016). Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Revista de Protección Vegetal, 31(1), 9-19.spa
dc.relation.referencesNAK. 2015. Details virus and bacterial diagnostics in potatoes 2016–2017. Recuperado el 10 de septiembre de 2020 de https://www.nak.nl/wp-content/uploads/archief/2012/NAK%20Services/Virus%20and%20bacterial%20diagnostics%20in%20potatoes%202017-2018.pdf.spa
dc.relation.referencesNolte, P., Whitworth, J. L., Thornton, M. K. y McIntosh, C. S. (2004). Effect of seedborne Potato virus Y on performance of Russet burbank, Russet norkotah, and Shepody potato. Plant Disease, 88, 248-252. https://doi.org/10.1094/PDIS.2004.88.3.248spa
dc.relation.referencesNormah, M. N., Sulong, N. y Reed, B. M. (2019). Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology, 87, 1-14. https://doi.org/10.1016/j.cryobiol.2019.01.008.spa
dc.relation.referencesÑustez, C. E. (2011). Variedades Colombianas de Papa. Universidad Nacional de Colombia. Bogotá. ISBN, 978-958-761-100-7.spa
dc.relation.referencesNurk, S., Bankevich, A., Antipov, D., Gurevich, A. A., Korobeynikov, A., Lapidus, A., Prjibelski, A. D., Pyshkin, A., Sirotkin, A., Sirotkin, Y., Stepanauskas, R., Clingenpeel, S. R., Woyke, T., Mclean, J. S., Lasken, R., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2013). Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of Computational Biology, 20(10), 714-737. https://doi.org/10.1089/cmb.2013.0084.spa
dc.relation.referencesOblitas, C. (2019). Aislamiento de protoplastos de Solanum tuberosum (variedad Única). Universidad Nacional De Huancavelica Jurados. http://repositorio.unh.edu.pe/bitstream/handle/UNH/1378/TP%20%20UNH.%20ENF.%200101.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesOcete, R. y Pérez, M. (1994). Actividad antialimentaria de extractos de Daphne gnidium L. y Anagyris foetida L. sobre Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Boletín de Sanidad Vegetal. Plagas, 20, 617-622.spa
dc.relation.referencesOgawa, T., Tomitaka, Y., Nakagawa, A. y Ohshimab, K. (2008). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Research, 131, 199-212.spa
dc.relation.referencesOrena, A. y Santos, J. (2012). Manejo de tubérculos-semillas de papa. Instituto de Investigaciones Agropecuarias. Recuperado el 16 de abril de 2020 de https://biblioteca.inia.cl/handle/123456789/4743spa
dc.relation.referencesOrmeño, M. y Rosales, R. (2015). Control eficiente de la pulguilla de la papa (Epitrix spp.) con repelente a base de ruda (Ruta graveolens L.). INIA. Centro de Investigaciones Agrícolas del Estado Mérida, 49-51. https://doi.org/10.13140/2.1.2791.7605.spa
dc.relation.referencesPacheco, D., González, M. y Algredo, I. (2015). De la Secuenciación a la aceleración hardware de los programas de alineación de ADN, una revisión integral. Revista Mexicana de Ingeniería Biomédica, 36, 259–277. https://doi.org/10.17488/RMIB.36.3.6spa
dc.relation.referencesPanattoni, A., Luvisi, A. y Triolo, E. (2013). Review. Elimination of viruses in plants: Twenty years of progress. Spanish Journal of Agricultural Research, 11, 173-188. https://doi.org/10.5424/sjar/2013111-3201.spa
dc.relation.referencesParra, Y. (2009). El cultivo de papa: siembra, riego, cosecha y más aspectos importantes. Recuperado el 21 de abril de 2020 de http://agronomaster.com/cultivo-de-papa/.spa
dc.relation.referencesPrjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. y Korobeynikov. (2020). Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics, 70, e102. https://doi.org/10.1002/cpbi.102spa
dc.relation.referencesPYMERURAL. (2013). Manual de producción de semilla de papa mediante técnicas de reproducción asexual. Tegucigalpa, Honduras. Recuperado el 1 de mayol de 2022 de http://www.agronegocioshonduras.org/wp-content/uploads/2014/06/manual_de_produccion_de_semilla_de_papa.spa
dc.relation.referencesRaikhy, G. y Tripathi, D. (2017). Leading molecular aspects of plant viruses. Journal of Bacteriology & Mycology, 5(2). https://doi.org/10.15406/jbmoa.2017.05.00128spa
dc.relation.referencesRajamäki, M., Merits, A., Rabenstein, F., Andrejeva, J., Paulin, L., Kekarainen, T., Kreuze, J. F., Forster, R. L. S. y Valkonen, J. P. T. (1998). Biological, serological, and molecular differences among isolates of potato a potyvirus. Phytopathology, 88(4), 311-321. https://doi.org/10.1094/PHYTO.1998.88.4.311spa
dc.relation.referencesReuter, J., Spacek, D. y Snyder, M. (2015). High-throughput sequencing technologies. Molecular cell, 58(4), 586-597. https://doi.org/10.1016/j.molcel.2015.05.004spa
dc.relation.referencesRhoads, A. y Au, K. F. (2015). PacBio sequencing and its applications. Genomics Proteomics Bioinformatics, 13(5), 278-289. https://doi.org/10.1016/j.gpb.2015.08.002spa
dc.relation.referencesRoca, W. y Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones. Cali: Centro Internacional de Agricultura Tropical (CIAT).spa
dc.relation.referencesRodríguez, L. E., Ñustez, C. E. y Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana, 27(3), 289-303.spa
dc.relation.referencesRodríguez, L. y Moreno, P. (2010). Factores y mecanismos relacionados con la dormancia en tubérculos de papa. Una revisión. Agronomía Colombiana, 28(2), 189-197. https://revistas.unal.edu.co/index.php/agrocol/article/view/18022/37678spa
dc.relation.referencesRodriguez-Rodriguez, M., Chikh-Ali, M., Johnson, S., Gray, S., Malseed, N., Crump, N. y Karasev, A. (2020). The Recombinant Potato virus Y (PVY) Strain, PVYNTN, identified in potato fields in Victoria, Southeastern Australia. Plant Disease, 104(12), 3110-3114. https://doi.org/10.1094/PDIS-05-20-0961-SC.spa
dc.relation.referencesRoest, S. y Bokelmann, G. S. (1976). Vegetative propagation of Solanum tuberosum L. in vitro. Potato Research, 19,173-178. https://doi.org/10.1007/BF02360421.spa
dc.relation.referencesRozo, D. y Ramírez, L. (2011). La agroindustria de la papa criolla en Colombia. Situación actual y retos para su desarrollo. Gestión & Sociedad, 4(2), 17-30. https://doi.org/10.13140/RG.2.1.2580.9120spa
dc.relation.referencesSalazar, L. (1995). Los virus de la papa y su control. Perú: Centro Internacional de la papa (CIP).spa
dc.relation.referencesSalazar, L. (2006). Emerging and re-emerging potato diseases in the Andes. Potato Research, 49, 43–7. https://doi.org/10.1007/s11540-006-9005-2spa
dc.relation.referencesSalazar, L. F., Muller, G., Querci, M., Zapata, J. L. y Owens ,R. A. (2020). Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Annals of Applied Biology, 137, 7–19. https://doi.org/10.1111/j.1744-7348.2000.tb00052.x.spa
dc.relation.referencesSchirmer, M., D’Amore, R., Ijaz, U., Hall, N. y Quince, C. (2016). Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics, 17, 1–15. https://doi.org/10.1186/s12859-016-0976-y.spa
dc.relation.referencesScholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot E, Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C. y Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938-954. https://doi.org/10.1111/j.1364- 3703.2011.00752.x.spa
dc.relation.referencesSchumpp, O., Bréchon, A., Brodard, J., Dupuis, B., Farinelli, L., Frei, P., Otten, P.y Pellet, D. (2021). Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Research. In press. https://doi.org/10.1007/s11540-021-09491-3spa
dc.relation.referencesSidwell, R., Huffman, J., Khare, G., Allen, L., Witkowski, J. y Robins, R. (1972). Broad spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science, 177(4050), 705-706.spa
dc.relation.referencesSierra, A., Gallo, Y., Estrada, M., Gutiérrez, P. A. y Marín, M. (2020). Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro, 32(1), 3-14.spa
dc.relation.referencesSierra, A., Gallo, Y., Estrada, M., Gutiérrez, P. y Marín, M. (2021). Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection, 54 (5-6), 273-294. https://doi.org/10.1080/03235408.2020.1829424spa
dc.relation.referencesSmith, R. H. (2012). Plant Tissue Culture Techniques and Experiments (3a ed.). New York: Academic Press.spa
dc.relation.referencesSpooner, D. M., Ghislain, M., Simon, R., Jansky, S. H. y Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80, 283–383. https://doi.org/10.1007/s12229-014-9146-yspa
dc.relation.referencesSQM. (2006). Guía de Manejo Nutrición Vegetal Especialidad Papa. Recuperado el 24 de abril de 2022 de http://www.sqm-vitas.com/Portals/0/pdf/cropKits/SQM-Crop_Kit_Potato_L-ES.pdfspa
dc.relation.referencesStange, C. (2006). Interacción planta-virus durante el proceso infectivo. Ciencia e Investigación Agraria,33, 3-21.spa
dc.relation.referencesStevens, W. A. (1983). Virology of Flowering Plants. (pp. 16-40). Tertiary Level Biology. Springer. https://doi.org/10.1007/978-1-4757-1251-3_2spa
dc.relation.referencesStevenson, W., Loria, R., Franc, G. y Weingartner, D. (2001). Compendium of potato diseases (2a ed.). American Phytopathological Society, St. Pau, USA:spa
dc.relation.referencesSuranthran, P., Gantait, S., Sinniah, U. R., Subramaniam, S., Alwee, S. S. R. S. y Roowi, S. H. (2012). Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regulation, 66, 101-109. https://doi.org/10.1007/s10725-011-9633-7.spa
dc.relation.referencesThomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J. L., Bao, S., Charkowski, A. O., Crook, D., Kadian, M., Kromann, P., Struik, P. C., Torrance, L., Garrett, K. A. y Forbes, G. A. (2016). Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65(1), 3-16. https://doi.org/10.1111/ppa.12439spa
dc.relation.referencesValenzuela, V., Redondo, E. y Bujanos, R. (2003). Detección de virus por serología y plantas indicadoras en el tubérculo-semilla y plantas de cultivo de meristemos en papa (Solanum tuberosum L.) var. Alfa. Revista Mexicana de Fitopatología, 21, 176-180.spa
dc.relation.referencesVan Regenmortel, M. H. V. (2011). Virus Species. Tibayrenc, M. (Ed). Genetics and Evolution of Infectious Diseases (1a ed.). (pp. 3-19). Elsevier Inc. https://doi.org/10.1016/B978- 0-12-384890-1.00001-7spa
dc.relation.referencesVan Regenmortel, M. H. V. (2010). Logical puzzles and scientific controversies: The nature of species, 78 viruses and living organisms. Systematic and Applied Microbiology, 33, 1–6. https://doi.org/10.1016/j.syapm.2009.11.001 Vanspa
dc.relation.referencesVan Regenmortel, M. H. V. (2018). The Species Problem in Virology. Kielian, M., Mettenleiter, T. y Roossinck, M (Ed). Advances in Virus Research. (pp.1-18). Elsevier Inc. https://doi.org/10.1016/bs.aivir.2017.10.008spa
dc.relation.referencesVélez, P. B. (2007). Detección e identificación del Potato mop-top virus (PMTV) en áreas de producción de papa donde se encuentra Spongospora subterranea en dos departamentos de Colombia [Tesis de Maestría]. Universidad Nacional de Colombia Sede Bogotá.spa
dc.relation.referencesVillamil-Garzón, A., Cuellar, W. J. y Guzmán-Barney, M. (2014). Co-infección natural de potato yellow vein virus y potyvirus en cultivos de Solanum tuberosum en Colombia. Agronomía Colombiana, 32, 213–223. https://doi.org/10.15446/agron.colomb.v32n2.43968.spa
dc.relation.referencesVillamor, D. E. V., Ho, T., Al Rwahnih, M., Martin, R. R. y Tzanetakis, I. E. (2019). High throughput sequencing for plant virus detection and discovery. Phytopathology, 109, 716-725. https://doi.org/10.1094/PHYTO-07-18-0257-RVWspa
dc.relation.referencesVillanueva, D. F. y Saldamando, C. I. (2013). Tecia solanivora, Povolny (Lepidoptera: Gelechiidae): una revisión sobre su origen, dispersión y estrategias de control biológico. Ingeniería y Ciencia, 9, 197–214. https://doi.org/10.17230/ingciecia.9.18.11spa
dc.relation.referencesViralzone. (2008a). Polerovirus. Recuperado el 8 de abril de 2020 de https://viralzone.expasy.org/610?outline=all_by_speciesspa
dc.relation.referencesViralzone. (2008b). Potexvirus. Recuperado el 10 de abril de 2020 de https://viralzone.expasy.org/272?outline=all_by_speciesspa
dc.relation.referencesWang, Q., Laamanen, J., Uosukainen, M. y Valkonen, J. P. T. (2005). Cryopreservation of in vitro-grown shoot tips of raspberry (Rubus idaeus L.) by encapsulation-vitrification and encapsulation-dehydration. Plant Cell Reports, 24, 280-288. https://doi.org/10.1007/s00299-005-0936-x.spa
dc.relation.referencesWang, Q. C. y Valkonen, J. P. T. (2008). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods, 154,135-145. https://doi.org/10.1016/j.jviromet.2008.08.006.spa
dc.relation.referencesWang, M., Cui, Z., Li, J., Hao, X., Zhao, L. y Wang, Q. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plant Methods, 14, 1-18. https://doi.org/10.1186/s13007-018-0355-y.spa
dc.relation.referencesXu, Y., Ju, H., Deblasio, S., Carino, E. J., Johnson, R., y Maccoss, M. J. (2018). A Stem Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 ases Upstream. Journal of Virology, 92(11), 1-20. https://10.1128/JVI.01544-17spa
dc.relation.referencesZhang, Z., Wang, Q., Spetz, C. y Blystad, D. (2019). In vitro therapies for virus elimination of potato valuable germplasm in Norway. Scientia Horticulturae, 249, 7–14. https://doi.org/10.1016/j.scienta.2019.01.027.spa
dc.relation.referencesZuñiga, S., Morales, C. y Estrada, M. (2017). Cultivo de la papa y sus condiciones climáticas. Gestión Ingenio y Sociedad, 2(2),140–152. http://gis.unicafam.edu.co/index.php/gis/article/view/60spa
dc.relation.referencesAgindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi: 10.1016/j.jviromet.2006.12.012spa
dc.relation.referencesAli, M., T. Maoka, K.T. Natsuaki. 2008. The Occurrence of potato viruses in Syria and the molecular detection and characterization of Syrian Potato virus S isolates. Potato Research 51: 151-161. https://10.1007/s11540-008-9099-9spa
dc.relation.referencesÁlvarez, D., P. Gutiérrez, M. Marín. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana 21(3): 521-531. https://dx.doi.org/10.15446/abc.v21n3.54712spa
dc.relation.referencesÁlvarez, D., P. Gutiérrez-Sánchez, M. Marín-Montoya. 2017. Genome sequencing of Potato yellow vein virus (PYVV) and development of a molecular test for its detection. Bioagro 29: 3–14.spa
dc.relation.referencesAlvarez, N., H. Jaramillo, Y. Gallo, P. Gutiérrez, M. Marín. 2018. Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting Cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana 36(1): 13–23. https://dx.doi.org/10.15446/agron.colomb.v36n1.65051spa
dc.relation.referencesBertschinger, L., L. Bühler, B. Dupuis, B. Duffy, C. Gessler, G.A. Forbes, E.R. Keller, U.C. Scheidegger, P.C. Struik. 2017. Incomplete Infection of Secondarily Infected Potato Plants - an Environment Dependent Underestimated Mechanism in Plant Virology. Frontiers in plant science 8: 74. https://doi.org/10.3389/fpls.2017.00074spa
dc.relation.referencesBushmanova, E., D. Antipov, A. Lapidus, A.D. Prjibelski. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience 8(9): 1-13. https://doi.org/10.1093/gigascience/giz100spa
dc.relation.referencesSIOC. 2020. Sistema De Información De Gestión Y Desempeño De Las Organizaciones De Cadenas (SIOC). [accessed 2020 Sept 10]. https://sioc.minagricultura.gov.co/Papa.spa
dc.relation.referencesDe Souza, J., G. Müller, W. Perez, W. Cuellar, J. Kreuze. 2017. Complete sequence and variability of a new subgroup B nepovirus infecting potato in central Peru. Archives of Virology 162(3): 885-889. https://10.1007/s00705-016-3147-6spa
dc.relation.referencesEdgar, R.C., R.M. Drive, M. Valley. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340.spa
dc.relation.referencesFAOSTAT. 2018. Food and agriculture data. [accessed 2020 Sept 10]. http://www.fao.org/faostat/en/#home.spa
dc.relation.referencesFedepapa. 2019. Informe de gestión. Vigencia 2019. [accessed 2020 Oct 20]. https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdf.spa
dc.relation.referencesForbes, G.A., A. Charkowski, J. Andrade-Piedra, M.L. Parker, E. Schulte-Geldermann. 2020. Potato seed systems. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer.spa
dc.relation.referencesFrost, K.E., R.L. Groves, A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97(10): 1268–1280. https://10.1094/PDIS-05-13-0477-FEspa
dc.relation.referencesGallo, Y., A. Sierra, L. Donaire, M.A. Aranda, P.A. Gutiérrez, M.A. Marín. 2019. Coinfección natural de virus de ARN en cultivos de papa (Solanum tuberosum subsp. Andigena) en Antioquia (Colombia), Acta Biológica Colombiana 24(3): 546–560. https://doi.org/10.15446/abc.v24n3.79277.spa
dc.relation.referencesGallo, Y., M. Marín, P.A. Gutiérrez. 2020. Detection of RNA viruses in Cape gooseberry (Physalis peruviana L.) by RNAseq using total RNA and dsRNA inputs. Archives of Phytopathology and Plant Protection 53(9-10): 395-413. https://10.1080/03235408.2020.1748368spa
dc.relation.referencesGallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021a. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684spa
dc.relation.referencesGallo, Y., M. Marín, P.A. Gutiérrez. 2021b. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://10.1016/j.pmpp.2020.101570spa
dc.relation.referencesGarcía, D., M.A. Olarte, P. Gutiérrez, M.A. Marín. 2016. Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. y Bukasov) en Antioquia. Revista Colombiana de Biotecnología 18(1): 104–111.spa
dc.relation.referencesGil, J.F., J.M. Cotes, E.P. González, M. Marín. 2011. Caracterización genotípica de aislamientos colombianos del potato mop-top virus (PMTV, Pomovirus). Actualidades Biológicas 33 (94): 69–84.spa
dc.relation.referencesGil, J.F., I. Adams, N. Boonham, S.L. Nielsen, M. Nicolaisen. 2016. Molecular and biological characterization of Potato mop-top virus (PMTV, Pomovirus) isolates from the potato-growing regions of Colombia. Plant Pathology 65: 1210–1220. https://doi.org/10.1111/ppa.12491.spa
dc.relation.referencesGiraldo, S., A. Sierra, M. Ospina, M. Higuita, Y. Gallo, P. Gutiérrez, M. Marín. 2022. Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana 27(2):258-268. https://doi.org/10.15446/abc.v27n2.89422spa
dc.relation.referencesGutiérrez, P.A., J.F. Alzate, M.A. Marín-Montoya. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7.spa
dc.relation.referencesGutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja, Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49.spa
dc.relation.referencesGutiérrez, P., A. Rivillas, D. Tejada, S. Giraldo, A. Restrepo, M. Ospina, S. Cadavid, Y. Gallo, M. Marín. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology 113: 101604. https://doi.org/10.1016/j.pmpp.2021.101604spa
dc.relation.referencesGuyader, S., D.G. Ducray. 2002. Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology 83(7): 1799-1807. https://10.1099/0022-1317-83-7-1799.spa
dc.relation.referencesGuzmán-Barney, M., L. Franco-Lara, D. Rodríguez, L. Vargas, J.E. Fierro. 2012. Yield losses in Solanum tuberosum Group Phureja cultivar criolla Colombia in plants with symptoms of PYVV in field trials. American Journal of Potato Research 89(6): 438–447. https://doi.org/10.1007/s12230-012-9265-0spa
dc.relation.referencesHalterman, D., A. Charkowski, J. Verchot. 2012. Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Technology 6(1): 1–14.spa
dc.relation.referencesHardigan, M.A., F.P. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Veilleux, C.R Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences 114(46): 201714380. https://10.1073/pnas.1714380114spa
dc.relation.referencesICA. 2015. Resolución 3168 de 2015. [accessed 2020 Sept 10]. https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx.spa
dc.relation.referencesImbeaud, S., E. Graudens, V. Boulanger, X. Barlet, P. Zaborski, E. Eveno, O. Mueller, A. Schroeder, C. Auffray. 2005. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research 33(6): e56. https://doi: 10.1093/nar/gni054.spa
dc.relation.referencesKreuze, J.F., J.A.C. Souza-Dias, A. Jeevalatha, A.R. Figueira, J.P.T. Valkonen, R.A.C. Jones. 2020. Viral diseases in potato. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer.spa
dc.relation.referencesKumar, S., G. Stecher, M. Li, C. Knyaz, K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. https://doi: 10.1093/molbev/msy096.spa
dc.relation.referencesLi, W., A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13): 1658-1659. https://10.1093/bioinformatics/btl158.spa
dc.relation.referencesMarín, M., P. Gutiérrez P. 2016. Principios de virología molecular de plantas tropicales. Bogotá: Corpoica.spa
dc.relation.referencesMartínez, H., C. Espinal, M. Salazar, C. Barrios. 2005. La cadena de la papa en Colombia: una mirada global de su estructura y dinámica 1991–2005. MADR. [accessed 2020 Sept 10]. http://bibliotecadigital.agronet.gov.co/handle/11348/6325.spa
dc.relation.referencesMedina, H.C., P.A. Gutiérrez, M.A. Marín. 2015. Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2): 83–92.spa
dc.relation.referencesMedina, H., P. Gutiérrez, M. Marín. 2017. Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agronómica 66: 625–632. https://doi.org/https://doi.org/10.15446/acag.v66n4.59753.spa
dc.relation.referencesMesa, M.E., M.I. González, P.A. Gutiérrez, M.A. Marín. 2016. Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia. Acta Agronómica 65(2): 204–210. https://doi.org/10.15446/acag.v65n2.50764spa
dc.relation.referencesMumford, R.A., K. Walsh, I. Barker, N. Boonham. 2000. Detection of Potato mop top virus and Tobacco rattle virus Using a Multiplex Real-Time Fluorescent Reverse-Transcription Polymerase Chain Reaction Assay. Phytopathology 90(5):448-53. https://10.1094/PHYTO.2000.90.5.448.spa
dc.relation.referencesMuñoz, D., P. Gutiérrez, M. Marín. 2016a. Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Protección Vegetal 31: 9–19.spa
dc.relation.referencesMuñoz, D., P. Gutiérrez, M. Marín. 2016b. Detection and genome characterization of Potato virus Y isolates infecting potato (Solanum tuberosum L.) in La Union Antioquia, Colombia. Agronomía Colombiana 34(3): 317-328. https://dx.doi.org/10.15446/agron.colomb.v34n3.59014spa
dc.relation.referencesMuñoz-Baena, L., P.A. Gutiérrez-Sánchez, M. Marín-Montoya. 2016. Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro. 28(2): 69-80.spa
dc.relation.referencesNie, X., R.P. Singh. 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves and tubers. Journal of Virological Methods 91: 37–49. https://doi.org/10.1016/s0166-0934(00)00242-1.spa
dc.relation.referencesPorras, P., C. Herrera. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Mosquera (Colombia): Corpoica. 92 p.spa
dc.relation.referencesRiascos, M., P.A. Gutiérrez-Sánchez, M.A. Marín-Montoya. 2018. Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta Biológica Colombiana 23: 39–50. https://doi.org/10.15446/abc.v23n1.65683.spa
dc.relation.referencesRobinson, J., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. Lander, G. Getz, J. Mesirov. 2011. Integrative genomics viewer. Nature Biotechnology 29: 24–26. https://doi.org/10.1038/nbt0111-24.spa
dc.relation.referencesSalazar, L.F. 1996. Potato viruses and their control. Lima: International Potato Center.spa
dc.relation.referencesSavenkov, E.I., M.Y. Sandgren, J.P.T. Valkonen. 1999. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology 80: 2779-2784. https://10.1099/0022-1317-80-10-2779spa
dc.relation.referencesSierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2020a. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection. In Press. https:// 10.1080/03235408.2020.1829424.spa
dc.relation.referencesSierra, A., Y. Gallo, M. Estrada, P.A. Gutiérrez, M. Marín. 2020b. Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro, 32(1), 3-14.spa
dc.relation.referencesSingh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods 1: 133–143. https://10.1016/0166-0934(95)00056-zspa
dc.relation.referencesTamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9(4): 678-687. https://10.1093/oxfordjournals.molbev.a040752.spa
dc.relation.referencesThiele G. 1999. Informal potato seed systems in the Andes: Why are they important and what should we do with them? World Development 27(1): 83–99. https://doi.org/10.1016/S0305-750X(98)00128-4spa
dc.relation.referencesThomas-Sharma, S., A. Abdurahman, S. Ali, J.L. Andrade-Piedra, S. Bao, A.O. Charkowski, D. Crook, M. Kadian, P. Kromann, P.C. Struik PC, L. Torrance, K.A. Garrett, G.A. Forbes. 2016. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology 65(1): 3–16. https://doi.org/10.1111/ppa.12439spa
dc.relation.referencesThomas-Sharma, S., J. Andrade-Piedra, M. Carvajal, J.F. Hernandez, M.J. Jeger, R.A.C. Jones, P. Kromann, J.P. Legg, J. Yuen, G.A. Forbes, K.A. Garrett. 2017. A risk assessment framework for seed degeneration: Informing an integrated seed Health strategy for vegetatively propagated crops. Phytopathology. 107(10): 1123–1135. https://doi.org/10.1094/PHYTO-09-16-0340-Rspa
dc.relation.referencesVallejo, D., P. Gutiérrez, M. Marín. 2016. Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja Juz. et Buk. Agronomía Colombiana 34: 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161.spa
dc.relation.referencesXu, H., T.L. DeHaan, S.H. De Boer. 2004. Detection and confirmation of Potato mop-top virus in potatoes produced in the United States and Canada. Plant Disease 88: 363–367. https://doi.org/10.1094/PDIS.2004.88.4.363spa
dc.relation.referencesYang, L., B. Nie, J. Liu, B. Song. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT–PCR. American Journal of Potato Research 91(3): 304–311. https://doi.org/10.1007/s12230-013-9350-zspa
dc.relation.referencesAgindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi.org/10.1016/j.jviromet.2006.12.012.spa
dc.relation.referencesAgronet. 2021. Red de información y comunicación del sector Agropecuario Colombiano. https://www.agronet.gov.co/estadistica/Paginas/home.aspxspa
dc.relation.referencesÁlvarez, D., P. Gutiérrez, M. Marín. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana 21(3): 521-531. https://doi.org/10.15446/abc.v21n3.54712spa
dc.relation.referencesÁlvarez, N., Jaramillo, H., Gallo, Y., Gutiérrez, P., Marín, M. 2018. Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting Cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agronomía Colombiana 36(1): 13–23. https://doi.org/10.15446/agron.colomb.v36n1.65051spa
dc.relation.referencesBoratyn, G.M., Thierry-Mieg, D., Busby, B., Madden, T.L. 2019. Magic-BLAST, an accurate DNA and RNA-seq aligner for long and short reads. BMC Bioinformatics 20: 405. https://doi.org/10.1186/s12859-019-2996-xspa
dc.relation.referencesDíaz-Cruz, G.A., Smith, C.M., Wiebe, K.F., Cassone, B.J. 2017. First complete genome sequence of Tobacco necrosis virus D isolated from soybean and from North America. Genome Announcements 5: e00781-17. https://doi.org/10.1128/genomeA.00781-17.spa
dc.relation.referencesEdgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5):1792-1797. https://doi.org/10.1093/nar/gkh340spa
dc.relation.referencesEPPO. 1999. Tobacco necrosis virus (TNV000). https://gd.eppo.int/taxon/TNV000/documentsspa
dc.relation.referencesFrost, K.E., R.L. Groves, A.O. Charkowski. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease 97(10): 1268–1280. https://doi.org/10.1094/PDIS-05-13-0477-FEspa
dc.relation.referencesGallo, Y., A. Sierra, L. Donaire, M.A. Aranda, P.A. Gutiérrez, M.A. Marín. 2019. Coinfección natural de virus de ARN en cultivos de papa (Solanum tuberosum subsp. Andigena) en Antioquia (Colombia). Acta Biológica Colombiana 24(3): 546–560. https://doi.org/10.15446/abc.v24n3.79277.spa
dc.relation.referencesGallo, Y., M. Marín, P.A. Gutiérrez. 2021a. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://doi.org/10.1016/j.pmpp.2020.101570spa
dc.relation.referencesGallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021b. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684spa
dc.relation.referencesGarcía, A., M. Higuita, R. Hoyos, Y. Gallo, M. Marín, P. Gutiérrez. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop protection. Submitted.spa
dc.relation.referencesGildemacher, P.R., E. Schulte-Geldermann, D. Borus, P. Demo, P. Kinyae, P. Mundia, P.C. Struik. 2011. Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Research 54(3):253–266. https://doi.org/10.1007/s11540-011-9190-5spa
dc.relation.referencesGutiérrez, P.A., Alzate, J.F., Marín-Montoya, M.A. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7.spa
dc.relation.referencesGutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja. Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49.spa
dc.relation.referencesGuyader, S., Ducray, D.G. 2002. Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. Journal of General Virology 83(7): 1799-1807. https://doi.org/10.1099/0022-1317-83-7-1799.spa
dc.relation.referencesGuzmán, M., V. Román, L. Franco, P. Rodríguez. 2010. Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomía Colombiana 28(2):225–233.spa
dc.relation.referencesGuzmán-Barney, M., Franco-Lara, L., Rodríguez, D., Vargas, L., Fierro, J.E. 2012. Yield losses in Solanum tuberosum Group Phureja cultivar criolla Colombia in plants with symptoms of PYVV in field trials. American Journal of Potato Research 89(6): 438–447. https://doi.org/10.1007/s12230-012-9265-0spa
dc.relation.referencesICTV. 2021. International Committee on Taxonomy of Viruses. https://talk.ictvonline.org/spa
dc.relation.referencesJeffies, C.J. 1998. FAO/IPGRI Technical guidelines for the safe movement of germplasm. Potato. 19. 84p. [accessed 2022 May 10]. https://www.bioversityinternational.org/fileadmin/user_upload/Potato_booklet_reduced.pdfspa
dc.relation.referencesKreuze, J.F., Souza-Dias, J.A.C., Jeevalatha, A., Figueira, A.R., Valkonen, J.P.T., Jones, R.A.C. 2020. Viral diseases in potato. In: Campos H, Ortiz O, editors. The potato crop. Cham, Switzerland: Springer.spa
dc.relation.referencesKumar, R., P. Kaundal, R. Kumar, S. Siddappa, H. Kumari, K. Chandra, S. Sharma, M. Kumar. 2021. Rapid and sensitive detection of potato virus X by one-step reverse transcription-recombinase polymerase amplification method in potato leaves and dormant tubers. Molecular and Cellular Probes 58: 101743. https://doi.org/10.1016/j.mcp.2021.101743spa
dc.relation.referencesMADR. 2019. Estrategia de ordenamiento de la producción. Cadena productiva de la papa y su industria. https://sioc.minagricultura.gov.co/Papa/Normatividad/Plan%20de%20Ordenamiento%20papa%202019-2023.pdfspa
dc.relation.referencesMedina, H.C., P.A. Gutiérrez, M.A. Marín. 2015. Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2): 83-92.spa
dc.relation.referencesMesa, M.E., M.I. González, P.A. Gutiérrez, M.A. Marín. 2016. Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia. Acta Agronómica 65(2): 204–210. https://10.15446/acag.v65n2.50764spa
dc.relation.referencesMonger, W., C. Jeffries. 2018. A new virus, classifiable in the family Tombusviridae, found infecting Solanum tuberosum in the UK. Archives of Virology. 163: 1585-1594. https://doi.org/10.1007/s00705-018-3751-8spa
dc.relation.referencesMuñoz, D., Gutiérrez, P., Marín, M. 2016. Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa (Solanum tuberosum L.) del norte de Antioquia, Colombia. Protección Vegetal 31: 9–19.spa
dc.relation.referencesMuñoz-Baena, L., Gutiérrez-Sánchez, P.A., Marín-Montoya, M. 2016. Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro 28(2): 69-80.spa
dc.relation.referencesPrice, W.C. 1938. Studies on the virus of tobacco necrosis. American Journal of Botany 25: 603. https://doi.org/10.2307/2436520.spa
dc.relation.referencesRaigond, B., A. Verma, S. Pathania, J. Sridhar, T. Kochhar, S.K. Chakrabarti. 2020. Development of a reverse transcription loop-mediated isothermal amplification for detection of potato virus a in potato and in insect vector aphids. Crop Protection 137: 105296. https://10.1016/j.cropro.2020.105296spa
dc.relation.referencesRobinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P. 2011. Integrative Genomics Viewer. Nature Biotechnology 29(1): 24-26. https://doi.org/10.1038/nbt.1754spa
dc.relation.referencesRodríguez, L.E., C.E. Ñustez, N. Estrada. 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana 27(3): 289-303.spa
dc.relation.referencesSaitou, N., Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454spa
dc.relation.referencesSavenkov, E.I., M.Y. Sandgren, J.P.T. Valkonen. 1999. Complete sequence of RNA 1 and the presence of tRNA-like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology 80: 2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779spa
dc.relation.referencesSchulte-Geldermann, E., P.R. Gildemacher, P.C. Struik PC. 2012. Improving seed health and seed performance by positive selection in three Kenyan potato varieties. American Journal of Potato Research 89(6): 429–437. https://doi.org/10.1007/s12230-012-9264-1spa
dc.relation.referencesSchumpp, O., A. Bréchon, J. Brodard, B. Dupuis, L. Farinelli, P. Frei, P. Otten, D. Pellet 2021. Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Research. In press. https://doi.org/10.1007/s11540-021-09491-3spa
dc.relation.referencesSeminario, J.F., R. Villanueva-Guevara, M.H. Valdez-Yopla. 2018. Rendimiento de cultivares de papa (Solanum tuberosum L.) amarillos precoces del grupo Phureja. Agronomía Mesoamericana 29(3): 639-653. https://doi.org/10.15517/ma.v29i3.32623spa
dc.relation.referencesSierra, A., Y. Gallo, M. Estrada, P.A. Gutiérrez, M. Marín. 2020. Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro 32(1): 3-14.spa
dc.relation.referencesSierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection 54(5-6): 273-294. https://doi.org/10.1080/03235408.2020.1829424.spa
dc.relation.referencesSingh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. Journal of Virological Methods 1: 133–143. https://doi.org/10.1016/0166-0934(95)00056-zspa
dc.relation.referencesSmith, K.M., Bald, J.G. 1935. A description of a necrotic virus disease affecting tobacco and other plants. Parasitology 27: 231–245. https://doi.org/10.1017/S0031182000015109.spa
dc.relation.referencesTamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9: 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752spa
dc.relation.referencesTeakle, D.S., Gold, A.H. 1963. Further studies of Olpidium as a vector of tobacco necrosis virus. Virology 19: 310 –315. https://doi.org/10.1016/0042-6822(63)90069-2.spa
dc.relation.referencesThomas-Sharma, S., J. Andrade-Piedra, M. Carvajal, J.F. Hernandez, M.J. Jeger, R.A.C. Jones, P. Kromann, J.P. Legg, J. Yuen, G.A. Forbes, K.A. Garrett. 2017. A risk assessment framework for seed degeneration: Informing an integrated seed Health strategy for vegetatively propagated crops. Phytopathology 107(10): 1123–1135. https://doi.org/10.1094/PHYTO-09-16-0340-Rspa
dc.relation.referencesYang, L., B. Nie, J. Liu, B. Song. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT–PCR. American Journal of Potato Research 91(3): 304–311. https://10.1007/s12230-013-9350-zspa
dc.relation.referencesAGINDOTAN, B.O.; SHIEL, P.J.; BERGER, P.H. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. J. Virol. Methods. 142(1–2):1–9. https://doi.org/10.1016/j.jviromet.2006.12.012spa
dc.relation.referencesALI, M.C.; MAOKA, T.; NATSUAKI, K.T. 2008. The occurrence of potato viruses in Syria and the molecular detection and characterization of Syrian Potato virus S isolates. Potato Res. 51:151–161. https://doi.org/10.1007/s11540-008-9099-9spa
dc.relation.referencesÁLVAREZ, D.; GUTIÉRREZ, P.; MARÍN, M. 2016. Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta biol. Colomb. 21(3):521-531.spa
dc.relation.referencesÁLVAREZ-YEPES, D.; GUTIÉRREZ-SÁNCHEZ, P.; MARÍN-MONTOYA, M. 2017. Secuenciación del genoma del Potato yellow vein virus (PYVV) y desarrollo de una prueba molecular para su detección. Bioagro. 29(1):3-14.spa
dc.relation.referencesBEEMSTER, A.; BOKX, A. 1987. Survey of properties and symptoms. En: Bokx, J. A.; Want, J. (eds). Viruses of potatoes and seed-potato production (2a ed.). Wageningen University (Netherland). p.84-113. https://doi.org/10.1007/bf02357877spa
dc.relation.referencesBUSHMANOVA, E.; ANTIPOV, D.; LAPIDUS, A.; D PRJIBELSKI, A. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience. 8(9):1-13. https://doi.org/10.1093/gigascience/giz100spa
dc.relation.referencesBURLINGAME, B.; MOUILLÉ, B.; CHARRONDIÈRE, R. 2009. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 22:494-502. https://doi.org/10.1016/j.jfca.2009.09.001spa
dc.relation.referencesCOX, B.A.; JONES, R.A.C. 2010. Genetic variability in the coat protein gene of Potato virus X and the current relationship between phylogenetic placement and resistance groupings. Arch. Virol. 155(8):1349-1356. https://doi.org/10.1007/s00705-010-0711-3spa
dc.relation.referencesFAO. 2008. La papa - Año Internacional de la Papa 2008. Disponible desde Internet en: http://www.fao.org/potato-2008/es/mundo/europa.html (con acceso el 15/01/2020)spa
dc.relation.referencesFAOSTAT. 2018. Food and agriculture data. Disponible desde Internet en: http://www.fao.org/faostat/en/#home. (con acceso el 10/09/2020)spa
dc.relation.referencesFEDEPAPA. 2017. Plan estratégico del subsector de la papa visión 20-20. Disponible desde Internet en: https://fedepapa.com/wp-content/uploads/2017/01/Plan-sectorial.pdf (con acceso el 30/01/2020)spa
dc.relation.referencesFEDEPAPA. 2019. Informe de gestión. Vigencia 2019. Disponible desde Internet en: https://fedepapa.com/wp-content/uploads/2020/05/INFORME-DE-GESTIO%CC%81N-VIGENCIA-2019.pdf (con acceso el 15/07/2021)spa
dc.relation.referencesFORBES, G.A.; CHARKOWSKI, A.; ANDRADE-PIEDRA, J.; PARKER, M.; Schulte-Geldermann, E. 2020. Potato seed systems. En: Campos, H., Ortiz, O. (eds). The potato crop. Cham, Springer (Switzerland).spa
dc.relation.referencesFROST, K.E.; GROVES, R.L.; CHARKOWSKI, A.O. 2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Dis. 97(10):1268-1280. https://doi.org/10.1094/PDIS-05-13-0477-FEspa
dc.relation.referencesGALLO, Y.; SIERRA, A.; DONAIRE, L.; ARANDA, M.; GUTIÉRREZ, P.; MARÍN, M. 2019. Natural coinfection of RNA viruses in potato (Solanum tuberosum subsp. andigena) crops in Antioquia (Colombia). Acta biol. Colomb. 24(3):546-560. https://doi.org/10.15446/abc.v24n3.79277spa
dc.relation.referencesGALLO-GARCÍA, Y.; SIERRA-MEJIA, A.; GUTIÉRREZ, P.A.; MARÍN-MONTOYA, M. 2021. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnol. sector agropecuario agroind. 19(1):66-78. https://doi.org/10.18684/bsaa(19)66-78spa
dc.relation.referencesGARCÍA, A.; HIGUITA, M.; HOYOS, R.; GALLO, Y.; MARÍN, M.; GUTIÉRREZ, P. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop Prot; código del registro: No.: CROPRO-D-21-01027.spa
dc.relation.referencesGIL, J.F.; COTES, J.M.; MARÍN, M. (2011). Incidencia de Potyvirus y caracterización molecular de PVY en regiones productoras de papa (Solanum tuberosum L) de Colombia. Rev. colomb. biotecnol. 85-93.spa
dc.relation.referencesGILDEMACHER, P.R.; SCHULTE-GELDERMANN, E.; BORUS, D.; DEMO, P.; KINYAE, P.; MUNDIA, P.; STRUIK, P.C. 2011. Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Res. 54(3):253–266. https://doi.org/10.1007/s11540-011-9190-5spa
dc.relation.referencesGLAIS, L.; TRIBODET, M.; KERLAN, C. 2005. Specific detection of the PVYN-W variant of Potato virus Y. J. Virol. Methods. 125(2):131-136. https://doi.org/10.1016/j.jviromet.2005.01.007spa
dc.relation.referencesGUTIÉRREZ, P.; RIVILLAS, A.; TEJADA, D.; GIRALDO, S.; RESTREPO, A.; OSPINA, M.; CADAVID, S.; GALLO, Y.; MARÍN, M. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiol. Mol. Plant Path. 113:101604. https://doi.org/10.1016/j.pmpp.2021.101604spa
dc.relation.referencesGUZMÁN-BARNEY, M.; HERNÁNDEZ, A.K.; FRANCO-LARA, L. 2012. Tracking Foliar Symptoms Caused by Tuber-Borne Potato yellow vein virus (PYVV) in Solanum Phureja (Juz et Buk) Cultivar “Criolla Colombia”. Am. J. Potato Res. 90:84-93. https://doi.org/10.1007/s12230-013-9303-6.spa
dc.relation.referencesHALTERMAN, D.; CHARKOWSKI, A.; VERCHOT, J. 2012. Potato viruses and seed certification in the USA to provide healthy propagated tubers. Pest Tech. 6(1):1-14.spa
dc.relation.referencesHAMEED, A.; IQBAL, Z.; ASAD, S.; MANSOOR, S. 2014. Detection of multiple potato viruses in the field suggests synergistic interactions among potato viruses in Pakistan. Plant Pathol. J. 30:407-415. https://doi.org/10.5423/PPJ.OA.05.2014.0039spa
dc.relation.referencesHENAO-DÍAZ, E.; GUTIÉRREZ-SÁNCHEZ, P.; MARÍN-MONTOYA, M. 2013. Análisis filogenético de aislamientos del Potato virus Y (PVY) obtenidos en cultivos de papa (Solanum Tuberosum) y tomate de árbol (Solanum Betaceum) en Colombia. Actu. biol. 35:219-232.spa
dc.relation.referencesICA. 2015. Resolución 3168 de 2015. Disponible desde Internet en: https://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx (con acceso el 10/09/2020)spa
dc.relation.referencesKERLAN, C. 2008. Potato viruses. En: Mahy, B.W.; Van Regenmortel, M.H. (eds). Desk encyclopedia of plant and fungal virology. Academic Press. p.458-471.spa
dc.relation.referencesKREUZE, J.F.; SOUZA-DIAS, J.A.C.; JEEVALATHA, A.; FIGUEIRA, A.R.; VALKONEN, J.P.T.; JONES, R.A.C. 2020. Viral diseases in potato En: Campos, H.; Ortiz, O. (eds). The potato crop. Its agricultural, nutritional and social Contribution to Humankind. International Potato Center. p.389-431. https://doi.org/10.1007/978-94-011-2340-2spa
dc.relation.referencesKUMAR, S.; STECHER, G.; LI, M.; KNYAZ, C.; TAMURA, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6):1547-1549. https://doi: 10.1093/molbev/msy096.spa
dc.relation.referencesMADR. 2020. Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales. Junio. Disponible desde Internet en: https://sioc.minagricultura.gov.co/Papa/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf (con acceso el 17/08/2021)spa
dc.relation.referencesMARÍN, M.; GUTIÉRREZ, P. 2016. Principios de virología molecular de plantas tropicales. Colombia: Corpoica.spa
dc.relation.referencesMEDINA, H., GUTIÉRREZ, P., MARÍN, M. 2017. Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agron. 66(4):625-632. https://doi.org/10.15446/acag.v66n4.59753spa
dc.relation.referencesMILNE, I.; BAYER, M.; CARDLE, L.; SHAW, P.; STEPHEN, G.; WRIGHT, F.; MARSHALL, D. 2010. Tablet - Next Generation Sequence Assembly Visualization. Bioinformatics (Oxford, England). 26(3):401-402. https://doi.org/10.1093/bioinformatics/btp666spa
dc.relation.referencesMUMFORD, R.A.; WALSH, K.; BARKER, I.; BOONHAM, N. 2000. Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology. 90(5): 448-453. https://doi.org/10.1094/PHYTO.2000.90.5.448spa
dc.relation.referencesNIE, X.; SINGH, R. 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers. J. Virol. Methods. 91(1):37-49. https://doi.org/10.1016/S0166-0934(00)00242-1spa
dc.relation.referencesNOLTE, P.; WHITWORTH, J.L.; THORNTON, M.K.; MCINTOSH, C.S. 2004. Effect of seedborne Potato virus Y on performance of russet burbank, russet norkotah, and shepody potato. Plant Dis. 88:248-252. https://doi.org/10.1094/PDIS.2004.88.3.248spa
dc.relation.referencesÑUSTEZ, C.E. 2011. Variedades Colombianas de Papa. Bogotá: Universidad Nacional de Colombia. p.46.spa
dc.relation.referencesPORRAS, P.; HERRERA, C. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Mosquera (Colombia): Corpoica. p.92.spa
dc.relation.referencesRAIGOND, B.; VERMA, A.; PATHANIA, S.; SRIDHAR, J.; KOCHHAR, T.; CHAKRABARTI, S.K. 2020. Development of a reverse transcription loop-mediated isothermal amplification for detection of potato virus a in potato and in insect vector aphids. Crop Prot. 137:105296. https://10.1016/j.cropro.2020.105296spa
dc.relation.referencesRIASCOS, M.; GUTIÉRREZ SÁNCHEZ, P.; MARÍN MONTOYA, M. 2018. Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta biol. Colomb. 23(1):39-50. http://dx.doi.org/10.15446/abc.v23n1.65683spa
dc.relation.referencesSALAZAR, L. 2006. Emerging and re-emerging potato diseases in the Andes. Potato Res. 49:43-47. https://doi.org/10.1007/s11540-006-9005-2spa
dc.relation.referencesSAVENKOV, E.I.; SANDGREN, M.; VALKONEN, J.P.T. 1999. Complete sequence of RNA 1 and the presence of tRNA like structures in all RNAs of Potato mop-top virus, genus Pomovirus. J. Gen. Virol. 80(10):2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779spa
dc.relation.referencesSIERRA, A.; GALLO, Y.; ESTRADA, M.; GUTIÉRREZ, P.; MARÍN, M. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Arch. Phytopathol. Pflanzenschutz. 54(5-6):273-294. https:// 10.1080/03235408.2020.1829424.spa
dc.relation.referencesSINGH, R.P.; KURZ, J.; BOITEAU, G.; BERNARD, G. 1995. Detection of Potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. J. Virol. Methods. 55:133-143.spa
dc.relation.referencesSCHULTE-GELDERMANN, E.; GILDEMACHER, P.R; STRUIK, P.C. 2012. Improving seed health and seed performance by positive selection in three Kenyan potato varieties. Am. J. Potato Res. 89(6):429–437. https://doi.org/10.1007/s12230-012-9264-1spa
dc.relation.referencesSCHUMPP, O.; BRÉCHON, A.; BRODARD, J.; DUPUIS, B.; FARINELLI, L.; FREI, P.; OTTEN, P.; PELLET, D. 2021. Large-Scale RT-qPCR diagnostics for seed potato certification. Potato Res. In press. https://doi.org/10.1007/s11540-021-09491-3spa
dc.relation.referencesTHOMAS-SHARMA, S.; ABDURAHMAN, A.; ALI, S.; ANDRADE-PIEDRA, J.L.; BAO, S.; CHARKOWSKI, A.O.; CROOK, D.; KADIAN, M.; KROMANN, P.; STRUIK, P.C.; TORRANCE, L.; GARRETT, K.A.; FORBES, G.A. 2016. Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathol. 65(1):3-16. https://doi.org/10.1111/ppa.12439spa
dc.relation.referencesXU, H.; DEHAAN, T.L.; DE BOER, S.H. 2004. Detection and confirmation of Potato mop-top virus in potatoes produced in the United States and Canada. Plant Dis. 88(4):363–367. https://doi.org/10.1094/PDIS.2004.88.4.363spa
dc.relation.referencesYANG, L.; NIE, B.; LIU, J.; SONG, B. 2014. A reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using Elisa and quantitative RT-PCR. Am. J. Potato Res. 91(3):304-311. https://doi.org/10.1007/s12230-013-9350-zspa
dc.relation.referencesAgindotan, B.O., P.J. Shiel, P.H. Berger. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods 142(1-2): 1-9. https://doi: 10.1016/j.jviromet.2006.12.012.spa
dc.relation.referencesAvrahami-Moyal, L., Y. Tam, M. Brumin, S. Prakash, D. Leibman, M. Pearlsman, M. Bornstein, N. Sela, M. Zeidan, Z. Dar, U. Zig, A. Gal-On, V. Gaba. 2017. Detection of Potato virus Y in industrial quantities of seed potatoes by TaqMan Real Time PCR. Phytoparasitica 45: 591–598. https:// 10.1007/s12600-017-0612-zspa
dc.relation.referencesCox, B.A., R.A.C. Jones. 2012. Effects of tissue sampling position, primary and secondary infection, cultivar, and storage temperature and duration on the detection, concentration and distribution of three viruses within infected potato tubers. Australasian Plant Pathology 41: 197–210. https://10.1007/s13313-011-0108-0spa
dc.relation.referencesFERA. 2017. Potato post-harvest virus testing sample submission form. [accessed 2020 Nov 20]. https://www.fera.co.uk/media/wysiwyg/crop_health/Crop_Health_Post-Harvest_Virus_Testing_of_Potato_Tubers_Sample_Submission-2019.pdfspa
dc.relation.referencesFox, A., F. Evans, I. Browning. 2005. Direct tuber testing for Potato Y potyvirus by real-time RT-PCR and ELISA: reliable options for post-harvest testing? EPPO Bulletin 35: 93–97. https:// 10.1111/j.1365-2338.2005.00805.xspa
dc.relation.referencesGallo, Y., A. Sierra, M. Marín, P.A. Gutiérrez. 2021. Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial 19(1): 66-78. https://dx.doi.org/10.18684spa
dc.relation.referencesGhislain, M., D. Andrade, F. Rodríguez, R.J. Hijmans, D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theoretical and Applied Genetics 113(8): 1515-1527. https://10.1007/s00122-006-0399-7spa
dc.relation.referencesGiraldo, S., A. Sierra, M. Ospina, M. Higuita, Y. Gallo, P. Gutiérrez, M. Marín. 2022. Detección y caracterización molecular del potato virus B (PVB) en papa criolla (Solanum phureja) en Antioquia. Acta Biológica Colombiana 27(2): 258-268. https://doi.org/10.15446/abc.v27n2.89422spa
dc.relation.referencesHerrera, A.O., L.E. Rodríguez. 2011. Tecnologías de Producción y Transformación de Papa Criolla. Universidad Nacional de Colombia. Bogotá. ISBN : 978-958-761-110-6spa
dc.relation.referencesKumar, R., P. Kaundal, R. Kumar, S. Siddappa, H. Kumari, K. Chandra, S. Sharma, M. Kumar. 2021. Rapid and sensitive detection of potato virus X by one-step reverse transcription-recombinase polymerase amplification method in potato leaves and dormant tubers. Molecular and Cellular Probes 58: 101743. https:// 10.1016/j.mcp.2021.101743spa
dc.relation.referencesMortimer-Jones, S.M., M.G. Jones, R.A. Jones, G. Thomson, G.I. Dwyer. 2009. A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously. Journal of Virological Methods 161: 289–296. https://10.1016/j.jviromet.2009.06.027spa
dc.relation.referencesNAK. 2015. Details virus and bacterial diagnostics in potatoes 2016–2017. [accessed 2020 Sept 10]. https://www.nak.nl/wpcontent/uploads/archief/2012/NAK%20Services/Virus%20and%20bacterial%20diagnostics%20in%20potatoes%202017-2018.pdf.spa
dc.relation.referencesÑustez, C.E. 2011. Variedades Colombianas de Papa. Bogotá: Universidad Nacional de Colombia. 46 p.spa
dc.relation.referencesSeminario, J.F., R. Villanueva-Guevara, M.H. Valdez-Yopla. 2018. Rendimiento de cultivares de papa (Solanum tuberosum L.) amarillos precoces del grupo Phureja. Agronomía Mesoamericana 29(3): 639-653. https://10.15517/ma.v29i3.32623spa
dc.relation.referencesSierra A., Y. Gallo, M. Estrada, P. Gutiérrez, M. Marín. 2021. Detection of four RNA viruses in commercial and informal potato seed tubers in Antioquia (Colombia). Archives of Phytopathology and Plant Protection 54(5-6): 273-294. https:// 10.1080/03235408.2020.1829424.spa
dc.relation.referencesSingh, R.P., J. Kurz, G. Boiteau, G. Bernard. 1995. Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potential epidemiological application. Journal of Virological Methods 1: 133–143. https://10.1016/0166-0934(95)00056-zspa
dc.relation.referencesSingh M, Singh RP, Fageria MS, Nie X, Coffin R, Hawkins G. 2013. Optimization of a Real-Time RT-PCR assay and its comparison with ELISA, conventional RT-PCR and the grow-out test for large scale diagnosis of Potato virus Y in dormant potato tubers. American Journal of Potato Research 90(1):43–50. https://doi.org/10.1007/s12230-012-9274-zspa
dc.relation.referencesStammler, J., A. Oberneder, A. Kellermann, J. Hadersdorfer. 2018. Detecting potato viruses using direct reverse transcription quantitative PCR (DiRT-qPCR) without RNA purification: an alternative to DAS-ELISA. European Journal of Plant Pathology 152: 237–248. https:// 10.1007/s10658-018-1468-xspa
dc.relation.referencesWhitworth, J.L., P.B. Hamm, P. Nolte. 2012. Distribution of Potato virus Y strains in tubers during the postharvest period. American Journal of Potato Research 89(2): 136–141. https:// 10.1007/s12230-012-9235-6spa
dc.relation.referencesWhitworth, J.L., S.M. Gray, J.T. Ingram, D.G. Hall. 2021. Foliar and tuber symptoms of U.S. potato varieties to multiple strains and isolates of potato virus Y. American Journal of Potato Research 98: 93–103. https://10.1007/s12230-020-09820-1spa
dc.relation.referencesAgindotan, B. O., Shiel, P. J. y Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. Journal of Virological Methods, 142(1–2), 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012spa
dc.relation.referencesÁlvarez, D., Gutiérrez, P. y Marín, M. (2016). Caracterización molecular del Potato virus V (PVV) infectando Solanum phureja mediante secuenciación de nueva generación. Acta Biológica Colombiana, 21(3), 521-531. https://doi.org/10.15446/abc.v21n3.54712spa
dc.relation.referencesÁlvarez-Yepes, D., Gutiérrez-Sánchez, P. y Marín-Montoya, M. (2017). Secuenciación del genoma del Potato yellow vein virus (PYVV) y desarrollo de una prueba molecular para su detección. Bioagro, 29(1), 3-14.spa
dc.relation.referencesAntonova, O., Apalikova, O., Ukhatova, Y., Krylova, E., Shuvalov, O., Shuvalova, A. R. y Gavrilenko, T. A. (2017). Eradication of viruses in microplants of three cultivated potato species (Solanum tuberosum L., S. Phureja Juz. & Buk., S. stenotomum Juz. & Buk.) using combined thermo-chemotherapy method. Sel'skokhozyaistvennaya Biologiya, 52, 95-104. https://doi.org/10.15389/agrobiology.2017.1.95eng.spa
dc.relation.referencesBamberg, J., Martin, M., Abad, J., Jenderek, M., Tanner, J., Donnelly, D., Nassar, A., Veilleux, R. y Novy, R. (2016). In vitro technology at the US potato Genebank. In Vitro Cellular and Developmental Biology - Plant, 52, 213-225. https://doi.org/10.1007/s11627-016-9753-xspa
dc.relation.referencesBettoni, J. C., Mathew, L., Pathirana, R., Wiedow, C., Hunter, D., McLachlan, A., Khan, S., Tang, J. y Nadarajan, J. (2022). Eradication of Potato Virus S, Potato Virus A, and Potato Virus M From Infected in vitro-grown potato shoots using in vitro therapies. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.878733spa
dc.relation.referencesChavez-Barrantes, N. y Gutiérrez-Soto, M. (2017). Respuestas al estrés por calor en los cultivos. II. Tolerancia y tratamiento agronómico. Agronomía Mesoamericana, 28(1), 255 - 271. https://doi.org/10.15517/am.v28i1.21904spa
dc.relation.referencesDaurov, D., Daurova, A., Karimov, A., Tolegenova, D., Volkov, D., Raimbek, D., Zhambakin, K. y Shamekova, M. (2020). Determining Effective Methods of Obtaining Virus-Free Potato for Cultivation in Kazakhstan. American Journal of Potato Research, 97, 367–375. https://doi.org/10.1007/s12230-020-09787-zspa
dc.relation.referencesDawson, W. O. y Lozoya, S. H. (1984). Examination of the mode of action of ribavirin against tobacco mosaic virus. Intervirology., 22(2), 77–84. https://doi.org/10.1159/000149537spa
dc.relation.referencesEhsanpour, A. y Jones, M. (2001). Plant regeneration from mesophyll protoplasts of potato (Solanum tuberosum L.) cultivar delaware using silver thiosulfate (STS). Journal of sciences, 12, 103-110.spa
dc.relation.referencesFaccioli, G. y Colalongo, M. (2002). Eradication of potato virus Y and potato leafroll virus by chemotherapy of infected potato stem cuttings. Phytopathologia Mediterranea, 41, 76-78.spa
dc.relation.referencesFAOSTAT. (2018). Food and agriculture data. Recuperado el 10 de septiembre de 2020 de http://www.fao.org/faostat/en/#homespa
dc.relation.referencesGallo, Y., Sierra, A., Marín, M. y Gutiérrez, P. A. (2021). Prevalencia de cinco virus de ARN en tubérculos-semilla de papa cultivados en Antioquia (Colombi9a). Biotecnología en el Sector Agropecuario y Agroindustrial, 19(1), 66-78. https://dx.doi.org/10.18684spa
dc.relation.referencesGarcía, A.; Higuita, M.; Hoyos, R.; Gallo, Y.; Marín, M. y Gutiérrez, P. (2021). Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). Crop Prot; código del registro: No.: CROPRO-D-21-01027.spa
dc.relation.referencesGuzmán, M., Román, V., Franco, X. y Rodríguez, P. (2010). Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomía Colombiana, 28(2), 225–233.spa
dc.relation.referencesHoque, M. (2010). In Vitro Regeneration Potentiality of Potato under Different Hormonal Combination. World Journal of Agricultural Sciences, 6(6), 660-663. http://www.idosi.org/wjas/wjas6(6)/5.pdfspa
dc.relation.referencesKaiser, W. (1980). Use of Thermotherapy to Free Potato Tubers of Alfalfa mosaic, Potato leaf roll, and Tomato black ring viruses. Phytopathology, 70(11), 1119. https://doi.org/10.1094/phyto-70-1119spa
dc.relation.referencesMumford, R. A., Walsh, K., Barker, I. y Boonham, N. (2000). Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology, 90(5), 448-453. https://doi.org/10.1094/PHYTO.2000.90.5.448spa
dc.relation.referencesMurashige, T. y Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.xspa
dc.relation.referencesMuthoni, J., Shimelis, H. y Melis, R. (2013). Potato production in Kenya: Farming systems and production constraints. The Journal of Agricultural Science, 5(5), 182-197. https://doi.org/10.5539/jas.v5n5p182spa
dc.relation.referencesNasir, I., Tabassum, B., Latif, Z., Javed M., Haider, M. Javed, M. y Husnain, T. (2010). Strategies to control Potato virus Y under in vitro conditions. Pakistan Journal of Phytopathology, 22(1), 63-70.spa
dc.relation.referencesSalazar, L. F. (1996). Potato viruses and their control. Lima: International Potato Center.spa
dc.relation.referencesSavenkov, E. I., Sandgren, M. y Valkonen, J. P. T. (1999). Complete sequence of RNA 1 and the presence of tRNA like structures in all RNAs of Potato mop-top virus, genus Pomovirus. Journal of General Virology, 80(10), 2779-2784. https://doi.org/10.1099/0022-1317-80-10-2779spa
dc.relation.referencesSherwood, J. L. (1994). Virus free-plants. Dixon, R. A. y Gonzales R. A. (Ed). Plant Cell Culture. A practical approach. (2a ed). IRL Press. UK. (pp. 135-138).spa
dc.relation.referencesShoala, T., Eid, Kh. E. y El-fiki, I. A. I. (2019). Impact of chemotherapy and thermotherapy treatments on the presence of potato viruses PVY, PVX and PLRV in tissue-cultured shoot tip meristem. Journal of Plant Protection and Pathology, 10(12), 581-585.spa
dc.relation.referencesSimpkins, I.; Walkey, D. G. A. y Neely, H. A. (1981). Chemical suppression of virus in cultured plant tissues. Annals Applied Biology, 99(2), 161–169.https://doi.org/10.1111/j.1744-7348.1981.tb05143.xspa
dc.relation.referencesSingh, R. P., Kurz, J., Boiteau, G. y Bernard, G. (1995). Detection of Potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods, 1, 133–143. https://10.1016/0166-0934(95)00056-zspa
dc.relation.referencesWagoire, W. W., Kakuhenzire, R., Kashaija, I. N., Lemaga, B., Demo, P. y Kimmone, G. (2005). Seed potato production in Uganda: Current status and future prospects. African Crop Science Conference Proceedings, 7, 739-743.spa
dc.relation.referencesWaswa, M.; Kakuhenzire, R. y Ochwo-Ssemakula, M. (2017). Effect of thermotherapy duration, virus type and cultivar interactions on elimination of potato viruses X and S in infected seed stocks. African Journal of Plant Science. 11(3):61-70. https://doi.org/10.5897/AJPS2016.1497spa
dc.relation.referencesYang, L., Nie, B., Liu, J. y Song, B. (2014). A Reexamination of the effectiveness of ribavirin on eradication of viruses in potato plantlets in vitro using ELISA and quantitative RT-PCR. American Journal of Potato Research, 91(3), 304-311. https://doi.org/10.1007/s12230-013-9350spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.lembVirología agrícola
dc.subject.lembPapa - Enfermedades y plagas
dc.subject.lembPapa - Cultivo
dc.subject.lembCultivo in vitro
dc.subject.proposalCertificación de semillaspa
dc.subject.proposalqPCReng
dc.subject.proposalSecuenciación de alto rendimientospa
dc.subject.proposalSolanaceaeother
dc.subject.proposalVirología vegetalspa
dc.subject.proposalHigh-throughput sequencingeng
dc.subject.proposalPlant virologyeng
dc.subject.proposalSeed certificationeng
dc.subject.proposalPapa (Solanum tuberosum y S. phureja)spa
dc.titleDetección molecular y limpieza de virus en material de siembra de Solanum tuberosum y S. phurejaspa
dc.title.translatedMolecular detection and characterization of viruses and development of in vitro virus removal methods in Solanum tuberosum and S. phurejaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlecódigo 1101-805-62787 "Desarrollo de una plataforma molecular y bioinformática para el diagnóstico de virus en cultivos y material de siembra de papa (Solanum tuberosum y S. phureja) en Antioquia"spa
oaire.fundernameFondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías del Departamento de Antioquia (Colombia) (Convenio No. 4600007658–779)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152195206.2022.pdf
Tamaño:
13.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: