Desarrollo de un algoritmo adaptativo para la coordinación de protecciones de sobrecorriente en el entorno de operación de una microrred
dc.contributor.advisor | Candelo, John E. | |
dc.contributor.advisor | Revelo, Javier | |
dc.contributor.author | Arteaga Estacio, Gustavo Adolfo | |
dc.contributor.researchgroup | Procesamiento Digital de Señales Para Sistemas en Tiempo Real | |
dc.date.accessioned | 2025-09-10T16:52:08Z | |
dc.date.available | 2025-09-10T16:52:08Z | |
dc.date.issued | 2025-09-10 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | Las microrredes malladas con generación distribuida (DG) emergen como una solución estratégica para asegurar la autosuficiencia energética en regiones no interconectadas o con suministro eléctrico inestable. No obstante, su complejidad operativa introduce retos significativos en la coordinación de protecciones de sobrecorriente. Este trabajo propone un método automatizado para coordinar relés de sobrecorriente direccionales en microrredes, integrando teoría de grafos con un algoritmo de optimización que ajusta de manera eficiente los parámetros Time Dial Setting (TDS) y corriente de pickup. La metodología se valida mediante el sistema IEEE 33-bus modificado, simulado en PowerFactory y Python, evaluando diversos escenarios operativos. Los resultados demuestran una coordinación precisa y robusta, reduciendo errores humanos y optimizando los tiempos de diseño del sistema de protección. (Tomado de la fuente) | spa |
dc.description.abstract | Meshed microgrids with distributed generation (DG) are emerging as a strategic solution to ensure energy self-sufficiency in non-interconnected regions or areas with unreliable power supply. However, their operational complexity poses significant challenges for the coordination of overcurrent protection systems. This thesis presents an automated method for coordinating directional overcurrent relays in microgrids by integrating graph theory with an optimization algorithm that efficiently adjusts the Time Dial Setting (TDS) and pickup current parameters. The proposed methodology is validated on a modified IEEE 33-bus distribution system, simulated using PowerFactory and Python, under various operating scenarios. Results show that the method achieves accurate and robust relay coordination, minimizing human error and significantly reducing protection system design time. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Sistemas Energéticos | |
dc.description.researcharea | Energía | |
dc.format.extent | 58 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88695 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia, Facultad de Minas | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Minas | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Asociación Colombiana de Generadores. (2021). Matriz energética de Colombia. Disponible en: https://acolgen.org.co/ | |
dc.relation.references | Brearley, B. J., & Prabu, R. R. (2017). A review on issues and approaches for microgrid protection. Renewable and Sustainable Energy Reviews, 67, 988–997. https://doi.org/10.1016/j.rser.2016.09.047 | |
dc.relation.references | Cepeda, C., Orozco-Henao, C., Percybrooks, W. S., Pulgarín-Rivera, J. D., Montoya, O. D., Gil-González, W., & Vélez, J. C. (2020). Intelligent fault detection system for microgrids. Energies, 13(5), 1223. https://doi.org/10.3390/en13051223 | |
dc.relation.references | Cheng, S., & Ge, J. (2024). The number of spanning trees in kn-chain and ring graphs. Physica Scripta, 99(11), 115236. https://doi.org/10.1088/1402-4896/ad8273 | |
dc.relation.references | Dahal, M., Jha, A. K., & Ghimire, R. M. (2019). Impact of renewable distributed generation on protection coordination of distribution system. International Journal of Engineering and Applied Sciences, 6(4). https://doi.org/10.31873/ijeas/6.4.2019.17 | |
dc.relation.references | De Castro Korgi, R. (2010). El Universo LaTeX (2a ed.). Universidad Nacional de Colombia. ISBN: 958701060-4 | |
dc.relation.references | De la Cruz Saavedra, J. A. (2020). Desarrollo de un esquema de protección adaptativo descentralizado multi agente para una micro red eléctrica [Tesis doctoral, Universidad Nacional de Colombia]. | |
dc.relation.references | Della Giustina, D., Dede, A., de Sotomayor, A. A., & Ramos, F. (2015). Toward an adaptive protection system for the distribution grid by using the IEC 61850. In 2015 IEEE International Conference on Industrial Technology (ICIT) (pp. 2374–2378). IEEE. https://doi.org/10.1109/ICIT.2015.7125448 | |
dc.relation.references | Ding, X., & Jiang, T. (2010). Spectral distributions of adjacency and Laplacian matrices of random graphs. The Annals of Applied Probability, 20(6). https://doi.org/10.1214/10-aap677 | |
dc.relation.references | El-Hamrawy, A. H., Ebrahiem, A. A. M., & Megahed, A. I. (2022). Improved adaptive protection scheme based combined centralized/decentralized communications for power systems equipped with distributed generation. IEEE Access, 10, 97061–97074. https://doi.org/10.1109/access.2022.3205312 | |
dc.relation.references | Ghadiri, S. M. E., & Mazlumi, K. (2020a). Adaptive protection scheme for microgrids based on SOM clustering technique. Applied Soft Computing, 88, 106062. https://doi.org/10.1016/j.asoc.2019.106062 | |
dc.relation.references | Ghadiri, S. M. E., & Mazlumi, K. (2020b). Adaptive protection scheme for microgrids based on SOM clustering technique. Applied Soft Computing, 88, 106062. https://doi.org/10.1016/j.asoc.2019.106062 | |
dc.relation.references | Ghotbi-Maleki, M., Javadi, H., Khederzadeh, M., & Farajzadeh, S. (2019). An adaptive and decentralized protection scheme for microgrid protection. Preprints. https://doi.org/10.20944/preprints201907.0251.v1 | |
dc.relation.references | Gogoi, K., & Chutia, C. (2020). Analysis of electrical networks: Graph theoretic approach. Journal of Ultra Scientist of Physical Sciences Section A, 32(5), 37–46. https://doi.org/10.22147/jusps-a/320502 | |
dc.relation.references | Haron, A. R., Mohamed, A., & Shareef, H. (2013). Coordination of overcurrent, directional and differential relays for the protection of microgrid system. Procedia Technology, 11, 366–373. https://doi.org/10.1016/j.protcy.2013.12.204 | |
dc.relation.references | Hooshyar, A., & Iravani, R. (2017). Microgrid protection. Proceedings of the IEEE, 105(7), 1332–1353. https://doi.org/10.1109/JPROC.2017.2669342 | |
dc.relation.references | Hosseini, S. A., Abyaneh, H. A., Sadeghi, S. H. H., Razavi, F., & Nasiri, A. (2016). An overview of microgrid protection methods and the factors involved. Renewable and Sustainable Energy Reviews, 64, 174–186. https://doi.org/10.1016/j.rser.2016.05.089 | |
dc.relation.references | International Electrotechnical Commission. (2009). IEC 60255-151: Measuring relays and protection equipment – Part 151: Functional requirements for over/under current protection. | |
dc.relation.references | Javadi, M. S., Nezhad, A. E., Anvari-Moghaddam, A., & Guerrero, J. M. (2019). Hybrid mixed-integer non-linear programming approach for directional overcurrent relay coordination. The Journal of Engineering, 2019(18), 4743–4747. https://doi.org/10.1049/joe.2018.9346 | |
dc.relation.references | Kauhaniemi, K., Voima, S., & Laaksonen, H. (2014). Adaptive protection scheme for smart grids. In 12th IET International Conference on Developments in Power System Protection (DPSP 2014) (p. 12.66). IET. https://doi.org/10.1049/cp.2014.0139 | |
dc.relation.references | Kekezoğlu, B., Can, H., Akdemir, H., & Şengör, İ. (2016). Optimal overcurrent relay coordination using hybrid genetic algorithm and linear programming method. In Proc. Int. Conf. on Electrical and Electronics Engineering. Institute of Research Engineers and Doctors. https://doi.org/10.15224/978-1-63248-113-9-48 | |
dc.relation.references | Keller, R., Eckert, C. M., & Clarkson, P. J. (2006). Matrices or node-link diagrams: Which visual representation is better for visualizing connectivity models? Information Visualization, 5(1), 62–76. https://doi.org/10.1057/palgrave.ivs.9500116 | |
dc.relation.references | Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint. https://arxiv.org/abs/1412.6980 | |
dc.relation.references | Korashy, A., Kamel, S., Youssef, A.-R., & Jurado, F. (2019). Modified water cycle algorithm for optimal directional overcurrent relay coordination. Applied Soft Computing, 74, 10–25. https://doi.org/10.1016/j.asoc.2018.10.020 | |
dc.relation.references | Ley 1715 de 2014. Congreso de la República de Colombia. | |
dc.relation.references | Ley 2099 de 2021. Congreso de la República de Colombia. | |
dc.relation.references | Lin, H., Sun, K., Tan, Z.-H., Liu, C., Guerrero, J. M., & Vásquez, J. C. (2019). Adaptive protection combined with machine learning for microgrids. IET Generation, Transmission & Distribution, 13(6), 770–779. https://doi.org/10.1049/iet-gtd.2018.6230 | |
dc.relation.references | Liu, Z., Su, C., Hoidalen, H. K., & Chen, Z. (2017). A multiagent system-based protection and control scheme for distribution system with distributed-generation integration. IEEE Transactions on Power Delivery, 32(1), 536–545. https://doi.org/10.1109/TPWRD.2016.2585579 | |
dc.relation.references | Memon, A. A., & Kauhaniemi, K. (2023). Protection of future harbor area AC microgrids containing renewable energy sources and batteries. IEEE Access, 11, 57448–57469. https://doi.org/10.1109/access.2023.3283575 | |
dc.relation.references | Ministerio de Minas y Energía (2021). Plan integral de gestión del cambio climático del sector minero energético 2050. | |
dc.relation.references | Mohammadi, R., & Mohammadzadeh, N. (2017). A fast numerical method for optimal coordination of overcurrent relays in the presence of transient fault current. IET Generation, Transmission & Distribution, 12(2), 472–481. https://doi.org/10.1049/iet-gtd.2017.0055 | |
dc.relation.references | Naciones Unidas. (2020). Objetivo de Desarrollo Sostenible número 7: Energía asequible y no contaminante. Disponible en: http://www.un.org/ | |
dc.relation.references | Piesciorovsky, E. C., & Schulz, N. N. (2017). Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators. IET Generation, Transmission & Distribution, 11(2), 540–549. https://doi.org/10.1049/iet-gtd.2016.1144 | |
dc.relation.references | Sahoo, A. K. (2014). Protection of microgrid through coordinated directional over-current relays. In 2014 IEEE Global Humanitarian Technology Conference - South Asia Satellite (GHTC-SAS) (pp. 129–134). IEEE. https://doi.org/10.1109/ghtc-sas.2014.6967571 | |
dc.relation.references | Saldarriaga-Zuluaga, S. D., López-Lezama, J. M., & Muñoz-Galeano, N. (2020a). An approach for optimal coordination of overcurrent relays in microgrids with distributed generation. Electronics, 9(10), 1740. https://doi.org/10.3390/electronics9101740 | |
dc.relation.references | Saldarriaga-Zuluaga, S. D., Zuluaga, C. D., Muñoz-Galeano, N., & López-Lezama, J. M. (2020b). Optimal coordination of overcurrent relays in microgrids using a metaheuristic approach. International Journal of Engineering Research and Technology, 13(9), 2213–2218. https://doi.org/10.37624/ijert/13.9.2020.2213-2218 | |
dc.relation.references | Shabani, M., & Karimi, A. (2018). A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties. International Transactions on Electrical Energy Systems, 28(5), e2532. https://doi.org/10.1002/etep.2532 | |
dc.relation.references | Singh, D. K., & Gupta, S. (2012). Optimal coordination of directional overcurrent relays: A genetic algorithm approach. In 2012 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS) (pp. 1–4). IEEE. https://doi.org/10.1109/sceecs.2012.6184808 | |
dc.relation.references | Sinha, T., Ray, P., & Salkuti, S. R. (2018). Protection coordination in microgrid using fault current limiters. Journal of Green Engineering, 8(2), 125–150. https://doi.org/10.13052/jge1904-4720.822 | |
dc.relation.references | Sortomme, E., Venkata, S. S., & Mitra, J. (2010). Microgrid protection using communication-assisted digital relays. IEEE Transactions on Power Delivery, 25(4), 2789–2796. https://doi.org/10.1109/TPWRD.2009.2035810 | |
dc.relation.references | Soshinskaya, M., Crijns-Graus, W. H. J., Guerrero, J. M., & Vasquez, J. C. (2014). Microgrids: Experiences, barriers and success factors. Renewable and Sustainable Energy Reviews, 40, 659–672. https://doi.org/10.1016/j.rser.2014.07.198 | |
dc.relation.references | Sultana, S., & Rahman, M. M. (2023). Heuristic PSO-based coordination of directional overcurrent relays in islanded microgrids. Electric Power Systems Research, 218, 109087. https://doi.org/10.1016/j.epsr.2023.109087 | |
dc.relation.references | Taghavi, H., & Weber, M. E. (2004). Directional overcurrent relay coordination. IEEE Transactions on Power Delivery, 19(4), 1825–1833. | |
dc.relation.references | Taylor, J. A., & Hover, F. S. (2011). Laplacians for flow networks. SIAM Journal on Discrete Mathematics, 25(3), 1349–1364. https://doi.org/10.1137/100787726 | |
dc.relation.references | van der Meijden, J. J. P. H. (2018). Fault management in meshed distribution grids. Energy Systems, 9(3), 511–523. | |
dc.relation.references | Wang, D., Li, F., & Li, Y. (2023). A communication-assisted distance protection for AC microgrids considering the fault-ride-through requirements of distributed generators. International Journal of Energy Research, 2023, 1–13. https://doi.org/10.1155/2023/2000611 | |
dc.relation.references | XM Administradores del mercado eléctrico. (2021). Factor emisión matriz energética 2021. Disponible en: https://www.xm.com.co/ | |
dc.relation.references | Xu, X. (2004). Water resources management and administration in the Anhui Province, P.R. of China. In Taylor & Francis (pp. 395–398). https://doi.org/10.1201/9781439833858.ch62 | |
dc.relation.references | Zamani, M. A., Yazdani, A., & Sidhu, T. S. (2012). A communication-assisted protection strategy for inverter-based medium-voltage microgrids. IEEE Transactions on Smart Grid, 3(4), 2088–2099. https://doi.org/10.1109/tsg.2012.2211045 | |
dc.relation.references | Zanjani, M., & Mohammadi, D. (2018). Genetic-algorithm-based coordination of overcurrent relays in distribution networks with high DG penetration. IET Generation, Transmission & Distribution, 12(4), 856–864. https://doi.org/10.1049/iet-gtd.2017.0901 | |
dc.relation.references | Zobaa, A. F. (2018). Overcurrent protection coordination in electrical power systems: A review. International Journal of Electrical Power & Energy Systems, 100, 112–121. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | |
dc.subject.lemb | Sistemas de interconexión eléctrica | |
dc.subject.lemb | Distribución de energía eléctrica | |
dc.subject.lemb | Teoría de grafos | |
dc.subject.lemb | Reles eléctricos | |
dc.subject.proposal | Coordinación de protecciones | spa |
dc.subject.proposal | Teoría de grafos | spa |
dc.subject.proposal | Algoritmo genético | spa |
dc.subject.proposal | Microrredes malladas | spa |
dc.subject.proposal | Sobrecorriente | spa |
dc.subject.proposal | Generación distribuida | spa |
dc.subject.proposal | Algoritmo de optimización | spa |
dc.subject.proposal | Relés direccionales | spa |
dc.subject.proposal | Automatización | spa |
dc.subject.proposal | Meshed microgrids | eng |
dc.subject.proposal | Protection coordination | eng |
dc.subject.proposal | Overcurrent | eng |
dc.subject.proposal | Distributed generation | eng |
dc.subject.proposal | Graph theory | eng |
dc.subject.proposal | Optimization algorithm | eng |
dc.subject.proposal | Directional relays | eng |
dc.subject.proposal | Automation | eng |
dc.title | Desarrollo de un algoritmo adaptativo para la coordinación de protecciones de sobrecorriente en el entorno de operación de una microrred | spa |
dc.title.translated | Development of an adaptive algorithm for overcurrent protection coordination in the operating environment of a microgrid | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Responsables políticos | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.awardtitle | Convocatoria MinCiencias–SGR 15 | |
oaire.fundername | Ministerio de Ciencia Tecnología e Innovación |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Sistemas Energéticos
- Tamaño:
- 3.76 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: