Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico

dc.contributor.advisorBaquero Velasco, Edwin Arley
dc.contributor.advisorGuevara Pulido, James Oswaldo
dc.contributor.authorMorales Manrique, Oscar Camilo
dc.contributor.cvlacMorales Manrique, Oscarspa
dc.contributor.orcid0009-0000-2677-7959spa
dc.contributor.researchgateCamilo Morales-Manriquespa
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2023-07-24T21:26:06Z
dc.date.available2023-07-24T21:26:06Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos carbenos N-heterocíclicos (NHCs) son moléculas que suelen emplearse junto a metales de transición como catalizadores organometálicos. A pesar de sus grandes virtudes como catalizadores, los complejos organometálicos suelen ser rechazados en muchos procesos industriales debido a la presencia de trazas de metales pesados en los productos finales y la dificultad de su eliminación. Es por esta razón que desde hace algunos años los NHCs han sido objeto de estudios que buscan su implementación como organocatalizadores. Estos procesos han demostrado ser menos selectivos que sus competidores organometálicos. Sin embargo, el fácil acceso a estos catalizadores (muchos se extraen de fuentes naturales o se sintetizan de una manera sencilla) hace que los procesos sean menos costosos y por supuesto, menos tóxicos porque se evita la presencia de metales. Tanto así que, en el último tiempo, múltiples reacciones que involucraban procesos organometálicos, han sido ensayados en presencia de organocatalizadores encontrando rendimientos, relaciones diastereoméricas y excesos enantioméricos favorables. Este último aspecto es fundamental en la síntesis total y en la química medicinal, pues muchos compuestos empleados como fármacos suelen ser ópticamente activos y administrados en muchos casos en sus formas enantioméricamente puras por lo que desarrollar procesos catalíticos enantioselectivos resulta muy atractivo para estas dos áreas. En este sentido, nosotros presentamos aquí el empleo de NHCs como activadores de aldehídos α, β insaturados a partir de adiciones 1,2. Nosotros encontramos que posterior a dicha adición los aldehídos experimentan transformaciones electrónicas que varían el comportamiento electrofílico/nucleofílico típico de sus diversas posiciones y que, dadas estas circunstancias no es necesario agregar compuestos adicionales para que estos interaccionen, generando reacciones de autocondensación del aldehído inicial a través de la formación de enlaces C-C y C-O. De esta forma y empleando cinamaldehído, crotonaldehído y furfural, tres compuestos sencillos y económicos, se lograron obtener γ-butirolactonas (moléculas bloques de construcción de muchos compuestos con actividad biológica) y α-hidroxicetonas (moléculas muy reactivas que suelen ser útiles en química orgánica como precursores). En el caso de la reacción con cinamaldehído, se pudo obtener buenas relaciones diastereoméricas (86:14 cis:trans) y un exceso enantiomérico resaltable (70% en el producto mayoritario, cis) cuando se evaluó un organocatalizador quiral. Adicionalmente, en la reacción con cinamaldehído, se buscó dar una explicación a la reactividad mostrada por esta molécula a partir de un estudio computacional basado en cálculos DFT que permitió esbozar su mecanismo de reacción y entender los requerimientos energéticos que este proceso demanda. Mediante estos cálculos se encontró también el doble rol de la base empleada (Cs2CO3) en la reacción ya que además de deprotonar la sal de imidazolio para generar la especie catalíticamente activa, ayuda el proceso de transferencia de protón de uno de los intermediarios disminuyendo la energía del proceso en 27.7 kcal/mol comparado a una transferencia típica de protón intramolecular. (Texto tomado de la fuente)spa
dc.description.abstractN-heterocyclic carbenes (NHCs) are molecules that are often used together with transition metals as organometallic catalysts. Despite their great performances as catalysts, organometallic complexes are often rejected in many industrial processes due to the presence of traces of heavy metals in the final products and the difficulty of their removal. This is why since some years ago, NHCs have been studied as organocatalysts. These processes have proven to be less selective than their organometallic analogs. However, the easy access to these catalysts (many are extracted from natural sources or synthesized in a simple way) makes the processes less expensive and, of course, less toxic because the presence of metals is avoided. Thus, multiple reactions involving organometallic processes have been tested in the presence of organocatalysts, finding favorable yields, diastereomeric ratios and enantiomeric excesses. The latter is fundamental in total synthesis and medicinal chemistry, since many compounds used as drugs are usually optically active and administered in many cases in their enantiomerically pure forms, making the development of enantioselective catalytic processes very attractive for these two areas. In this regard, we present here the use of NHCs as activators of α, β-unsaturated aldehydes from 1,2-additions. We find that after such addition the aldehydes undergo electronic transformations that vary the typical electrophilic/nucleophilic behavior of their various positions and that, given these circumstances, it is not necessary to add additional compounds for them to interact, generating self-condensation reactions of the initial aldehyde through the formation of C-C and C-O bonds. In this way, by using cinnamaldehyde, crotonaldehyde, and furfural, three simple and cheap compounds, it was possible to obtain γ-butyrolactones (building block molecules of many compounds with biological activity) and α-hydroxyketones (very reactive molecules that are usually useful in organic chemistry as precursors). Regarding the condensation of cinnamaldehyde, it was possible to obtain a good diastereomeric ratio (86:14 cis:trans) and a remarkable enantiomeric excess (70% of the major product, cis) when a chiral organocatalyst was tested in the reaction. Additionally, in the reaction with cinnamaldehyde, we tried to explain the reactivity shown by this compound from a computational study based on DFT calculations that allowed us to outline its reaction mechanism and understand the energetic requirements this process requires. By performing these calculations, we were able to uncover the dual role of the base used (Cs2CO3) in the reaction. It not only deprotonates the imidazolium salt to generate the catalytically active species, but it also facilitates the proton transfer process of one of the intermediates by reducing the energy required for the process by 27.7 kcal/mol compared to the common intramolecular proton transfereng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaOrganocatálisisspa
dc.format.extent97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84255
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesBurstein, C. & Glorius, F. Organocatalyzed conjugate umpolung of α,β-unsaturated aldehydes for the synthesis of γ-butyrolactones. Angew. Chem. Int. Ed. 43, 6205–6208 (2004).spa
dc.relation.referencesCardinal-David, B., Raup, D. E. A. & Scheidt, K. A. Cooperative N -heterocyclic carbene/lewis acid catalysis for highly stereoselective annulation reactions with homoenolates. J. Am. Chem. Soc. 132, 5345–5347 (2010).spa
dc.relation.referencesMurauski, K. J. R., Jaworski, A. A. & Scheidt, K. A. A continuing challenge: N-heterocyclic carbene-catalyzed syntheses of γ-butyrolactones. Chem. Soc. Rev. 47, 1773–1782 (2018).spa
dc.relation.referencesSun, L. H., Shen, L. T. & Ye, S. Highly diastereo- and enantioselective NHC-catalyzed [3+2] annulation of enals and isatins. Chem. Commun. 47, 10136–10138 (2011)spa
dc.relation.referencesAmr, A. E. G. E., Abdel-Latif, N. A. & Abdalla, M. M. Synthesis and antiandrogenic activity of some new 3-substituted androstano[17,16-c]-5′-aryl-pyrazoline and their derivatives. Bioorg. Med. Chem. 14, 373–384 (2006)spa
dc.relation.referencesVarun, Sonam & Kakkar, R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. Medchemcomm 10, 351–368 (2019)spa
dc.relation.referencesDugal-Tessier, J., O’Bryan, E. A., Schroeder, T. B. H., Cohen, D. T. & Scheidt, K. A. An N-heterocyclic carbene/lewis acid strategy for the stereoselective synthesis of spirooxindole lactones. Angew. Chem. Int. Ed. 51, 4963–4967 (2012)spa
dc.relation.referencesReddi, Y. & Sunoj, R. B. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catal. 7, 530–537 (2017)spa
dc.relation.referencesFu, Z., Xu, J., Zhu, T., Leong, W. W. Y. & Chi, Y. R. β-Carbon activation of saturated carboxylic esters through N-heterocyclic carbene organocatalysis. Nat. Chem. 5, 835–839 (2013)spa
dc.relation.referencesXie, Y., Yu, C., Li, T., Tu, S. & Yao, C. An NHC-catalyzed in situ activation strategy to β-functionalize saturated carboxylic acid: An enantioselective formal [3+2] annulation for spirocyclic oxindolo-γ-butyrolactones. Chem. Eur. J. 21, 5355–5359 (2015)spa
dc.relation.referencesJang, K. P. et al. Asymmetric homoenolate additions to acyl phosphonates through rational design of a tailored N-heterocyclic carbene catalyst. J. Am. Chem. Soc. 136, 76–79 (2014)spa
dc.relation.referencesSchotten, C., Bourne, R. A., Kapur, N., Nguyen, B. N. & Willans, C. E. Electrochemical Generation of N-Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv. Synth. Catal. 363, 3189–3200 (2021)spa
dc.relation.referencesTewes, F., Schlecker, A., Harms, K. & Glorius, F. Carbohydrate-containing N-heterocyclic carbene complexes. J. Organomet. Chem. 692, 4593–4602 (2007)spa
dc.relation.referencesMatsuoka, Y., Ishida, Y., Sasaki, D. & Saigo, K. Cyclophane-type imidazolium salts with planar chirality as a new class of N-heterocyclic carbene precursors. Chem. Eur. J. 14, 9215–9222 (2008)spa
dc.relation.referencesRose, M. et al. N-Heterocyclic carbene containing element organic frameworks as heterogeneous organocatalysts. Chem. Commun. 47, 4814–4816 (2011)spa
dc.relation.referencesBurstein, C., Tschan, S., Xie, X. & Glorius, F. N-heterocyclic carbene-catalyzed conjugate umpolung for the synthesis of γ-butyrolactones. Synthesis. 14, 2418–2439 (2006)spa
dc.relation.referencesNair, V., Vellalath, S., Poonoth, M., Suresh, E. & Viji, S. N-heterocyclic carbene catalyzed reaction of enals and diaryl-1,2 diones via homoenolate: Synthesis of 4,5,5-trisubstituted γ-butyrolactones. Synthesis. 20, 3195–3200 (2007)spa
dc.relation.referencesChen, X., Wang, H., Jin, Z. & Chi, Y. R. N-Heterocyclic Carbene Organocatalysis: Activation Modes and Typical Reactive Intermediates. Chinese J. Chem. 38, 1167–1202 (2020)spa
dc.relation.referencesHeravi, M. M., Dehghani, M. & Zadsirjan, V. Rh-catalyzed asymmetric 1,4-addition reactions to α,β-unsaturated carbonyl and related compounds: An update. Tet. Asym. 27, 513–588 (2016)spa
dc.relation.referencesHong, B.-C., Raja, A. & Sheth, V. Asymmetric Synthesis of Natural Products and Medicinal Drugs through One-Pot-Reaction Strategies. Synthesis. 47, 3257–3285 (2015)spa
dc.relation.referencesIUPAC. Compendium of Chemical Terminology. (2014). doi:10.1002/9783527626854.ch7spa
dc.relation.referencesSahoo, B. M. & Banik, B. K. Organocatalysis: Trends of Drug Synthesis in Medicinal Chemistry. Curr. Organocatalysis 6, 92–105 (2019)spa
dc.relation.referencesAcharjee, A. & Saha, B. A Review of some catalysts and promoters used in organic transformations. Vietnam J. Chem. 58, 575–591 (2020)spa
dc.relation.referencesAlemán, J. & Cabrera, S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem. Soc. Rev. 42, 774–793 (2013)spa
dc.relation.referencesPellissier, H. Recent developments in organocatalytic dynamic kinetic resolution. Tetrahedron 72, 3133–3150 (2016).spa
dc.relation.referencesAhrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis: The first highly enantioselective organocatalytic diels - Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000)spa
dc.relation.referencesBanik, B. K. & Banerjee, B. Organocatalysis: A green tool for sustainable developments. Physical Sciences Reviews vol. 7 (2022)spa
dc.relation.referencesList, B. Introduction: Organocatalysis. Chem. Rev. 107, 5413–5415 (2007)spa
dc.relation.referencesHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).spa
dc.relation.referencesBharti, R., Verm, M., Thakur, A. & Sharma, R. N-Heterocyclic Carbenes (NHCs): An Introduction. in IntechOpen 1–19 (2012)spa
dc.relation.referencesSchuster, G. B. Structure and Reactivity of Carbenes having Aryl Substituents. Adv. Phys. Org. Chem. 22, 311–361 (1986)spa
dc.relation.referencesPauling, L. The structure of singlet carbene molecules. J. Chem. Soc. Chem. Commun. 688–689 (1980)spa
dc.relation.referencesEisenthal, K. Turro, N. Sitzmann, E. Gould, I. Hefferon, G. Langan, J. & Cha, Y. Singlet-triplet interconversion of diphenylmethylene. Energetics, dynamics and reactivities of different spin states. Tetrahedron 41, 1543–1554 (1985).spa
dc.relation.referencesBauschlicher, C. W.; Schaefer, H. F.; Baguslb, P. S. Structure and Energetics of Simple Carbenes. J. Am. Chem. Soc. 99, 7106–7110 (1977).spa
dc.relation.referencesHoffmann, R., Zeiss, G. D. & Van Dine, G. W. The electronic structure of methylenes. J. Am. Chem. Soc. 90, 1485–1499 (1968)spa
dc.relation.referencesHerrmann, W., A., L. & Kocher, C. N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 36, 2162–2187 (1997)spa
dc.relation.referencesJahnke, M. C. & Hahn, F. E. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools. RSC Publishing (2016).spa
dc.relation.referencesLee, M. T. & Hu, C. H. Density functional study of N-heterocyclic and diamino carbene complexes: Comparison with phosphines. Organometallics 23, 976–983 (2004).spa
dc.relation.referencesNarayana, Y. Sandhya, N., Dinesh, H.Thimmaiah, B. Rangappa, S. & Mantelingu, K. N-Heterocyclic Carbene Mediated Organocatalysis Reactions. in Carbene vol. 1 182 (2022)spa
dc.relation.referencesBreslow, R. On the Mechanism of Thiamine Action. IV. Evidence from Studies on Model Systems. J. Am. Chem. Soc. 80, 3719–3726 (1958)spa
dc.relation.referencesMenon, R. S., Biju, A. T. & Nair, V. Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions. Beilstein J. Org. Chem. 12, 444–461 (2016)spa
dc.relation.referencesYetra, S. R., Patra, A. & Biju, A. T. ChemInform Abstract: Recent Advances in the N-Heterocyclic Carbene (NHC)-Organocatalyzed Stetter Reaction and Related Chemistry. ChemInform 46, 1357–1378 (2015)spa
dc.relation.referencesMondal, S., Yetra, S. R., Mukherjee, S. & Biju, A. T. NHC-Catalyzed Generation of α,β-Unsaturated Acylazoliums for the Enantioselective Synthesis of Heterocycles and Carbocycles. Acc. Chem. Res. 52, 425–436 (2019)spa
dc.relation.referencesHiggins, E. Sherwood, J. Lindsay, A. Armstrong, J. Massey, R. Alder, R. & O’Donoghue, A. pKas of the conjugate acids of N-heterocyclic carbenes in water. Chem. Commun. 47, 1559–1561 (2011)spa
dc.relation.referencesWanzlick, H. W. Aspects of Nucleophilic Carbene Chemistry. Angew. Chem. Int. Ed. 1, 75–80 (1962)spa
dc.relation.referencesArduengo, A. J. & Krafczyk, R. Auf der suche nach stabilen carbenen. Chemie Unserer Zeit 32, 6–14 (1998).spa
dc.relation.referencesChan, B. K. M., Chang, N. H. & Ross Grimmett, M. The synthesis and thermolysis of imidazole quaternary salts. Aust. J. Chem. 30, 2005–2013 (1977).spa
dc.relation.referencesBöhm, V. P. W., Weskamp, T., Gstöttmayr, C. W. K. & Herrmann, W. A. Nickel-catalyzed cross-coupling of aryl chlorides with aryl Grignard reagents. Angew. Chem. Int. Ed. 39, 1602–1604 (2000).spa
dc.relation.referencesLiu, Jingping. Chen, J. Zhao, J. Zhao, Y. Li, L. & Zhang, H. A Modified Procedure for the Synthesis of 1-Arylimidazoles. Synthesis. 17, 2661–2666 (2003).spa
dc.relation.referencesHerrmann, W. A., Gooßen, L. J. & Spiegler, M. Functionalized imidazoline-2-ylidene complexes of rhodium and palladium. J. Organomet. Chem. 547, 357–366 (1997).spa
dc.relation.referencesLaw, K. R. & McErlean, C. S. P. Extending the stetter reaction with 1,6-acceptors. Chem. Eur. J. 19, 15852–15855 (2013)spa
dc.relation.referencesJia, M. Q., Liu, C. & You, S. L. Diastereoselective and enantioselective desymmetrization of α-substituted cyclohexadienones via intramolecular stetter reaction. J. Org. Chem. 77, 10996–11001 (2012).spa
dc.relation.referencesEma, T., Akihara, K., Obayashi, R. & Sakai, T. Construction of contiguous tetrasubstituted carbon stereocenters by intramolecular crossed benzoin reactions catalyzed by N-heterocyclic carbene (NHC) organocatalyst. Adv. Synth. Catal. 354, 3283–3290 (2012).spa
dc.relation.referencesXiao, Z., Yu, C., Li, T., Wang, X. S. & Yao, C. N-heterocyclic carbene/Lewis acid strategy for the stereoselective synthesis of spirocyclic oxindole-dihydropyranones. Org. Lett. 16, 3632–3635 (2014).spa
dc.relation.referencesZhao, M., Chen, J., Yang, H. & Zhou, L. N-Heterocyclic Carbene-Catalyzed Intramolecular Nucleophilic Substitution: Enantioselective Construction of All-Carbon Quaternary Stereocenters. Chem. Eur. J. 23, 2783–2787 (2017).spa
dc.relation.referencesPaz, B. M., Li, Y., Thøgersen, M. K. & Jørgensen, K. A. Enantioselective synthesis of cyclopenta[b] benzofurans via an organocatalytic intramolecular double cyclization. Chem. Sci. 8, 8086–8093 (2017).spa
dc.relation.referencesLu, S., Poh, S. B., Siau, W.-Y. & Zhao, Y. Kinetic Resolution of Tertiary Alcohols: Highly Enantioselective Access to 3-Hydroxy-3-Substituted Oxindoles. Angew. Chem. Int. Ed. 52, 1731–1734 (2013).spa
dc.relation.referencesMorrison, R. & Boyd, R. Quimica Orgánica. Pearson Education (1990).spa
dc.relation.referencesMcmurry, J. Química orgánica. (CENGAGE Learning, 20212).spa
dc.relation.referencesWade, L. Química Orgánica. (2017).spa
dc.relation.referencesCarey, F. A. & Giuliano, R. M. Química Orgánica. (McGraw-Hill, 2014).spa
dc.relation.referencesSupratim, M. Shivam, R. Pushpita, C. Namrata, C. Utpalendu, P. Praktik, C. Sarkar, B. & Bhattacharya, P. Cinnamaldehyde, the Major Component of Cinnamomum Zeylanicum, Affects Inflammatory Pathways. Int. J. Pharm. Sci. Res. 11, 5788–5791 (2020).spa
dc.relation.referencesWong, Y. C., Ahmad-Mudzaqqir, M. Y. & Wan-Nurdiyana, W. A. Extraction of essential oil from cinnamon (Cinnamomum zeylanicum). Orient. J. Chem. 30, 37–47 (2014).spa
dc.relation.referencesDe Andrade, T. U., Brasil, G. A., Endringer, D. C., Da Nóbrega, F. R. & De Sousa, D. P. Cardiovascular activity of the chemical constituents of essential oils. Molecules 22, 1539–1557 (2017).spa
dc.relation.referencesFaix, Š., Faixová, Z., Plachá, I. & Koppel, J. Vplyv éterického oleja Cinnamomum zeylanicum na antioxidačný status broilerov. Acta Vet. Brno 78, 411–417 (2009).spa
dc.relation.referencesCelanese. Crotonaldehyde. Product Description and Handling Guide (2016).spa
dc.relation.referencesDe Jong, E., Stichnothe, H., Bell, G. & Jorgensen, H. Bio-Based Chemicals: A 2020 Update. IEA Bioenergy Task 42 Biorefinery https://task42.ieabioenergy.com/wp-content/uploads/sites/10/2020/02/Bio-based-chemicals-a-2020-update-final-200213.pdf (2020).spa
dc.relation.referencesKabbour, M. & Luque, R. Furfural as a platform chemical: From production to applications. in Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals 283–297 (2019).spa
dc.relation.referencesReed, N. R. & Kwok, E. S. C. Furfural. Encycl. Toxicol. Third Ed. 2, 685–688 (2014).spa
dc.relation.referencesEseyin, Anthonia, E. & Steele, Philip, H. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 3, 42–47 (2015).spa
dc.relation.referencesSartori, S. K., Diaz, M. A. N. & Diaz-Muñoz, G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron 84, 1–39 (2021).spa
dc.relation.referencesVarejão, J. O. S. et al. New rubrolide analogues as inhibitors of photosynthesis light reactions. J. Photochem. Photobiol. B Biol. 145, 11–18 (2015).spa
dc.relation.referencesMao, B., Fañanás-Mastral, M. & Feringa, B. L. Catalytic asymmetric synthesis of butenolides and butyrolactones. Chem. Rev. 117, 10502–10566 (2017).spa
dc.relation.referencesHayward, A. Beadle, K. Singh, Kumar, S. Exeler, N. Zaworra, M. Almanza, M. Nikolakis, A., Garside, C. Glaubitz, J. Bass, C. & Nauen, R. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).spa
dc.relation.referencesPereira, U. Moreira, T. Barbosa, L. Maltha, C. Bomfim, I. Maranhão, S. Moraes, M. Pessoa, C. & Barros-Nepomuceno, F. Rubrolide analogues and their derived lactams as potential anticancer agents. Medchemcomm 7, 345–352 (2016).spa
dc.relation.referencesLiang, P. Z. et al. Toxicity and Sublethal Effects of Flupyradifurone, a Novel Butenolide Insecticide, on the Development and Fecundity of Aphis gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 112, 852–858 (2019).spa
dc.relation.referencesKozioł, A., Mroczko, L., Niewiadomska, M. & Lochyński, S. Γ-Lactones With Potential Biological Activity. Polish J. Nat. Sci. 32, 495–511 (2017).spa
dc.relation.referencesPeraino, N. Mondal, M. Ho, H. Beuque, A. Viola, E. Gary, M. Wheeler, K. & Kerrigan, N. Diastereoselective Synthesis of γ-Lactones through Reaction of Sulfoxonium Ylides, Aldehydes, and Ketenes: Substrate Scope and Mechanistic Studies. European J. Org. Chem. 2021, 151–160 (2021).spa
dc.relation.referencesYamane, D. Tanaka, H. Hirata, A. Tamura, Y. Takahashi, D. Takahashi, Y. Nagamitsu, T. & Ohtawa, M. One-Pot γ-Lactonization of Homopropargyl Alcohols via Intramolecular Ketene Trapping. Org. Lett. 23, 2831–2835 (2021).spa
dc.relation.referencesHur, J., Jang, J. & Sim, J. A review of the pharmacological activities and recent synthetic advances of γ-butyrolactones. Int. J. Mol. Sci. 22, 1–49 (2021).spa
dc.relation.referencesVerma, R. S., Khatana, A. K., Mishra, M., Kumar, S. & Tiwari, B. Access to enantioenriched 4-phosphorylated δ-lactones from β-phosphorylenones and enals: Via carbene organocatalysis. Chem. Commun. 56, 7155–7158 (2020)spa
dc.relation.referencesSohn, S. S., Rosen, E. L. & Bode, J. W. N-heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc. 126, 14370–14371 (2004).spa
dc.relation.referencesGaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016spa
dc.relation.referencesFauché, K., Nauton, L., Jouffret, L., Cisnetti, F. & Gautier, A. A catalytic intramolecular nitrene insertion into a copper(I)-N-heterocyclic carbene bond yielding fused nitrogen heterocycles. Chem. Commun. 53, 2402–2405 (2017).spa
dc.relation.referencesYadav, S. Ray, S. Singh, A. Mobin, S. Roy, T. & Dash, C. Dinuclear gold(I)-N-heterocyclic carbene complexes: Synthesis, characterization, and catalytic application for hydrohydrazidation of terminal alkynes. Appl. Organomet. Chem. 34, 1–14 (2020).spa
dc.relation.referencesSandeli, A. Boulebd, H. Khiri-Meribout, N. Benzerka, S. Bensouici, C. Özdemir, N. Gürbüz, N. & Özdemir, İ. New benzimidazolium N-heterocyclic carbene precursors and their related Pd-NHC complex PEPPSI-type: Synthesis, structures, DFT calculations, biological activity, docking study, and catalytic application in the direct arylation. J. Mol. Struct. 1248, 1–13 (2022).spa
dc.relation.referencesAnslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry. The ICSID Convention A Commentary (2006).spa
dc.relation.referencesPapadaki, E. & Magrioti, V. Synthesis of pentafluorobenzene-based NHC adducts and their catalytic activity in the microwave-assisted reactions of aldehydes. Tet. Lett. 61, 151419 (2020).spa
dc.relation.referencesNeate, P. G. N., Zhang, B., Conforti, J., Brennessel, W. W. & Neidig, M. L. Dilithium Amides as a Modular Bis-Anionic Ligand Platform for Iron-Catalyzed Cross-Coupling. Org. Lett. 23, 5958–5963 (2021).spa
dc.relation.referencesChen, J. Late-Stage Deoxyfluorination of Phenols with PhenoFluorMix. Org. Synth. 96, 16–35 (2019).spa
dc.relation.referencesFarnia, M. F., Abedini, M. & Pazukian, M. A. Preparation and characterization of complexes formed by the reaction of bis(4-hydroxyphenyl)-1,4-diazabuta-1,3-diene with zinc, cadmium and mercury chlorides. J. Chem. Res. - Part S 1, 494–495 (1999)spa
dc.relation.referencesBiancalana, L. Batchelor, L. Funaioli, T. Zacchini, S. Bortoluzzi, M. Pampaloni, G. Dyson, P. & Marchetti, F. α-Diimines as Versatile, Derivatizable Ligands in Ruthenium(II) p-Cymene Anticancer Complexes. Inorg. Chem. 57, 6669–6685 (2018)spa
dc.relation.referencesHintermann, L. Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts IPr·HCl, IMes·HCl and IXy·HCl. Beilstein J. Org. Chem. 3, 2–6 (2007)spa
dc.relation.referencesHuisgen, R. 1,5-Electrocyclizations_An Important Principle of Heterocyclic Chemistry. Angew. Chem. Int. Ed. 19, 947–973 (1980)spa
dc.relation.referencesKyan, R., Sato, K., Mase, N., Watanabe, N. & Narumi, T. Tuning the Catalyst Reactivity of Imidazolylidene Catalysts through Substituent Effects on the N-Aryl Groups. Org. Lett. 19, 2750–2753 (2017)spa
dc.relation.referencesLi, D. Tian, Q. Wang, X. Wang, Q.Wang, Y. Liao, S. Xu, P. Huang, X. & Yuan, J. N-Heterocyclic carbene palladium (II)-pyridine (NHC-Pd (II)-Py) complex catalyzed heck reactions. Synth. Commun. 51, 2041–2052 (2021)spa
dc.relation.referencesSawama, Y., Miki, Y. & Sajiki, H. N-Heterocyclic Carbene Catalyzed Deuteration of Aldehydes in D2O. Synlett 31, 699–702 (2020)spa
dc.relation.referencesKerr, W. J., Mudd, R. J. & Brown, J. A. Iridium(I) N-Heterocyclic Carbene (NHC)/Phosphine Catalysts for Mild and Chemoselective Hydrogenation Processes. Chem. Eur. J. 22, 4738–4742 (2016)spa
dc.relation.referencesJacobsen, N. E. NMR data interpretation explained. John Wiley & Sons, Inc. (2017).spa
dc.relation.referencesVishwakarma, S. K. 2D NMR SPECTROSCOPY 1D and 2D NMR, NOESY and COSY, HETCOR, INADEQUATE techniques. (2021)spa
dc.relation.referencesYu, F. L., Jiang, J. J., Zhao, D. M., Xie, C. X. & Yu, S. T. Imidazolium chiral ionic liquid derived carbene-catalyzed conjugate umpolung for synthesis of γ-butyrolactones. RSC Adv. 3, 3996–4000 (2013)spa
dc.relation.referencesAdams, R. Byrne, L. Király, P. Foroozandeh, M. Paudel, L. Nilsson, M. Clayden, J. & Morris, G. Diastereomeric ratio determination by high sensitivity band-selective pure shift NMR spectroscopy. Chem. Commun. 50, 2512–2514 (2014)spa
dc.relation.referencesLeigh, V. Carleton, D. Olguin, J. Mueller-Bunz, H. Wright, L. & Albrecht, M. Solvent-dependent switch of ligand donor ability and catalytic activity of ruthenium(II) complexes containing pyridinylidene amide (PYA) n-heterocyclic carbene hybrid ligands. Inorg. Chem. 53, 8054–8060 (2014)spa
dc.relation.referencesMaki, B. E., Patterson, E. V., Cramer, C. J. & Scheidt, K. A. Impact of solvent polarity on n-heterocyclic carbene-catalyzed β-protonations of homoenolate equivalents. Org. Lett. 11, 3942–3945 (2009).spa
dc.relation.referencesJameel, F. & Stein, M. The many roles of solvent in homogeneous catalysis - The reductive amination showcase. J. Catal. 405, 24–34 (2022)spa
dc.relation.referencesDavies, J. E., Kirby, A. J. & Komarov, I. V. Structural correlations for nucleophilic addition to the C=O group: The solvation angle. Helv. Chim. Acta 86, 1222–1233 (2003)spa
dc.relation.referencesGriffiths, T. R. & Pugh, D. C. Correlations among solvent polarity scales, dielectric constant and dipole moment, and a means to reliable predictions of polarity scale values from Cu. Coord. Chem. Rev. 29, 129–211 (1979)spa
dc.relation.referencesÖzdemir, I., Yigit, M., Çetinkaya, E. & Çetinkaya, B. Synthesis of arylacetic acid derivatives from diethyl malonate using in situ formed palladium(1,3-dialkylimidazolidin-2-ylidene) catalysts. Tet. Lett. 45, 5823–5825 (2004)spa
dc.relation.referencesLiu, X., Lacour, J. & Braunstein, P. Chiral anion-based NMR enantiodiscrimination of a dinuclear, cationic Ir(I) NHC complex with a figure-of-eight loop structure. Dalt. Trans. 41, 138–142 (2012).spa
dc.relation.referencesDi Marco, L., Hans, M., Delaude, L. & Monbaliu, J. C. M. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis. Chem. Eur. J. 22, 4508–4514 (2016).spa
dc.relation.referencesDunn, M., H., E., Konstandaras, N., Cole, M. L. & Harper, J. B. Targeted and Systematic Approach to the Study of pKa Values of Imidazolium Salts in Dimethyl Sulfoxide. J. Org. Chem. 82, 7324–7331 (2017)spa
dc.relation.referencesCarrasco, C. Montilla, F. Álvarez, E. Calderón-Montaño, J. López-Lázaro, M. & Galindo, A. Chirality influence on the cytotoxic properties of anionic chiral bis(N-heterocyclic carbene)silver complexes. J. Inorg. Biochem. 235, 111924 (2022).spa
dc.relation.referencesSteinmetz, A. & Chemetall, G. Catalysts cesium. Production (2015).spa
dc.relation.referencesStenger, V. A. Solubilities of various alkali metal and alkaline earth metal compounds in methanol. J. Chem. Eng. Data 41, 1111–1113 (1996)spa
dc.relation.referencesCella, J. A. & Bacon, S. W. Preparation of Dialkyl Carbonates via the Phase-Transfer-Catalyzed Alkylation of Alkali Metal Carbonate and Bicarbonate Salts. J. Org. Chem. 49, 1122–1125 (1984).spa
dc.relation.referencesGisin, B. F. The Preparation of Merrifield‐Resins Through Total Esterification With Cesium Salts. Helv. Chim. Acta 56, 1476–1482 (1973).spa
dc.relation.referencesWang, S. S. et al. Facile Synthesis of Amino Acid and Peptide Esters under Mild Conditions via Cesium Salts. J. Org. Chem. 42, 1286–1290 (1977).spa
dc.relation.referencesPutatunda, S. & Chakraborty, A. A Cs2CO3-mediated simple and selective method for the alkylation and acylation of 3,4-dihydropyrimidin-2(1H)-thiones. Comptes Rendus Chim. 17, 1057–1064 (2014).spa
dc.relation.referencesKyan, R. et al. β,γ-trans-selective γ-butyrolactone formation via homoenolate cross-annulation of enals and aldehydes catalyzed by sterically hindered N-heterocyclic carbene. Tetrahedron 91, 132191 (2021).spa
dc.relation.referencesLiptak, M. D., Gross, K. C., Seybold, P. G., Feldgus, S. & C., S. G. Absolute pKa Determinations for Substituted Phenols. J. Am. Chem. Soc. 124, 6421–6427 (2002).spa
dc.relation.referencesFeroci, M., Chiarotto, I., Orsini, M., Pelagalli, R. & Inesi, A. Umpolung reactions in an ionic liquid catalyzed by electrogenerated N-heterocyclic carbenes. Synthesis of saturated esters from activated α,β-unsaturated aldehydes. Chem. Commun. 48, 5361–5363 (2012).spa
dc.relation.referencesOrsini, M. Chiarotto, I. Feeney, M. Feroci, M. Sotgiu, G. & Inesi, A. Umpolung of α,β-unsaturated aldehydes by electrogenerated NHCs in ionic liquids: Synthesis of γ-butyrolactones. Electrochem. commun. 13, 738–741 (2011).spa
dc.relation.referencesToräng, J .Vanderheiden, S. Nieger, M. & Bräse, S. Synthesis of 3-alkylcoumarins from salicylaldehydes and α,β-unsaturated aldehydes utilizing nucleophilic carbenes: A new umpoled domino reaction. Eur. J. Org. Chem. 943–952 (2007).spa
dc.relation.referencesLatendorf, K. Mechler, M. Schamne, I. Mack, D. Frey, W. & Peters, R. Titanium Salen Complexes with Appended Silver NHC Groups as Nucleophilic Carbene Reservoir for Cooperative Asymmetric Lewis Acid/NHC Catalysis. Eur. J. Org. Chem. 2017, 4140–4167 (2017).spa
dc.relation.referencesWilde, M. M. D. & Gravel, M. Bis(amino)cyclopropenylidenes as organocatalysts for acyl anion and extended umpolung reactions. Angew. Chem. Int. Ed. 52, 12651–12654 (2013).spa
dc.relation.referencesČervenková, L. Bílková, V. Cézová, T. Cuřínová, P. Karban, J. Čermák, J. Krupková, A. & Strašák, T. Imidazolium Based Fluorous N-Heterocyclic Carbenes as Effective and Recyclable Organocatalysts for Redox Esterification. Eur. J. Org. Chem. 2020, 3591–3598 (2020).spa
dc.relation.referencesKuniyil, R. & Sunoj, R. B. N-heterocyclic carbene catalyzed asymmetric intermolecular stetter reaction: Origin of enantioselectivity and role of counterions. Org. Lett. 15, 5040–5043 (2013).spa
dc.relation.referencesWang, Y., Wu, B., Zheng, L., Wei, D. & Tang, M. DFT perspective toward [3 + 2] annulation reaction of enals with α-ketoamides through NHC and Brønsted acid cooperative catalysis: Mechanism, stereoselectivity, and role of NHC. Org. Chem. Front. 3, 190–203 (2016).spa
dc.relation.referencesPareek, M., Reddi, Y. & Sunoj, R. B. Tale of the Breslow intermediate, a central player in N-heterocyclic carbene organocatalysis: then and now. Chem. Sci. 12, 7973–7992 (2021).spa
dc.relation.referencesKoźmiński, W. & Nanz, D. HECADE: HMQC- and HSQC-Based 2D NMR Experiments for Accurate and Sensitive Determination of Heteronuclear Coupling Constants from E.COSY-Type Cross Peaks. J. Magn. Reson. 124, 383–392 (1997).spa
dc.relation.referencesMarion, N., Díez-González, S. & Nolan, S. P. N-heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed. 46, 2988–3000 (2007).spa
dc.relation.referencesShimakawa, Y., Morikawa, T. & Sakaguchi, S. Facile route to benzils from aldehydes via NHC-catalyzed benzoin condensation under metal-free conditions. Tet. Lett. 51, 1786–1789 (2010).spa
dc.relation.referencesThuan, S. L. T. & Maitte, P. SELECTIVE D’a-DIOLS INSATURES. Tetrahedron 34, 1469–1474 (1978).spa
dc.relation.referencesZang, H. & Chen, E. Y. X. Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency. Int. J. Mol. Sci. 16, 7143–7158 (2015).spa
dc.relation.referencesStrassberger, Z. Mooijman, M. Ruijter, E. Alberts, A. De Graaff, C. Orru, R. & Rothenberg, G. A facile route to ruthenium-carbene complexes and their application in furfural hydrogenation. Appl. Organomet. Chem. 24, 142–146 (2010).spa
dc.relation.referencesEma, T., Nanjo, Y., Shiratori, S., Terao, Y. & Kimura, R. Solvent-Free Benzoin and Stetter Reactions with a Small Amount of NHC Catalyst in the Liquid or Semisolid State. Org. Lett. 18, 5764–5767 (2016).spa
dc.relation.referencesHegedus, L. S. Organocatalysis in organic synthesis. J. Am. Chem. Soc. 131, 17995–17997 (2009).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.lembCatalizadoresspa
dc.subject.lembCatalystseng
dc.subject.lembProcesos de manufacturaciónspa
dc.subject.lembManufacturing processeseng
dc.subject.lembCondesaciónspa
dc.subject.lembCondensationeng
dc.subject.proposalCarbenos N-heterocíclicospa
dc.subject.proposalAuto condensaciónspa
dc.subject.proposalAldehídos alfa, beta insaturadosspa
dc.titleAutocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclicospa
dc.title.translatedSelf-Condensation Of α, β -Unsaturated Aldehydes Organocatalyzed By N-Heterocyclic Carbeneseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032487256.2023.pdf
Tamaño:
2.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: