Desarrollo de un algoritmo adaptativo para la coordinación de protecciones de sobrecorriente en el entorno de operación de una microrred

dc.contributor.advisorCandelo, John E.
dc.contributor.advisorRevelo, Javier
dc.contributor.authorArteaga Estacio, Gustavo Adolfo
dc.contributor.researchgroupProcesamiento Digital de Señales Para Sistemas en Tiempo Real
dc.date.accessioned2025-09-10T16:52:08Z
dc.date.available2025-09-10T16:52:08Z
dc.date.issued2025-09-10
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractLas microrredes malladas con generación distribuida (DG) emergen como una solución estratégica para asegurar la autosuficiencia energética en regiones no interconectadas o con suministro eléctrico inestable. No obstante, su complejidad operativa introduce retos significativos en la coordinación de protecciones de sobrecorriente. Este trabajo propone un método automatizado para coordinar relés de sobrecorriente direccionales en microrredes, integrando teoría de grafos con un algoritmo de optimización que ajusta de manera eficiente los parámetros Time Dial Setting (TDS) y corriente de pickup. La metodología se valida mediante el sistema IEEE 33-bus modificado, simulado en PowerFactory y Python, evaluando diversos escenarios operativos. Los resultados demuestran una coordinación precisa y robusta, reduciendo errores humanos y optimizando los tiempos de diseño del sistema de protección. (Tomado de la fuente)spa
dc.description.abstractMeshed microgrids with distributed generation (DG) are emerging as a strategic solution to ensure energy self-sufficiency in non-interconnected regions or areas with unreliable power supply. However, their operational complexity poses significant challenges for the coordination of overcurrent protection systems. This thesis presents an automated method for coordinating directional overcurrent relays in microgrids by integrating graph theory with an optimization algorithm that efficiently adjusts the Time Dial Setting (TDS) and pickup current parameters. The proposed methodology is validated on a modified IEEE 33-bus distribution system, simulated using PowerFactory and Python, under various operating scenarios. Results show that the method achieves accurate and robust relay coordination, minimizing human error and significantly reducing protection system design time.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Sistemas Energéticos
dc.description.researchareaEnergía
dc.format.extent58 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88695
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia, Facultad de Minas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticos
dc.relation.indexedLaReferencia
dc.relation.referencesAsociación Colombiana de Generadores. (2021). Matriz energética de Colombia. Disponible en: https://acolgen.org.co/
dc.relation.referencesBrearley, B. J., & Prabu, R. R. (2017). A review on issues and approaches for microgrid protection. Renewable and Sustainable Energy Reviews, 67, 988–997. https://doi.org/10.1016/j.rser.2016.09.047
dc.relation.referencesCepeda, C., Orozco-Henao, C., Percybrooks, W. S., Pulgarín-Rivera, J. D., Montoya, O. D., Gil-González, W., & Vélez, J. C. (2020). Intelligent fault detection system for microgrids. Energies, 13(5), 1223. https://doi.org/10.3390/en13051223
dc.relation.referencesCheng, S., & Ge, J. (2024). The number of spanning trees in kn-chain and ring graphs. Physica Scripta, 99(11), 115236. https://doi.org/10.1088/1402-4896/ad8273
dc.relation.referencesDahal, M., Jha, A. K., & Ghimire, R. M. (2019). Impact of renewable distributed generation on protection coordination of distribution system. International Journal of Engineering and Applied Sciences, 6(4). https://doi.org/10.31873/ijeas/6.4.2019.17
dc.relation.referencesDe Castro Korgi, R. (2010). El Universo LaTeX (2a ed.). Universidad Nacional de Colombia. ISBN: 958701060-4
dc.relation.referencesDe la Cruz Saavedra, J. A. (2020). Desarrollo de un esquema de protección adaptativo descentralizado multi agente para una micro red eléctrica [Tesis doctoral, Universidad Nacional de Colombia].
dc.relation.referencesDella Giustina, D., Dede, A., de Sotomayor, A. A., & Ramos, F. (2015). Toward an adaptive protection system for the distribution grid by using the IEC 61850. In 2015 IEEE International Conference on Industrial Technology (ICIT) (pp. 2374–2378). IEEE. https://doi.org/10.1109/ICIT.2015.7125448
dc.relation.referencesDing, X., & Jiang, T. (2010). Spectral distributions of adjacency and Laplacian matrices of random graphs. The Annals of Applied Probability, 20(6). https://doi.org/10.1214/10-aap677
dc.relation.referencesEl-Hamrawy, A. H., Ebrahiem, A. A. M., & Megahed, A. I. (2022). Improved adaptive protection scheme based combined centralized/decentralized communications for power systems equipped with distributed generation. IEEE Access, 10, 97061–97074. https://doi.org/10.1109/access.2022.3205312
dc.relation.referencesGhadiri, S. M. E., & Mazlumi, K. (2020a). Adaptive protection scheme for microgrids based on SOM clustering technique. Applied Soft Computing, 88, 106062. https://doi.org/10.1016/j.asoc.2019.106062
dc.relation.referencesGhadiri, S. M. E., & Mazlumi, K. (2020b). Adaptive protection scheme for microgrids based on SOM clustering technique. Applied Soft Computing, 88, 106062. https://doi.org/10.1016/j.asoc.2019.106062
dc.relation.referencesGhotbi-Maleki, M., Javadi, H., Khederzadeh, M., & Farajzadeh, S. (2019). An adaptive and decentralized protection scheme for microgrid protection. Preprints. https://doi.org/10.20944/preprints201907.0251.v1
dc.relation.referencesGogoi, K., & Chutia, C. (2020). Analysis of electrical networks: Graph theoretic approach. Journal of Ultra Scientist of Physical Sciences Section A, 32(5), 37–46. https://doi.org/10.22147/jusps-a/320502
dc.relation.referencesHaron, A. R., Mohamed, A., & Shareef, H. (2013). Coordination of overcurrent, directional and differential relays for the protection of microgrid system. Procedia Technology, 11, 366–373. https://doi.org/10.1016/j.protcy.2013.12.204
dc.relation.referencesHooshyar, A., & Iravani, R. (2017). Microgrid protection. Proceedings of the IEEE, 105(7), 1332–1353. https://doi.org/10.1109/JPROC.2017.2669342
dc.relation.referencesHosseini, S. A., Abyaneh, H. A., Sadeghi, S. H. H., Razavi, F., & Nasiri, A. (2016). An overview of microgrid protection methods and the factors involved. Renewable and Sustainable Energy Reviews, 64, 174–186. https://doi.org/10.1016/j.rser.2016.05.089
dc.relation.referencesInternational Electrotechnical Commission. (2009). IEC 60255-151: Measuring relays and protection equipment – Part 151: Functional requirements for over/under current protection.
dc.relation.referencesJavadi, M. S., Nezhad, A. E., Anvari-Moghaddam, A., & Guerrero, J. M. (2019). Hybrid mixed-integer non-linear programming approach for directional overcurrent relay coordination. The Journal of Engineering, 2019(18), 4743–4747. https://doi.org/10.1049/joe.2018.9346
dc.relation.referencesKauhaniemi, K., Voima, S., & Laaksonen, H. (2014). Adaptive protection scheme for smart grids. In 12th IET International Conference on Developments in Power System Protection (DPSP 2014) (p. 12.66). IET. https://doi.org/10.1049/cp.2014.0139
dc.relation.referencesKekezoğlu, B., Can, H., Akdemir, H., & Şengör, İ. (2016). Optimal overcurrent relay coordination using hybrid genetic algorithm and linear programming method. In Proc. Int. Conf. on Electrical and Electronics Engineering. Institute of Research Engineers and Doctors. https://doi.org/10.15224/978-1-63248-113-9-48
dc.relation.referencesKeller, R., Eckert, C. M., & Clarkson, P. J. (2006). Matrices or node-link diagrams: Which visual representation is better for visualizing connectivity models? Information Visualization, 5(1), 62–76. https://doi.org/10.1057/palgrave.ivs.9500116
dc.relation.referencesKingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint. https://arxiv.org/abs/1412.6980
dc.relation.referencesKorashy, A., Kamel, S., Youssef, A.-R., & Jurado, F. (2019). Modified water cycle algorithm for optimal directional overcurrent relay coordination. Applied Soft Computing, 74, 10–25. https://doi.org/10.1016/j.asoc.2018.10.020
dc.relation.referencesLey 1715 de 2014. Congreso de la República de Colombia.
dc.relation.referencesLey 2099 de 2021. Congreso de la República de Colombia.
dc.relation.referencesLin, H., Sun, K., Tan, Z.-H., Liu, C., Guerrero, J. M., & Vásquez, J. C. (2019). Adaptive protection combined with machine learning for microgrids. IET Generation, Transmission & Distribution, 13(6), 770–779. https://doi.org/10.1049/iet-gtd.2018.6230
dc.relation.referencesLiu, Z., Su, C., Hoidalen, H. K., & Chen, Z. (2017). A multiagent system-based protection and control scheme for distribution system with distributed-generation integration. IEEE Transactions on Power Delivery, 32(1), 536–545. https://doi.org/10.1109/TPWRD.2016.2585579
dc.relation.referencesMemon, A. A., & Kauhaniemi, K. (2023). Protection of future harbor area AC microgrids containing renewable energy sources and batteries. IEEE Access, 11, 57448–57469. https://doi.org/10.1109/access.2023.3283575
dc.relation.referencesMinisterio de Minas y Energía (2021). Plan integral de gestión del cambio climático del sector minero energético 2050.
dc.relation.referencesMohammadi, R., & Mohammadzadeh, N. (2017). A fast numerical method for optimal coordination of overcurrent relays in the presence of transient fault current. IET Generation, Transmission & Distribution, 12(2), 472–481. https://doi.org/10.1049/iet-gtd.2017.0055
dc.relation.referencesNaciones Unidas. (2020). Objetivo de Desarrollo Sostenible número 7: Energía asequible y no contaminante. Disponible en: http://www.un.org/
dc.relation.referencesPiesciorovsky, E. C., & Schulz, N. N. (2017). Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators. IET Generation, Transmission & Distribution, 11(2), 540–549. https://doi.org/10.1049/iet-gtd.2016.1144
dc.relation.referencesSahoo, A. K. (2014). Protection of microgrid through coordinated directional over-current relays. In 2014 IEEE Global Humanitarian Technology Conference - South Asia Satellite (GHTC-SAS) (pp. 129–134). IEEE. https://doi.org/10.1109/ghtc-sas.2014.6967571
dc.relation.referencesSaldarriaga-Zuluaga, S. D., López-Lezama, J. M., & Muñoz-Galeano, N. (2020a). An approach for optimal coordination of overcurrent relays in microgrids with distributed generation. Electronics, 9(10), 1740. https://doi.org/10.3390/electronics9101740
dc.relation.referencesSaldarriaga-Zuluaga, S. D., Zuluaga, C. D., Muñoz-Galeano, N., & López-Lezama, J. M. (2020b). Optimal coordination of overcurrent relays in microgrids using a metaheuristic approach. International Journal of Engineering Research and Technology, 13(9), 2213–2218. https://doi.org/10.37624/ijert/13.9.2020.2213-2218
dc.relation.referencesShabani, M., & Karimi, A. (2018). A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties. International Transactions on Electrical Energy Systems, 28(5), e2532. https://doi.org/10.1002/etep.2532
dc.relation.referencesSingh, D. K., & Gupta, S. (2012). Optimal coordination of directional overcurrent relays: A genetic algorithm approach. In 2012 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1–4). IEEE. https://doi.org/10.1109/sceecs.2012.6184808
dc.relation.referencesSinha, T., Ray, P., & Salkuti, S. R. (2018). Protection coordination in microgrid using fault current limiters. Journal of Green Engineering, 8(2), 125–150. https://doi.org/10.13052/jge1904-4720.822
dc.relation.referencesSortomme, E., Venkata, S. S., & Mitra, J. (2010). Microgrid protection using communication-assisted digital relays. IEEE Transactions on Power Delivery, 25(4), 2789–2796. https://doi.org/10.1109/TPWRD.2009.2035810
dc.relation.referencesSoshinskaya, M., Crijns-Graus, W. H. J., Guerrero, J. M., & Vasquez, J. C. (2014). Microgrids: Experiences, barriers and success factors. Renewable and Sustainable Energy Reviews, 40, 659–672. https://doi.org/10.1016/j.rser.2014.07.198
dc.relation.referencesSultana, S., & Rahman, M. M. (2023). Heuristic PSO-based coordination of directional overcurrent relays in islanded microgrids. Electric Power Systems Research, 218, 109087. https://doi.org/10.1016/j.epsr.2023.109087
dc.relation.referencesTaghavi, H., & Weber, M. E. (2004). Directional overcurrent relay coordination. IEEE Transactions on Power Delivery, 19(4), 1825–1833.
dc.relation.referencesTaylor, J. A., & Hover, F. S. (2011). Laplacians for flow networks. SIAM Journal on Discrete Mathematics, 25(3), 1349–1364. https://doi.org/10.1137/100787726
dc.relation.referencesvan der Meijden, J. J. P. H. (2018). Fault management in meshed distribution grids. Energy Systems, 9(3), 511–523.
dc.relation.referencesWang, D., Li, F., & Li, Y. (2023). A communication-assisted distance protection for AC microgrids considering the fault-ride-through requirements of distributed generators. International Journal of Energy Research, 2023, 1–13. https://doi.org/10.1155/2023/2000611
dc.relation.referencesXM Administradores del mercado eléctrico. (2021). Factor emisión matriz energética 2021. Disponible en: https://www.xm.com.co/
dc.relation.referencesXu, X. (2004). Water resources management and administration in the Anhui Province, P.R. of China. In Taylor & Francis (pp. 395–398). https://doi.org/10.1201/9781439833858.ch62
dc.relation.referencesZamani, M. A., Yazdani, A., & Sidhu, T. S. (2012). A communication-assisted protection strategy for inverter-based medium-voltage microgrids. IEEE Transactions on Smart Grid, 3(4), 2088–2099. https://doi.org/10.1109/tsg.2012.2211045
dc.relation.referencesZanjani, M., & Mohammadi, D. (2018). Genetic-algorithm-based coordination of overcurrent relays in distribution networks with high DG penetration. IET Generation, Transmission & Distribution, 12(4), 856–864. https://doi.org/10.1049/iet-gtd.2017.0901
dc.relation.referencesZobaa, A. F. (2018). Overcurrent protection coordination in electrical power systems: A review. International Journal of Electrical Power & Energy Systems, 100, 112–121.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.subject.lembSistemas de interconexión eléctrica
dc.subject.lembDistribución de energía eléctrica
dc.subject.lembTeoría de grafos
dc.subject.lembReles eléctricos
dc.subject.proposalCoordinación de proteccionesspa
dc.subject.proposalTeoría de grafosspa
dc.subject.proposalAlgoritmo genéticospa
dc.subject.proposalMicrorredes malladasspa
dc.subject.proposalSobrecorrientespa
dc.subject.proposalGeneración distribuidaspa
dc.subject.proposalAlgoritmo de optimizaciónspa
dc.subject.proposalRelés direccionalesspa
dc.subject.proposalAutomatizaciónspa
dc.subject.proposalMeshed microgridseng
dc.subject.proposalProtection coordinationeng
dc.subject.proposalOvercurrenteng
dc.subject.proposalDistributed generationeng
dc.subject.proposalGraph theoryeng
dc.subject.proposalOptimization algorithmeng
dc.subject.proposalDirectional relayseng
dc.subject.proposalAutomationeng
dc.titleDesarrollo de un algoritmo adaptativo para la coordinación de protecciones de sobrecorriente en el entorno de operación de una microrredspa
dc.title.translatedDevelopment of an adaptive algorithm for overcurrent protection coordination in the operating environment of a microgrideng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentResponsables políticos
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleConvocatoria MinCiencias–SGR 15
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Sistemas Energéticos
Tamaño:
3.76 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: