31° Simposio Internacional de estadística 2022 : múltiples temáticas
dc.contributor.conferencename | Universidad Nacional de Colombia. Sede Bogotá. Facultad de Ciencias. Departamento de Estadística | |
dc.date.accessioned | 2025-02-14T16:00:29Z | |
dc.date.available | 2025-02-14T16:00:29Z | |
dc.date.issued | 2022 | |
dc.description | ilustraciones, diagramas, mapas, tablas | |
dc.description.abstract | El Simposio de Estadística de la Universidad Nacional de Colombia se empieza a realizar desde el 1990 en donde cuyo tema central fue “Análisis de regresión”. Desde ese momento existe el compromiso para realizar el encuentro anual en el que la comunidad científica, académica y en general cualquier persona interesada, acuden a un espacio de dialogo y de interacción, donde se actualizan los diferentes saberes del quehacer estadístico nacional, por medio de cursillos, conferencias, comunicaciones orales y pósteres, que se utilizan en el desarrollo de herramientas estadísticas en América Latina y facilitan la cooperación regional e internacional. En sus 31 años del Simposio se ha venido realizando en diferentes ciudades, y en colaboración conjunta con diferentes instituciones, llegando así a convertirse en un evento internacional, de esta manera y con los posibles obstáculos para todos después de casi dos años de emergencia sanitaria y después de una versión virtual, volvimos a la presencialidad. En ese sentido, con constancia, arduo trabajo y la mejor dedicación, en el año 2022 para la versión 31° de este evento, se escogió la ciudad de Manizales, y más específicamente la Universidad Nacional de Colombia en su sede la Nubia para la realización del evento. Múltiples Temáticas fueron propuestas para este año, con 188 participantes quienes pudieron interactuar en un entorno académico, con 9 conferencias magistrales, 7 cursillos, 45 póster, y 50 comunicaciones cortas. Destacamos la participación de los invitados internacionales Pierre Ribereau, de la Universidad Montpellier II, Ehyter Martín González, de la Universidad de Guanajuato, Paola Corrales, instructora y entrenadora de The Carpentries, de manera presencial. Rangga Handika, Profesor asociado en el Instituto de Estrategia Internacional de Tokio TIU, Gareth W. Peters, Profesor de la Universidad de Santa Bárbara (UCSB), Min Lu, Profesora de la Universidad de Miami, a través de videoconferencia, y el profesor Erwin Suazo en representación de la Universidad de Texas, Rio Grande Valley. Estas participaciones ponen al Simposio como referente Internacional y exaltan la importancia de la estadística a nivel nacional y regional. (Texto tomado de la fuente) | spa |
dc.description.edition | 31 edición | spa |
dc.description.tableofcontents | COMUNICACIONES CORTAS -- 1. A modified version of the Stahel-Donoho multivariate outlier detection method based on specific random directions -- 2. Algoritmo para estimación de datos faltantes basado en regresiones lineales iteradas y penalizadas. -- 3. Análisis de clasificación para detección temprana del hongo Fusarium oxysporum en plantas de Banano Gros Michel con base en datos espectroscópicos VIS/NIR. -- 4. Análisis de datos Pseudo-Panel aplicado a retornos a la educación en Bogotá D.C -- 5. Análisis multivariado para identificar las barreras de género que enfrentan los aspirantes a la Universidad Nacional de Colombia. -- 6. Análisis y caracterización de variables influyentes en las brechas de género en el proceso de admisión de la Universidad Nacional de Colombia. -- 7. Classification in Point Patterns on Linear Networks Under Clutter. -- 8. Comparison of two control charts for monitoring skew - normal distributed data. -- 9. Comparación de pruebas de normalidad multivariada con muestras pequeñas. -- 10. Comparison of two control charts for monitoring increases in the Gumbel scale parameter when a Type- II censoring mechanism is operating. -- 11. Detección de cambio en la función de intensidad acumulada de un proceso TRP. -- 12. Diagnóstico de sesgos en el razonamiento probabilístico asociados a procesos de toma de decisiones en el contexto de una mini lotería. -- 13. Diseño de un cuestionario para conocer preferencias de consumidores de polen. -- 14. Diseño Experimental Consensual: Propuesta para incrementar las condiciones experimentales. -- 15. El Método Forest-Genetic para la estimación del umbral de daño fisiológico de Aeneolamia varia (Fabricius) en cultivos de caña de azúcar. -- 16. Elicitation of the Parameters of a Hierarchical Prior Distribution for the Parameter of a Poisson. -- 17. Estudio de la caracterización socioeconómica y demográfica de las personas afiliadas al régimen subsidiado de salud en Colombia, años 2019 y 2020. -- 18. Estudio de las propiedades de primer y segundo orden para patrones de líneas espaciales. -- 19. Estudio desagregado por sexo del recurso humano para Ciencia, Tecnología e Innovación (CTeI) en Colombia utilizando tablas de contingencia estructurada. -- 20. Evaluación de métodos estadísticos para la identificación de procedencias del café a partir de huellas espectrales. -- 21. Evaluación de una versión modificada de la prueba Shapiro-Wilk Generalizada con estimación shrinkage de la matriz de covarianzas. -- 22. Exogenous factors that determine the frequency of fatalities in road accidents in Colombian municipalities. -- 23. Explorando la presencia de sesgos en el razonamiento probabilístico condicional. -- 24. Hacia una visión pragmática de medición en Psicología. -- 25. Homicidios de líderes sociales, defensores de DD. HH y firmantes del acuerdo de paz en Colombia 2020-2022 – Un primer modelo Espacial. -- 26. Modelos psicométricos en la medición de variables no observables: El caso de la prueba ICSS 2016. -- 27. Modelamiento semiparamétrico de efectos carryover en diseños crossover con medidas repetidas. -- 28. Modelo de predicción para la vida útil restante de la batería de un vehículo eléctrico a partir de redes CNN-LSTM. -- 29. Modelo de prevención de fraude basado en video. Una aplicación de redes neuronales y modelos estadísticos. -- 30. Modelo de Scoring para la segmentación de asociados en una entidad de economía solidaria con baja tasa de default. -- 31. Mortalidad en Colombia por departamentos. -- 32. Non-stationary spatio-temporal point process modeling of COVID-19 data in Cali-Colombia. -- 33. Prueba Kruskal Wallis para Datos Funcionales. -- 34. Selección de variables en un modelo de regresión funcional cuantílico usando el método de regularización Lasso bayesiano agrupado. -- 35. Sensitivity Analysis for a numerical weather prediction model via an Ensemble Perspective. -- 36. Series Forecasting for the TransMilenio Bus Rapid Transit System -- 37. Statistical actuarial estimation of the Capitation Payment Unit from copula functions and deep learning: historical comparability analysis for the Colombian health system, 2015-2021. -- 38. Use of elicitation and social cartography to determine the importance and feasibility of landscape restoration areas in Belmira, Antioquia. -- 39. Uso de un modelo lineal generalizado hurdle para estimar conteos parciales latentes cuando solo los conteos totales están disponibles. -- 40. En Memoria de Julio Singer. -- PÓSTER -- 1. Análisis de la intensidad de discontinuidades en taludes rocosos a través de geometría estocástica -- 2. Análisis de la violencia de género en la ciudad de Medellín, ajustando un modelo de regresión logístico multinomial con un enfoque bayesiano -- 3. Análisis de los pronósticos en un modelo APC con enfoque bayesiano para la mortalidad por tuberculosis en Colombia según la agregación del periodo -- 4. Análisis de Públicos Digitales en la Red Cultural del Banco de la República usando modelos basados en BERT. -- 5. Análisis descriptivo y exploratorio de los estudiantes en carreras STEM de la UNAL Sede Bogotá para la detección de factores significativos en la deserción. -- 6. Análisis estadístico para el monitoreo epidemiológico del COVID-19: Caso Colombia. -- 7. Análisis espacial de la incidencia de la inseguridad sobre el precio del metro cuadrado de terreno en la ciudad de Bogotá para el año 2017. -- 8. Cargos por el uso de propiedad intelectual, pagos (Balanza de pagos US) en el periodo comprendido entre los años 1968-2021 en Colombia. -- 9. Clasificación y Rankeo de documentos en arXiv. -- 10. Comparación de algunos estimadores de la función de supervivencia bajo distintas tasas de censura. -- 11. Comparación entre el ajuste obtenido utilizando un modelo lineal de efectos mixtos y las metodologías RE-EM tree y random forest RMRF para la predicción de las ventas mensuales de Bavaria en el regional centro del país. -- 12. Estudio con enfoque bayesiano de la mortalidad conocidas características médicas de pacientes con COVID -19 hospitalizados en Georgia Atlanta. -- 13. Evaluación de los límites de control de Shewhart en la implementación de la Fase I bajo la distribución Gamma. -- 14. Gráficas sobre el avance del SARS-CoV-2 a nivel mundial en un trimestre. -- 15. Implementación de estrategias STEAM para el turismo estadístico-matemático de escolares de básica primaria en Sincelejo-Sucre, Colombia. -- 16. Implementación de métricas efectivas en analisis de datos. -- 17. Implementation of machine learning algorithms using robust and non-parametric techniques to recognize the infection level in coffee crops caused by Hemileia vastatrix fungus. -- 18. Modelación longitudinal de casos de dengue en Colombia, mediante modelos de conteo Poisson y ZIP de efectos Mixtos. -- 19. Modelamiento de tópicos aplicado al análisis de contenido de los tweets sobre el dengue en Colombia. -- 20. Modelo bayesiano basado en splines para predecir la mortalidad en algunos países de África a partir de información de la Demographic and Health Surveys (DHS). -- 21. “Modelos conjugados normales” una aplicación Shiny para la enseñanza de la estadística Bayesiana. -- 22. Modelo de regresión logístico bayesiano aplicado a casos de niños menores de 5 años con desnutrición aguda en la ciudad de Medellín. -- 23. Modelo espacial para determinar comorbilidades y factores sociodemográficos asociados al Covid-19. -- 24. Modelos tradicionales VS Modelos de aprendizaje de máquina: caracterización, alertas y recomendaciones de uso. -- 25. Nonparametric Approach for the Interaction in Two-way Factorial Designs: an review -- 26. Pronósticos en series de tiempo no lineales: aplicación del modelo TSAR y comparación con modelos para datos estacionales. -- 27. Propuesta para la construcción de un modelo de scoring crediticio utilizando las técnicas de regresión logística y bosque aleatorio para una entidad financiera -- 28. R vs Python para semilleros. Un ejemplo de análisis de sentimientos en twits sobre elecciones en Colombia 2022. -- 29. Spatial modeling of incidence~and~mortality~childhood~leukemia based on Colombian armed conflict and poverty for children born during the years 2002-2013. -- 30. Sample sizes for the application of the Central Limit Theorem in Poisson distributions with small population means. -- 31. Una modificación del BIC en Modelos Lineales. | |
dc.format.extent | 480 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.eissn | 2463-0861 | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | repositorio.unal.edu.co | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87492 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias. Departamento de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.relation.references | Alqallaf, F., Van Aelst, S., Yohai, V. J., and Zamar, R. H. (2009), “Propagation of Outliers in Multivariate Data,” The Annals of Statistics, 37, 311 – 331. | spa |
dc.relation.references | Cuesta-Albertos, J. A. and Nieto-Reyes, A. (2008), “The Random Tukey Depth,” Computational Statis- tics & Data Analysis, 52, 4979 – 4988 | spa |
dc.relation.references | Donoho, D. (1982), “Breakdown Properties of Multivariate Location Estimators,” Technical report, Har- vard University, Boston. | spa |
dc.relation.references | Gervini, D. (2002), “The Influence Function of the Stahel-Donoho Estimator of Multivariate Location and Scatter,” Statistics & Probability Letters, 60, 425 – 435. | spa |
dc.relation.references | Hubert, M. and Van der Veeken, S. (2008), “Outlier Detection for Skewed Data,” Journal of Chemomet- rics, 22, 235 – 246. | spa |
dc.relation.references | Juan, J. and Prieto, F. J. (1995), “A Subsampling Method for the Computation of Multivariate Estimators with High Breakdown Point,” Journal of Computational & Graphical Statistics, 4, 319 – 334. | spa |
dc.relation.references | Loperfido, N. (2018), “Skewness-Based Projection Pursuit: A Computational Approach,” Computational Statistics & Data Analysis, 120, 42 – 57. | spa |
dc.relation.references | Maronna, R. A. and Yohai, V. J. (1995), “The Behavior of the Stahel-Donoho Robust Multivariate Esti- mator,” Journal of the American Statistical Association, 90, 330 – 341. | spa |
dc.relation.references | Maronna, R. A. and Zamar, R. H. (2002), “Robust Estimates of Location and Dispersion for High- Dimensional Datasets,” Technometrics, 44, 307 – 317. | spa |
dc.relation.references | Ortiz, S. (2019), Multivariate Outlier Detection and Robust Estimation Using Skewness and Projections, Master’s thesis, Universidad EAFIT, Medellín, Colombia. | spa |
dc.relation.references | Peña, D. and Prieto, F. J. (2001), “Multivariate Outlier Detection and Robust Covariance Matrix Estima- tion,” Technometrics, 43, 286 – 300. | spa |
dc.relation.references | — (2007), “Combining Random and Specific Directions for Outlier Detection and Robust Estimation in High-Dimensional Multivariate Data,” Journal of Computational & Graphical Statistics, 16, 228 – 254. | spa |
dc.relation.references | R Core Team (2022), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria | spa |
dc.relation.references | Rousseeuw, P. J. and Croux, C. (1993), “Alternatives to the Median Absolute Deviation,” Journal of the American Statistical Association, 88, 1273 – 1283 | spa |
dc.relation.references | Stahel, W. A. (1981), Robuste Schatzungen: Infinitesimale Optimalitat und Schatzungen von Kovarianz- matrizen, Ph.D. thesis, ETH, Zurich, Switzerland. | spa |
dc.relation.references | Van Aelst, S. (2016), “Stahel–Donoho Estimation for High-Dimensional Data,” International Journal of Computer Mathematics, 93, 628 – 639. | spa |
dc.relation.references | Van Aelst, S., Vandervieren, E., and Willems, G. (2012), “A Stahel–Donoho Estimator Based on Huber- ized Outlyingness,” Computational Statistics & Data Analysis, 56, 531 – 542. | spa |
dc.relation.references | Handbook ofMissingDataMethodology.EditedbyGeertMolenberghsetal.TaylorFran- cis Group,LLC.2015. | spa |
dc.relation.references | LITTLE, R.;RUBIN, D.; Statistical AnalysiswithMissingData. Second Edition.Wilie Series inprobabilityandstatistics,2002 | spa |
dc.relation.references | MCKNIGHT, P.,MCKNIGHT, K.,SIDANI.,S.,FIGUEREDO, A. Mising Data-AGentle Introduction., 2007. | spa |
dc.relation.references | Estimación dedatosfaltantesconelAlgoritmoEM.TesisparaobtenereltítulodeActuario. M. F.Lerdo.UniversidadAutónomadeMéxico,2014. | spa |
dc.relation.references | J.ABDULRIDHA, A. DE CASTRO, R.EHSANI , DifferentiateLaurelwiltdiseaseandnu- trient deficiencyinavocadotreesusingVis–NIRspectroscopy,in:Proceedingsofthe2015 ASABE AnnualInternationalMeeting NewOrleans,LA,USA,2015 | spa |
dc.relation.references | N.ABU-KHALAF, Sensing tomato’spathogenusingVisible/Nearinfrared(VIS/NIR)spec- troscopyandmultivariatedataanalysis(MVDA) Palest.Tech.Univ.Res.J.3(1)(2015) 12–22. | spa |
dc.relation.references | Z.ARIVAZHAGAN, R.N.SHEBIAH, S.ANANTHI, S.V.VARTHINI, Detection ofunhealthy regionofplantleavesandclassificationofplantleafdiseasesusingtexturefeatures Agric. Eng. Int.CIGRJ.15(1)(2013)211–217. | spa |
dc.relation.references | N.H.BROGE, E.LEBLANC, Comparing predictionpowerandstabilityofbroadbandand hyperspectralvegetationindicesforestimationofgreenleafareaindexandcanopychlo- rophylldensity Remote Sens.Environ.76(2)(2001)156–172 | spa |
dc.relation.references | A.CHEMURA, O.MUTANGA, T.DUBE, Remote sensingleafwaterstressincoffee(Coffea arabica)usingsecondaryeffectsofwaterabsorptionandrandomforests Phys.Chem.Earth PartsA/B/C.100(2017)317–324 | spa |
dc.relation.references | K.S.LING, T.TIAN, S.GURUNG, R.SALATI, A.GILLIARD, Firstreportoftomatobrown rugose fruitvirusinfectinggreenhousetomatointheUnitedStates Plant Dis.103(6)(2019) 1439 | spa |
dc.relation.references | A. Deaton.Paneldatafromtimeseriesofcross-sections. Journalofeconometrics., 1985. | spa |
dc.relation.references | E CohnandJT.Addison.Theeconomicreturnstolifelonglearninginoecdcountries. Education economics, 1998. | spa |
dc.relation.references | J Mincer.Schooling,experience,andearnings.humanbehaviorsocialinstitutions. National BureauofEconomicResearch, 1974. | spa |
dc.relation.references | D Card.Thecausaleffectofeducationonearnings. Handbook oflaboreconomics, 1999. | spa |
dc.relation.references | O Ashenfelter,CHarmon,andHOosterbeek.Areviewofestimatesoftheschoo- ling/earnings relationship,withtestsforpublicationbias. Labour economics., 1999. | spa |
dc.relation.references | S WarunsiriandRMcNown.Thereturnstoeducationinthailand:Apseudo-panelap- proach. WorldDevelopment, 2010. | spa |
dc.relation.references | DANE.Colombia-granencuestaintegradadehogares-geih-2021. https://www.dane.gov.co, 2022. | spa |
dc.relation.references | M VerbeekandTNijman.MinimumMSEestimationofaregressionmodelwithfixed effectsfromaseriesofcross-sections. JournalofEconometric, 1993. | spa |
dc.relation.references | R. Moffitt.Identificationandestimationofdynamicmodelswithatimeseriesofrepeated cross-sections. 1993. | spa |
dc.relation.references | M. D.Collado.Estimatingdynamicmodelsfromtimeseriesofindependentcross- sections. JournalofEconometrics, 1997 | spa |
dc.relation.references | Y Mundlak.Onthepoolingoftimeseriesandcrosssectiondata. Econometrica: journal of theEconometricSociety, 1978. | spa |
dc.relation.references | M VerbeekandTNijman.Cancohortdatabetreatedasgenuinepaneldata?.inpaneldata analysis. In Paneldataanalysis, 1992 | spa |
dc.relation.references | W.A.Fuller.Measurementerrormodels. JohnWileySons., pages103–121,1987. | spa |
dc.relation.references | M. Guillerm.Pseudo-panelmethodsandanexampleofapplicationtohouseholdwealth data. Economie etStatistique, 2017. | spa |
dc.relation.references | P KSenandJMSinger.Largesamplemethodsinstatistics:anintroductionwithappli- cations. CRC press., 1994. | spa |
dc.relation.references | C Hsiao.Analysisofpaneldata. Cambridgeuniversitypress., pages28–52,2014. | spa |
dc.relation.references | M Verbeek.Pseudo-panelsandrepeatedcross-sections. The econometricsofpaneldata, 2008. | spa |
dc.relation.references | P.J.Devereux.Improvederrors-in-variablesestimatorsforgroupeddata. Journalof Business &EconomicStatistics, 2007. | spa |
dc.relation.references | J AngristandGImbens.Jackknifeinstrumentalvariablesestimation. JournalofApplied Econometrics, 1999. | spa |
dc.relation.references | G Kapetanios.Abootstrapprocedureforpaneldatasetswithmanycross-sectionalunits. The EconometricsJournal, 2008 | spa |
dc.relation.references | Tenjo,OÁlvarez,AGaviriaJaramillo,andMCJiménez.Evolutionofreturnstoedu- cation incolombia(19762014).2017 | spa |
dc.relation.references | ROSADA GONZALES, OA.(2021).PropuestametodológicaparaelAjustedeunaRedde Fracturas Discretas(DFN)apartirdefotogrametríadecortoalcance.TesisdeMaestría, UniversidadNacionaldeColombia | spa |
dc.relation.references | BOHÓRQUEZ, M.(2020).EstadísticaEspacialyEspacio-temporalparacamposaleatorios escalares yfuncionales.Notasdeclase.UniversidadNacionaldeColombia. | spa |
dc.relation.references | BADDELEY, A.,RUBAK, E.,TURNER, R.,2015.Spatialpointpatterns:methodologyand applications withR.CRCpress | spa |
dc.relation.references | DavidJ.HandandRobertJ.Till(2001).ASimpleGeneralisationoftheAreaUnderthe ROCCurveforMultipleClassClassificationProblems | spa |
dc.relation.references | GregorZens,S.F.-S.(2021).EfficientBayesianModelingofBinaryandCategoricalData in R:TheUPGPackage. | spa |
dc.relation.references | OrtizCalle,M.E.(2013).Violenciadegénero.NuevoDerecho,9(12),57-68. | spa |
dc.relation.references | Salud,I.n.(2019).Vigilanciaenlasaludpublicadelasviolenciadegeneroeintrafamiliar, Colombia. Colombia. | spa |
dc.relation.references | Velez-Gomez,P.,Restrepo-Ochoa,D.A.,Berbesi-Fernandez,D.,Trejos-Castillo,E. (2013). Depressionandneighborhoodviolenceamongchildrenandearlyadolescentsin Medellin, Colombia.Thespanishjournalofpsychology,16 | spa |
dc.relation.references | Bray,I. (1995). ApplicationofMarkovChainMonteCarloMethodstoProjectingCancerIn- cidence andMortality.InournaloftheRoyalStatisticalSociety.(SeriesC(AppliedSta- tistics), 51(2),151–164.).http://www.jstor.org/stable/3592744 | spa |
dc.relation.references | Plummer,M. (2003). JAGS:AprogramforanalysisofBayesiangraphicalmodelsusingGibbs sampling | spa |
dc.relation.references | MaartenGrootendorst.Bertopic:Neuraltopicmodelingwithaclass-basedtf-idfprocedure,2022. | spa |
dc.relation.references | NilsReimersandIrynaGurevych.Makingmonolingualsentenceembeddingsmultilingualusingknowledge distillation. In Proceedingsofthe2020ConferenceonEmpiricalMethodsinNaturalLanguageProcessing. Association forComputationalLinguistics,112020. | spa |
dc.relation.references | Estadística Descriptiva Multivariada (primera edición ed., Vol. 1). (2020). Universidad nacional de Colombia | spa |
dc.relation.references | James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Publishing. | spa |
dc.relation.references | Kassambara, A. (2017). Practical Guide To Principal Component Methods in R (Multi- variate Analysis) (Volume 2) (1.a ed.). CreateSpace Independent Publishing Platform. | spa |
dc.relation.references | Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regres- sion Analysis: 821 (5th ed.). Wiley. | spa |
dc.relation.references | LA DESERCIÓN ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE COLOM- BIA SEDE MEDELLÍN EN EL SISTEMA DE EDUCACIÓN SUPERIOR COLOMBIANO. Universidad Nacional de Colombia Sede Medellín. (2011, noviembre). https://planeacion.medellin.unal.edu.co/images/documentos/DesercionComparada N-2011.pdf | spa |
dc.relation.references | Modelo de análisis de la deserción estudiantil en la educación superior.. Calidad enla Educación, (17), 91-108. Himmel, E. (2002). doi:https://doi.org/10.31619/caledu.n17.409 | spa |
dc.relation.references | Behavior Approach Model of Voluntary University Desertion in Undergraduate Programs in Engineering, Period 2015 2018. Ingeniería Solidaria, 14(26), 1–27 Sánchez Arévalo, M. L., Cruz Hueso, L. F., & Ferro Escobar, R. (2018) https://doi.org/10.16925/in.v14i26.2433 | spa |
dc.relation.references | Barone,S.,Chakhunashvili,A.,Comelli,A. (2020). Buldingastadisticalsurveillance dashboard forcovid-19infectionwolrwide.QualityEnginnering,(),. | spa |
dc.relation.references | CEPAL,OPS (2021). La prolongación de la crisis sanitaria y su impacto en la salud, la economía yeldesarrollosocial,10-13 | spa |
dc.relation.references | Colombia confirmasuprimercasodecovid-19.(2020).MinisteriodeSalud.Retrieved from https://www.minsalud.gov.co/Paginas/Colombia-confirma-su-primer-caso-de-COVIDaspx#:~:text=Bogot%C3%A1%2C%206%20de%20marzo%20de,una%20paciente%20de% 2019%20a%C3%B1os. | spa |
dc.relation.references | Perla,R.,Provost,S.M.,Parry,G.,Little,K.,Provost,L. (2020). Understandingva- riation inreportedcovid-19deathswithanovelshewhartchartapplication.International Journal forQualityinHealthCare,(),1-8. | spa |
dc.relation.references | Zhao, S.,Q.Lin,J.,etal. (2020). Preliminaryestimationofthebasicreproductionnum- ber ofnovelcoronavirus(2019.ncov)inchina,from2019to2020.InternationalJournal of InfectiousDisaese,92(),214–7 UNAL | spa |
dc.relation.references | ANSELIN, L., Spatial Econometrics:MethodsandModels, SpringerScienceyBusiness Media, Dordrecht,1988 | spa |
dc.relation.references | AZNAR,A.,J.MUR Y F.J.TRÍVEZ, Métodos econométricosenelanálisisregional Actas delaXXIIReunióndeEstudiosRegionales,delaAsociaciónEspañoladeCiencia Regional.Pamplona/Iruña,20-22denoviembrede1996;pp.237-264,1996. | spa |
dc.relation.references | CHASCO, Y.C., Análisis estadísticodedatosgeográficosengeomarketing:elprograma GeoDa, 2006. | spa |
dc.relation.references | DOMÍNGUEZ, A., Homicide ratesandhousingpricesinCaliandBogotáD.C,Cuadernos de Economía, 40(83),643-677.2021. | spa |
dc.relation.references | GUILLEN GALICIA, M.Á., Factordedeméritoenlasviviendasencoloniasconproblemas de delincuencia(Master’sthesis), 2016. | spa |
dc.relation.references | MORENO SERRANO, ROSINA, VAYÁ, ESTHER VALCARCE , Econometría espacial:nue- vas técnicasparaelanálisisregional.Unaaplicaciónalasregioneseuropeas, 2002. | spa |
dc.relation.references | YRIGOYEN, C.C., Econometría espacialaplicadaalapredicción-extrapolacióndedatos microterritoriales.DirecciónGeneraldeEconomíayPlanificación, 2003. | spa |
dc.relation.references | García-Holgado, A., Camacho Díaz, A., García-Peñalvo, F. J. (2019). Engaging women into STEM in Latin America: W-STEM project In M. Á. Conde-González, F. J. Rodríguez- Sedano, C. Fernández-Llamas, F. J. García-Peñalvo (Eds.), TEEM’19 Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multicultu- rality (Leon, Spain, October 16th-18th, 2019) (pp. 232-239). New York, NY, USA: ACM. doi10.1145/3362789.3362902 | spa |
dc.relation.references | Verdugo-Castro, S. (2019, 2 julio). Revisión y estudio cualitativo sobre la brecha de género en el ámbito educativo STEM por la influencia de los estereotipos de género | CIAIQ2019. proceedings. https://proceedings.ciaiq.org/index.php/CIAIQ2019/article/view/2262 | spa |
dc.relation.references | Trapero, A. F. G. (2019). STEM y brecha de género en Latinoamérica. scielo. http://www.scielo.org.mx/scielo.php?script=sci_arttextpid=S1665-899X2019000100137 105 | spa |
dc.relation.references | Arredondo T. Florina, Vázquez P. José, STEM y brecha de género en Latinoamérica, El Colegio de San Luis, SCIELO, San Luis Potosi, México,2019. | spa |
dc.relation.references | Forero Graciela, Herrera B. María Camila, Brechas de género en programas de ingeniería, Encuentro Internacional de Educación en Ingeniería, Cartagena de Indias, Colombia. 2021. | spa |
dc.relation.references | Paladino Martin, Modelos logit con R, Instituto de Investigaciones Dr. José María Luis Mora, México, 2017. | spa |
dc.relation.references | MULTINOMIAL LOGISTIC REGRESSION | R DATA ANALYSIS EXAMPLES, UCLA: Sta- tistical Consulting Group. tomado de: https://stats.oarc.ucla.edu/r/dae/multinomial-logistic- regression/ (tomado el 18-agosto-2022) | spa |
dc.relation.references | R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2022. | spa |
dc.relation.references | Álvarez Amézquita, D. F., Salazar, Ó. E., & Padilla Herrera, J. C. (2015). Teoría de la propiedad intelectual. Fundamentos en la filosofía, el derecho y la economía 1. Civilizar 15 (28): 61-76, Enero-Junio de 2015. Retrieved 21 July 2022 from http://www.scielo.org.co/pdf/ccso/v15n28/v15n28a06.pdf | spa |
dc.relation.references | Arbeláez, M. U. (2007). LOS “BENEFICIOS” DEL TLC: LAS CONSECUENCIAS PARA LA BIODIVERSIDAD Y EL SISTEMA DE PROPIEDAD INTELECTUAL DE COLOMBIA. Pensamiento Jurídico, 0(18). Retrieved 21 July 2022 from https://revistas.unal.edu.co/index.php/peju/article/view/38604 | spa |
dc.relation.references | Auditoría general de la república. (2021). Reglamento de propiedad intelectual. Retrieved 21 July 2022 from Bogota : https://observatorio.auditoria.gov.co/documents/37869/1473507/Anexo+3.+Reglamento+de+propiedad+intelectual+RPI.pdf/ae2e2469-c378-b274-f4c3-15d10c0bc048?t=1652720671227 | spa |
dc.relation.references | Banco Mundial. (2022). Cargos por el uso de propiedad intelectual, pagos (balanza de pagos, US$ a precios actuales) - Colombia | Data. Retrieved 5 August 2022, from https://datos.bancomundial.org/indicador/BM.GSR.ROYL.CD?end=2021&locations=CO&name_desc=false&start=1968&view=chart | spa |
dc.relation.references | Diaz Salvatierra, J. A. (2019). Efectos de los derechos de propiedad intelectual en la competitividad de las empresas ecuatorianas luego del Acuerdo Multipartes entre Ecuador y la Unión Europea. | Semantic Scholar. Retrieved 21 July 2022, from https://www.semanticscholar.org/paper/Efectos-de-los-derechos-de-propiedad-intelectual-en-D%C3%ADaz-Salvatierra/5f85553dc288a7b63fc3b07ad13d31ddea963122 | spa |
dc.relation.references | Duran, R. (2016). Derecho mercantil internacional, de Gerardo José Ravassa Moreno. IUSTA, 1(22). Retrieved 21 July 2022 from https://doi.org/10.15332/S1900-0448.2005.0022.11 | spa |
dc.relation.references | Gisell, H., León, P., & Ferney Bonilla, D. (2008). ANALISIS DE LA BALANZA DE SERVICIOS DE PROPIEDAD INTELECTUAL EN EL PERIODO (2008-2018) EN COLOMBIA. Retrieved 21 July 2022 from http://repositorio.uan.edu.co/bitstream/123456789/1773/3/2020DarwinBonillaAvenda%c3%b1o.pdf | spa |
dc.relation.references | Lombardi, V. (2021). COVID-19 y patentes: el debate pendiente | Biodiversidad en América Latina. Retrieved 21 July 2022, from https://www.biodiversidadla.org/Documentos/COVID-19-y-patentes-el-debate-pendiente | spa |
dc.relation.references | Martínez, M. (2008). Generación y protección del conocimiento: propiedad intelectual, innovación y desarrollo económico Com isión Económ ica para Am érica Latina y el Caribe (CEPAL) Sede Subregional de la CEPAL en México. Retrieved 21 July 2022 from https://repositorio.cepal.org/handle/11362/2873?locale-attribute=en | spa |
dc.relation.references | Organizacion Mundial de Propiedad Intelectual. (2021). ¿Qué es la propiedad intelectual? Retrieved 21 July 2022 from https://www.wipo.int/publications/es/details.jsp?id=4528 | spa |
dc.relation.references | Romero, L. Q., & Mendoza, M. Á. (2016). ECONOMETRÍA APLICADA UTILIZANDO R. | spa |
dc.relation.references | Superintendencia de Industria y Comercio. (2017). Reporte sobre la información en materia de Propiedad Intelectual en Colombia. Retrieved 21 July 2022 from https://www.sic.gov.co/sites/default/files/files/Proteccion_Competencia/Estudios_Economicos/Documentos_elaborados_Grupo_Estudios_Economicos/Reporte-informacion-en-materia-de-Propiedad-Intelectual-en-Colombia.pdf | spa |
dc.relation.references | NilsReimersandIrynaGurevych.Sentence-bert:Sentenceembeddingsusingsiamesebert- networks.In Proceedingsofthe2019ConferenceonEmpiricalMethodsinNaturalLanguage Processing. AssociationforComputationalLinguistics,112019. | spa |
dc.relation.references | MontenegroÁlvaroMontegroDaniel.Diplomadoavanzadoiayap.In Repositorio Diplomado Avanzado. AprendizajeProfundo,062022. | spa |
dc.relation.references | A. BADDELEY ET AL., Analysing point patterns on networks — a review. Spatial Statistics, vol. 42, p. 100435, 2021, towards Spatial Data Science. | spa |
dc.relation.references | S. BYERS AND A. E. RAFTERY, Nearest-neighbor clutter removal for estimating features in spatial point processes. Journal of the American Statistical Association, vol. 93, no. 442, pp. 577–584, 1998 | spa |
dc.relation.references | E. L. KAPLAN AND PAUL MEIER, Nonparametric Estimation from Incomplete Observa- tions, Journal of the American Statistical Association, Vol. 53, No. 282 (Jun., 1958), pp. 457-481. | spa |
dc.relation.references | EFRON, B., TIBSHIRANI, R. J. (1993), An introduction to the bootstrap New York, N.Y: Chapman Hall. | spa |
dc.relation.references | AZZALINI, A. A class of distributions which includes the normal ones. Scandinavian Jour- nal of Statistics, 1985, 12, 171–178. | spa |
dc.relation.references | LI, C.; SU, N.C.; SU, P.F. AND SHYR, Y. The design of X¯ and R control charts for skew- normal distributed data. Communications in Statistics–Theory and Methods, 2014, 43(23), 4908–4924 , DOI: 10.1080/03610926.2012.717666 | spa |
dc.relation.references | SHEN, X.; ZOU, C.; JIANG, W. AND TSUNG, F. Monitoring Poisson count data with probability control limits when sample sizes are time varying. Naval Research Logistics, 2013, 60(8), 625–636. | spa |
dc.relation.references | RIZZO, M., Statistical Computing with R. , Chapman Hall/CRC., 2019. | spa |
dc.relation.references | KORKMAZ S, GOKSULUK D, ZARARSIZ G, “MVN: An R Package for Assessing Multivariate Normality.” The R Journal, 6(2), 151–162. https://journal.r-project.org/archive/2014- 2/korkmaz-goksuluk-zararsiz.pdf, 2019. | spa |
dc.relation.references | J. SZEKELY AND M. L. RIZZO, Energy statistics: A class of statistics based on distances Journal of Statistical Planning and Inference, 2013 | spa |
dc.relation.references | MARDIA, K. V., Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies.,1974. | spa |
dc.relation.references | CALHOUN, P.,LEVINE, R.&FAN, J., Repeated measuresrandomforests(RMRF):Iden- tifying factorsassociatedwithnocturnalhypoglycemia, Biometrics77,343–351,2021. | spa |
dc.relation.references | DAVIS, C., Statistical MethodsfortheAnalysisofRepeatedMeasurements. First Edition, Springer,NewYork,2002. | spa |
dc.relation.references | R,D.C.T., R: ALanguageandEnvironmentforStatisticalComputing. R Foundationfor Statistical Computing,Vienna,2022 | spa |
dc.relation.references | SELA, R.&SIMONOFF, J., Re-em trees:adataminingapproachforlongitudinaland clustereddata, MachineLearning86,169–207,2012. | spa |
dc.relation.references | SELA, R.,SIMONOFF, J.&JING, W., RegressionTreeswithRandomEffectsforLongitu- dinal (Panel)Data. R Package.RFoundationforStatisticalComputing,Vienna,2021. | spa |
dc.relation.references | LAWLESS, J., Statistical Models and Methods for Lifetime data, 2nd ed., John Wiley & Sons, Inc., 2003. | spa |
dc.relation.references | GUO, B. AND WANG, B. X., Control charts for monitoring the Weibull shape parameter based on type-II censored samples. Quality and Reliability Engineering, 30, 13-24, 2014. | spa |
dc.relation.references | PASUAL, F. AND LI, S., Monitoring the Weibull shape parameter by control charts for the sample range of type II censored data. Quality and Reliability Engineering, 28, 233-246, 2012. | spa |
dc.relation.references | Tartakovsky,A.,Nikiforov,I.,&Basseville,M.(2014).Sequentialanalysis:Hypothesis testing andchangepointdetection.CRCPress. | spa |
dc.relation.references | Meeker,W.Q.,Escobar,L.A.,&Pascual,F.G.(2022).Statisticalmethodsforreliability data. JohnWiley&Sons. | spa |
dc.relation.references | Rausand,M.,&Hoyland,A.(2003).Systemreliabilitytheory:models,statisticalmethods, and applications(Vol.396).JohnWiley&Sons. | spa |
dc.relation.references | Lindqvist,B.H.,Elvebakk,G.,&Heggland,K.(2003).Thetrend-renewalprocessfor statistical analysisofrepairablesystems.Technometrics,45(1),31-44. | spa |
dc.relation.references | Jokiel-Rokita,A.,&Magiera,R.(2012).Estimationofparametersfortrend-renewalpro- cesses. Statisticsandcomputing,22(2),625-637. | spa |
dc.relation.references | Yang,Q.,Hong,Y.,Chen,Y.,&Shi,J.(2012).Failureprofileanalysisofcomplexrepairable systems withmultiplefailuremodes.IEEETransactionsonReliability,61(1),180-191. | spa |
dc.relation.references | Page,E.S.(1954).Continuousinspectionschemes.Biometrika,41(1/2),100-115. | spa |
dc.relation.references | Brown,R.L.,Durbin,J.,&Evans,J.M.(1975).Techniquesfortestingtheconstancyof regressionrelationshipsovertime.JournaloftheRoyalStatisticalSociety:SeriesB(Metho- dological), 37(2),149-163. | spa |
dc.relation.references | Wald,A.(1973).Sequentialanalysis.CourierCorporation. | spa |
dc.relation.references | Roberts,S.W.(1959).Controlcharttestsbasedongeometricmovingaverages.Techno- metrics, 42(1),97-101. | spa |
dc.relation.references | Page,E.S.(1961).Cumulativesumcharts.Technometrics,3(1),1-9. | spa |
dc.relation.references | Wasserman,L.(2006).Allofnonparametricstatistics.SpringerScience&BusinessMe- dia. | spa |
dc.relation.references | Batanero, C.(2001):Did´acticadelaEstad´ıstica.UniversidaddeGranada. | spa |
dc.relation.references | Batanero, C.(2013):Lacomprensi´ondelaprobabilidadenlosni˜nos:¿qu´epo- demos aprenderdelainvestigaci´on? | spa |
dc.relation.references | Benjamin, D.(2018).ERRORSINPROBABILISTICREASONINGANDJUDG- MENT | spa |
dc.relation.references | Cortada, N.(2008):Lossesgoscognitivosenlatomadedecisions.International Journal ofPsychologicalResearch.1(1),68-73 | spa |
dc.relation.references | Costello, F.Mathison,T.(2014).OnFallaciesandnormativereasoning:when people´s judgementsfollowprobabilitytheory. | spa |
dc.relation.references | D´ıaz,C.(2003):heur´ısticasysesgosenelrazonamientoprobabil´ısticoysus implicaciones enlaense˜nanzadelaestad´ıstica. | spa |
dc.relation.references | Fisk, J.(2005):Ageandprobabilisticreasoning:biasesinconjuntive,disjuntive and Bayesianjudgementsinearlyandlateadulthood.JournalofBehavioral decision making.18(1),55-82 | spa |
dc.relation.references | Labrador, M.(2016).Relevanciadelosfactorescognitivosenlosjuegosdeazar. Tesisdoctoral.UniversidadComplutensedeMadrid | spa |
dc.relation.references | Rushdi, R.(2018):Commonfallaciesofprobabilityinmedicalcontext:Asimple mathematical exposition.JournalofadvancesinMedicineandMedicalresearch. 26(1),1-21 | spa |
dc.relation.references | Salcedo, A.&Mosquera,J.(2008).Sesgodeladisponibilidadenestudiantes universitarios.RecuperadadeInternet.Investigaci´onyPostgrado,vol.23,n.2, pp.411-432. | spa |
dc.relation.references | Serrano,L., Batanero,C.,Ort´ız,J.&Ca˜nizares,J.(1998):Heur´ısticasyses- gos enelrazonamientoprobabil´ısticodelosestudiantesdesecundaria.10(1), 7-25 | spa |
dc.relation.references | Serrad´o,A.,Carde˜noso,J.&Azc´arate,P.(2005):Losobst´aculosenelapren- dizajedelconocimientoprobabil´ıstico:suincidenciadesdeloslibrosdetexto | spa |
dc.relation.references | FANDOS, C. Y FLAVIÁN, C., Las respuestas del consumidor ante la calidad percibida: una propuesta para productos agroalimentarios de calidad. Spanish journal of rural deve- lopment, 2(1), 37–52, 2011. | spa |
dc.relation.references | GONZALES, M., Estudio de viabilidad comercial para una marca de miel de abeja para la Asociación de Productores Apícolas Cruz Verde del distrito de Íllimo, Chiclayo 2015 | spa |
dc.relation.references | HAIR, J.F., LDS GABRIEL, M., SILVA, D. Y BRAGA, S., Development and validation of attitudes measurement scales: fundamental and practical aspects. RAUSP Management Journal, 54, 490–507, 2019 | spa |
dc.relation.references | NKPURUKWE, O.I. Y OPARA, B.C., Social media marketing and customer fulfillment of airline operators in Nigeria. International Journal of Advancement in Strategic Manage- ment and Marketing, 9(2), 107–116, 2022. | spa |
dc.relation.references | SARIS, W. E. Y GALLHOFER, I. N., Design, evaluation and analysis of questionnaires for survey research, John Wiley & Sons, 2014 | spa |
dc.relation.references | SCHOUTEN, C.N., Factors influencing beekeepers income, productivity and welfare in de- veloping countries: a scoping review. Journal of Apicultural Research, 60(2), 204–219, 2020 | spa |
dc.relation.references | LÓPEZ-RÍOS, V. I., Diseños óptimos para discriminación y estimación en modelos no lineales, Ph. D. Thesis: Centro de investigación en Matemáticas, 2008. | spa |
dc.relation.references | DAVIS, J. L., PAPICH, M. G., MORTON, A. J., GAYLE, J., BLIKSLAGER, A. T. & CAMP- BELL, N. B. , Pharmacokinetics of etodolac in the horse following oral and intravenous administration, J. vet. Pharmacol. Therap. Vol. 30, 43–48, 2007. | spa |
dc.relation.references | STROUD, J. R., MULLER, P. & ROSNER, G. L., Optimal sampling times in population Pharmacokinetic studies, Applied Statistics. Vol 50, 3, 345–359, 2001. | spa |
dc.relation.references | GLEN, I., Pharmacokinetic analysis, Anaesthesia and Intensive Care Medicine. Vol. 6, 8, 280–282, 2005. | spa |
dc.relation.references | R CORE TEAM, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/. | spa |
dc.relation.references | FIGUEREDO, L. VILLA-MURILLO, A., COLMERAREZ, Y Y VARQUEZ, C. , Journal of Insect Science. A hybrid artificial intelligence model for Aeneolamia varia (Hemiptera: Cercopidae) populations in sugarcane crops, 21(2), 1-6. doi: 10.1093/jisesa/ieab017, 2001. | spa |
dc.relation.references | FIGUEREDO, L. HERNANDEZ, L. Y LINARES, B. , Revista Caña de Azúcar. Determi- nación de umbrales de daño fisiológico causados por la candelilla de la caña de azúcar Aeneolamia varia en los valles del Turbio y Yaracuy. Venezuela. 21, 3-19. 2003. | spa |
dc.relation.references | VILLA-MURILLO, A., CARRIÓN, GARCIA Y SOZZI, ANTONIO , Publicaciones en cien- cias y tecnología. Optimización del diseño de parámetros: Método Forest-Genetic univa- riante, 10(1), 11-24. 2016. | spa |
dc.relation.references | VILLA-MURILLO, A., CARRIÓN, GARCIA Y SOZZI, ANTONIO , Inteligencia artificial. Forest-Genetic method to optimize parameter design of multiresponse experiment , 23(66), 9-25. doi: 10.4114/intartif.vol23iss66pp9-25. 2020. | spa |
dc.relation.references | O’Hagan,A,andOakley,J.E.(2004)ProbabilityisPerfect,butWeCan’tElicitItPer- fectly. Reliability EngineeringandSystemSafety, Vol.85,pp.239-248 | spa |
dc.relation.references | Kadane,J.B.andWolfson,L.J.(1998)ExperiencesinElicitation. The Statistician, Vol. 47, No.1.,pp.3-1 | spa |
dc.relation.references | Kaggle.com. Predict Severity and Deaths of COVID - 19 Patients. 2022. [online] Availa- ble at: https://www.kaggle.com/code/imperiopts/predict-severity-and-deaths-of-covid-19- patients [Accessed 27 August 2022]. | spa |
dc.relation.references | MORALES, J. Cronología de la pandemia en Georgia: Esto ha pasado a un año de detectar los primeros casos de coronavirus, 2021. Retrieved 25 June 2022, from https://www.univision.com/local/atlanta-wuvg/esto-ha-pasado-a-un-ano-de-detectar- los-primeros-casos-de-coronavirus-georgia | spa |
dc.relation.references | 3] R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. https://www.R-project.org/ | spa |
dc.relation.references | Escofier,B.&Pagès,J.(1992), Análisis factorialessimplesymúltiples:objetivos,métodose interpretación, UniversidaddelPaísVascoBilbao. | spa |
dc.relation.references | Lebart, L.,Morineau,A.&Piron,M.(1995), Statistique exploratoiremultidimensionnelle, Vol.3,DunodParis. | spa |
dc.relation.references | Pardo,C.E.,Bécue-Bertaut,M.&Ortiz,J.E.(2013),‘Correspondenceanalysisofcontin- gencytableswithsubpartitionsonrowsandcolumns’, RevistaColombianadeEstadística 36(1), 115–144. | spa |
dc.relation.references | CHETLUR, V.V.,DHILLON, H.S.&DETTMANN, C.P.,‘ShortestPathDistancein Manhattan PoissonLineCoxProcess’,2020. | spa |
dc.relation.references | CHESSEL, D.,THIOULOUSE, J.DUFOUR, A,MADE4:AnalysisofEnvironmentalData:Ex- ploratory andEuclideanmethodMultivariatedataanalysisandgraphicaldisplay , Lyon,France , http://cran.univ-lyon1.fr/src/contrib/Descriptions/ade4.html,2005 | spa |
dc.relation.references | MINISTERIODE CIENCIAS, TECNOLOGIAE INNOVACION, ActoresdelSistemaNa- cional deCIencia,TecnologiaeInnovacion, Bogotá:ResoluciónNo.1473de2016. Obtenido dehttps://minciencias.gov.co/sites/default/files/ckeditor f iles/politiciadeactores − snctei.pd f ,2016. | spa |
dc.relation.references | OBSERVATORIO COLOMBIANODE CIENCIAY TECNOLOGÍA - OCYT, Infor- me deIndicadoresdeCienciayTecnologíaColombia2020.OCyT , Obtenidode https://portal.ocyt.org.co/informe-de-indicadores-2020/,2021 | spa |
dc.relation.references | ORGANIZACIÓNPARALA COOPERACIÓNYEL DESARROLLO ECONÓMICOS -OCDE- ,Manual deFrascati2015:Guíaparalarecopilaciónypresentacióndeinforma- ción sobrelainvestigaciónyeldesarrolloexperimental. Publishing,Paris/FEYCT. , doi:https://doi.org/10.1787/9789264310681-es,2018 | spa |
dc.relation.references | PARDO C.E.,BÉCUE, M.ORTIZ, J.,Métodosenejesprincipalesparatablasdecontingencia con estructurasdeparticiónenfilasycolumnas. Master´s thesis,UniversidadNacionalde Colombia, sedeBogotá. , https://repositorio.unal.edu.co/bitstream/handle/unal/51676 /campoeliaspardo.2011.pdf?sequence=1isAllowed=y,2011 | spa |
dc.relation.references | R DEVELOPMENT CORE TEAM,R: Alanguageandenvironmentforstatisticalcomputing,R . FoundationforStatisticalComputing,Vienna,Austria ,ISBN 3-900051-07-0.*http://www.R- project.org,202 | spa |
dc.relation.references | DOUGLAS C.MONTGOMERY, Introductiontostatisticalqualitycontrol , 7thedtition- Wiley,JohnWiley&Sons,2009. | spa |
dc.relation.references | YOURSTONE, STEVEN A. AND ZIMMER, WILLIAM J., Non-Normality andtheDesignof ControlChartsforAverages Decision Sciences,1992. | spa |
dc.relation.references | DENIS BAYART, Chapter 72-WalterAndrewShewhart,Economiccontrolofqualityof manufacturedproduct,ElsevierScience,1931. | spa |
dc.relation.references | EDWARD G.SCHILLINGAND PETER R.NELSON, The EffectofNonNormalityonthe ControlLimitsof ¯X Charts, Taylor&Francis,1976. | spa |
dc.relation.references | TESTIK, MURAT CANERAND WEISS, CHRISTIAN H AND KOCA, YESIMAND TESTIK, ÖZLEM MÜGE, FrontiersinStatisticalQualityControl12, AssessmentofShewhart control chartlimitsinphaseiimplementationsundervariousshiftandcontaminationsce- narios,pages 21–43,Springer,2018. | spa |
dc.relation.references | RCORE TEAM, R: Alanguageandenvironmentforstatisticalcomputing, 2021 | spa |
dc.relation.references | NAES, T., A User-FriendlyGuidetoMultivariateCalibrationandClassification,2002. | spa |
dc.relation.references | PORRAS, J.(2016).Comparacióndepruebasdenormalidadmultivariada. Anales Científi- cos. Volumen(77),141-146. | spa |
dc.relation.references | SCHÄFER, J.,STRIMMER, K.(2005).AshrinkageApproachtoLarge-ScaleCovariance Matrix EstimationandImplicationsforFunctionalGenomics. Statistical Applicationsin Genetics andMolecularBiology. Vol.4:Iss.1,Article32. | spa |
dc.relation.references | SHAPIRO, S.S.;WILK, M.B.(1965).Ananalysisofvariancetestfornormality(complete samples). Biometrika. 52 (3–4):591–611. | spa |
dc.relation.references | VILLASEÑOR, J.,GONZÁLEZ, E.(2009).AGeneralizationofShapiro–Wilk’sTestfor Multivariatenormality. Communications inStatistics—TheoryandMethods. Volumen(38), 1870–1883. | spa |
dc.relation.references | [AGENCIA NACIONALDE SEGURIDAD VIAL, Informe sobreSeguridadVialparaelCon- gresodelaRepública, pp.1–40,2021 | spa |
dc.relation.references | J.D.ALARCÓN, I.GICH SALADICH, L.VALLEJO CUELLAR, A.M.RÍOS GALLARDO, C.MONTALVO ARCE, AND X.BONFILL COSP,, Mortalidad poraccidentesdetráficoen Colombia. Estudiocomparativoconotrospaíses Rev.Esp.SaludPublica,vol.92,2018 | spa |
dc.relation.references | [J.M.RODRIGUEZ HERNANDEZ, C.TOVAR FREDY, A.H.CIDRONIO, AND C.R.JULIO CESAR, Motorcyclists’MortalityPatterninColombiafrom2000to2013:ALongitudinal Study, Arch.Med.,vol.09,no.04,pp.1–9,2017,doi:10.21767/19895216.1000228. | spa |
dc.relation.references | [V.CANTILLO, P.GARCÉS, AND L.MÁRQUEZ,, Factorsinfluencingtheoccurrenceof trafficaccidentsinurbanroads:AcombinedGIS-EmpiricalBayesianapproach, Dyna, vol.83,no.195,pp.21–28,2015,doi:10.15446/dyna.v83n195.47229. | spa |
dc.relation.references | [F.GÓMEZAND J.P.BOCAREJO,, Accident predictionmodelsforbusrapidtransitsys- tems: Generalizedlinearmodelscomparedwithaneuralnetwork, Transp.Res.Rec.,vol. 2512, pp.38–45,2015,doi:10.3141/2512-05. | spa |
dc.relation.references | [Y.LAO, G.ZHANG, Y.WANG, AND J.MILTON,, Generalizednonlinearmodels for rear-endcrashriskanalysis, Accid.Anal.Prev.,vol.62,pp.9–16,2014,doi: 10.1016/j.aap.2013.09.004.. | spa |
dc.relation.references | [P.LU AND D.TOLLIVER, Accident predictionmodelforpublichighway-railgradecros- sings, Accid.Anal.Prev.,vol.90,pp.73–81,2016,doi:10.1016/j.aap.2016.02.012. | spa |
dc.relation.references | [Y.ZOU, L.WU, AND D.LORD, Modeling over-dispersedcrashdatawithalongtail: Examining theaccuracyofthedispersionparameterinNegativeBinomialmodels, Anal. Methods Accid.Res.,vol.5–6,pp.1–16,2015,doi:10.1016/j.amar.2014.12.002. | spa |
dc.relation.references | [J.M.VER HOEFAND P.L.BOVENG, Quasi-PoissonvsBinomialRegression:How Should WeModelOverdispersedCountData?, Ecology,vol.88,no.11,pp.2766–2772, 2007. | spa |
dc.relation.references | M.INGDAL, R.JOHNSEN, AND D.A.HARRINGTON, The Akaikeinformationcriterion in weightedregressionofimmittancedata, Electrochim.Acta,vol.317,pp.648–653,2019, doi: 10.1016/j.electacta.2019.06.030. | spa |
dc.relation.references | J.ANTOCH, IEnvironmentforstatisticalcomputing, Sci.Rev.,vol.2,no.2,pp.113–122, 2008, doi:10.1016/j.cosrev.2008.05.002. | spa |
dc.relation.references | A.SALINAS-RODRÍGUEZ, B.MANRIQUE-ESPINOZA, AND S.G.SOSA-RUBÍ, Análisis estadístico paradatosdeconteo:Aplicacionesparaelusodelosserviciosdesalud, Salud Publica Mex.,vol.51,no.5,pp.397–406,2009,doi:10.1590/s0036-36342009000500007. | spa |
dc.relation.references | A.HÚZGAME, La gravedaddelaaccidentalidadvialenColombiasuperalascifrasofi- ciales, Rev.Fasecolda,no.166,pp.16–19,2018. | spa |
dc.relation.references | Bersab´e,R.(1995).Sesgoscognitivosenlosjuegosdeazarlailusi´ondecon- trol. [Tesisdoctoral,UniversidadComplutensedeMadrid] | spa |
dc.relation.references | Benjamin,D.(2019).Errorsinprobabilisticreasoningandjudgmentbiases. HandbookofBehavioralEconomics:ApplicationsandFoundations1,Volume2, Pages69-186.Disponibleenhttps://www.sciencedirect.com/science/article/pii/S2352239918300228) | spa |
dc.relation.references | Cortada,N.(2008).Lossesgoscognitivosenlatomadedecisiones.Interna- tional JournalofPsychologicalResearch,Vol.1,No.1,p.68-73. | spa |
dc.relation.references | D´ıaz,C.delaFuente,I.(2005).Razonamientosobreprobabilidadcondicio- nal eimplicacionesparalaense˜nanzadelaestad´ıstica.Epsilon,59,245-260. | spa |
dc.relation.references | D´ıaz,C.,Contreras,J.,Batanero,C.Roa,R.(2012).Evaluaci´ondeSes- gos enelRazonamientosobreProbabilidadCondicionalenFuturosProfeso- res deEducaci´onSecundaria.BoletimdeEduca¸c˜aoMatem´atica,26(44),1207- 1225.[fechadeConsulta29deEnerode2022].ISSN:0103-636X.Disponibleen: https://www.redalyc.org/articulo.oa?id=291226280007 | spa |
dc.relation.references | Fushdi,R.RushdiA.(2018).Commonfallaciesofprobabilityinmedicalcon- text: asimplemathematicalexposition.Recuperadodeinternethttps://www.researchgate.net/publication/324502214CommonF | spa |
dc.relation.references | Hollyday,A.(2017).Top50listofcognitivebiasesintrading.Disponibleen https://capital.com/top-50-cognitive-biases-list | spa |
dc.relation.references | Johnson-Laird,P.Khemlani,S.(2014).Towardaunifiedtheoryofreasoning. Disponibleenhttps://www.researchgate.net/publication/286039024T owardaunifiedtheoryofreasoning Mu˜noz,A.(2010).F alaciadeljugador.[Grabaci´on,CanalUNED].https : //descargas.uned.es/publico/pdf/AvisoLegalUNED | spa |
dc.relation.references | Ojeda,A.M.(1995).Dificultadesdelalumnadorespectoalaprobabilidad condicional. UNO,5,37-55. | spa |
dc.relation.references | Olgun,B.Isiksal-Bostan,M.(2019).Theinfluenceofthecontextofcondi- tional probabilityproblemsonprobabilisticthinking:Acasestudywithteacher candidates. EleventhCongressoftheEuropeanSocietyforResearchinMathe- matics Education(CERME11).Disponibleenhttps://hal.archives-ouvertes.fr/hal- 02412821/document | spa |
dc.relation.references | Simon,H.(1972).Elcomportamientoadministrativo.Madrid:Aguilar. | spa |
dc.relation.references | Tversky,A.Kahneman,(1976).D.Probabilisticreasoning.Disponibleen http://csinvesting.org/wp-content/uploads/2012/07/amostverskyanddanielkahneman−probabilisticreasoning2 | spa |
dc.relation.references | https://www.kaggle.com/datasets/caesarmario/our-world-in-data-covid19-dataset/ version/11 CAESAR, M.(2021).OurWorldinData-COVID-19. | spa |
dc.relation.references | https://ourworldindata.org/coronavirus Ritchie,H. (2020,5marzo).Coronavirus Pandemic(COVID-19).OurWorldinData. | spa |
dc.relation.references | TORRES IRRIBARRA, D. , A pragmatic perspective on measurement, New York: Springer Briefs in Psychology, 2020. https://doi.org/10.1007/978-3-030-74025-24) | spa |
dc.relation.references | Ball,Patrick,andMichaelH.Reed.2016.“ElRegistroyLaMedicióndeLaCriminali- dad. ElProblemadeLosDatosFaltantesyElUsodeLaCienciaParaProducirEstima- ciones EnRelaciónConElHomicidioEnColombia,DemostradoaPartirdeUnEjemplo: El DepartamentodeAntioquia(2003-2011)*.”RevistaCriminalidad58(1):9–23. | spa |
dc.relation.references | Ball,Patrick,andValentinaRozo.2018.“HomicidiosdeLíderesSocialesEnColombia En 2016–2017:UnaEstimaciónDelUniverso.”HumanRightsDataAnalysisGroup, Dejusticia Derecho-justicia-sociedad. | spa |
dc.relation.references | Barbona,I.2014.AjustedeModelos“Car”ParaLaEstimacionEspacio-Temporalde Eventos | spa |
dc.relation.references | Cliff,A.D.,Ord,J.K.1981Spatialprocesses,Pion,p.21;BivandRS,WongDWS2018 Comparing implementationsofglobalandlocalindicatorsofspatialassociation.TEST, 27(3), 716–748doi:10.1007/s11749-018-0599-x. | spa |
dc.relation.references | ComisiónInteramericanadeDerechosHumanos.2019.InformeSobreLaSituaciónde Personas DefensorasdeDerechosHumanosyLíderesSocialesEnColombia. | spa |
dc.relation.references | ConsejoLatinoamericanodeCienciasSociales.2018.¿CuálesSonLosPatrones?Homi- cidios deLíderesSocialesEnElPostAcuerdo | spa |
dc.relation.references | DianaSantacruzGarcía.2020.“LíderesSocialesEnColombia:UnaMiradaDesdeLa Declaración UniversalSobreBioéticayDerechosHumanos.”JournalofChemicalInfor- mation andModeling21(1):1–9. | spa |
dc.relation.references | Erazo,LauraMaríaOrjuela.2019.8UniversidadJorgeTadeoLozano“LaTeoríaDel Modelo EnEspiralAplicadaAlHomicidiodeLíderesSocialesyDefensoresdeDerechos Humanos EnColombia:EntreLaResignaciónyElCambio | spa |
dc.relation.references | INDEPAZ,CumbreAgrariacampesinaétnicaypopular,MarchaPatriótica.2020.Insti- tuto deEstudiosparaelDesarrolloylaPaz-INDEPAZInformeEspecial.Registrode Líderes yPersonasDefensorasdeDDHHAsesinadasDesdeLaFirmaDelAcuerdode Paz.Del24/11/2016Al15/07/2020. | spa |
dc.relation.references | Indepaz.2021.CifrasdeLaViolenciaEnLasRegione | spa |
dc.relation.references | Getis,ArthuryJ.K.Ord."TheAnalysisofSpatialAssociationbyUseofDistanceSta- tistics". GeographicalAnalysis24,Nº3.1992. | spa |
dc.relation.references | Goodchild,MichaelF.SpatialAutocorrelation.Catmog47,GeoBooks.1986. | spa |
dc.relation.references | Griffith,Daniel.SpatialAutocorrelation:APrimer.ResourcePublicationsinGeography, Association ofAmericanGeographers.1987. | spa |
dc.relation.references | Mitchell,Andy.LaGuíadeEsriparaelanálisisSIG,Volumen2.EsriPress,2005. | spa |
dc.relation.references | Pedraza,Camilo.2016.“HomicidiosdeLíderesSocialesEn2015.”ElTiempo.http://www.eltiempo.com/de-paz/homicidios-de-lideres-sociales-en-2015/16546681?ts=98. | spa |
dc.relation.references | REQUENA, Matemáticas paraelturismoypordoquier, LasPalmas:Federaciónespañola de sociedadesdeprofesoresdematemáticas,2017. | spa |
dc.relation.references | Charnes,A.,Cooper,W.W.,andRhodes,E.(1978).Measuringtheefficiencyofdecision- making units.EurJOperRes2,429–444 | spa |
dc.relation.references | Banker,R.D.,Charnes,A.,andCooper,W.(1984).Somemodelsforestimatingtechnical and scaleinefficienciesindataenvelopmentanalysis.ManagementScience,30(9),1078- 1092. | spa |
dc.relation.references | Bogetoft,P.,andHougaard,J.L.(1999).EfficiencyEvaluationsBasedonPoten- tial (Non-proportional)Improvements.JournalofProductivityAnalysis,12(3),233–47. doi:10.1023/A:1007848222681. | spa |
dc.relation.references | Mancebon,M.J.,andMuniz,M.A.(2007).PrivateversuspublichighschoolsinSpain: disentangling managerialandprogrammeefficiencies,JournaloftheOperationalResearch Society,1–10. | spa |
dc.relation.references | Darji,I.S.,andDahiya,S.(2021).FinancialperformanceofthetextileindustryinIn- dia: thecaseofHaryana.ResearchJournalofTextileandApparel,ahead-of-print.doi: 10.1108/RJTA-06-2021-0083 | spa |
dc.relation.references | Cunha,M.,andRocha,V.(2012).OntheEfficiencyofPublicHigherEducationInstitutions in Portugal:AnExploratoryStudy,FEPworkingpapers,No,468 | spa |
dc.relation.references | Ahn,T.,Charnes,A.,andCooper,W.(1998).SomestatisticalandDEAevaluationsof relativeefficienciesofpublicandprivateinstitutionsofhighereducation,Socio-Economic Planning Sci,22,259–269 | spa |
dc.relation.references | Bradley,S.,JohnesG.,andMillington,J.(2001).Theeffectofcompetitionontheefficiency of secondaryschoolsinEngland,EuropeanJournalOperationalResearch,135,545–568. | spa |
dc.relation.references | Mizala,A.,Romaguera,P.,andFarren,D.(2002).Thetechnicalefficiencyofschoolsin Chile, AppliedEconomics,34,1533–1552. | spa |
dc.relation.references | Barbetta,G.P.,andTurati,G.(2003).Efficiencyofjuniorhighschoolsandtheroleof proprietary structure,AnnalsofPublicandCooperativeEconomics74:529–551. | spa |
dc.relation.references | Asmild,M.,Holvad,T.,Hougaard,J.,andKronborg,D.(2009).Railwayreforms:dothey influence operatingefficiency?Transportation,36(5),617-638. | spa |
dc.relation.references | Gongbing,B.,Pingchun,W.,Feng,Y.,andLiang,L.(2014).EnergyandEnvironmental EfficiencyofChina’sTransportationSector:AMultidirectionalAnalysisApproach.Mat- hematical ProblemsinEngineering,1-12.ArticleID539596.doi:10.1155/2014/539596. | spa |
dc.relation.references | Wang,K.,Yu,S.,Li,M.J.,andWei,Y.(2015).Multi-directionalefficiencyanalysis-based regionalindustrialenvironmentalperformanceevaluationofChina.NaturalHazards.2015. | spa |
dc.relation.references | HougaardJL,KronborgD,Overgard,C.ImprovementPotentialinDanishElderlyCare. Health CareManagementScience,2004;7(3):225–235. | spa |
dc.relation.references | AsmildM,BalezentisT,HougaardJL.Multi-directionalProductivityChange:MEAMal- mquist, JournalofProductivityAnalysis,2016;46:109–119. | spa |
dc.relation.references | MurilloK.RochaE.Sustainabledevelopmentineducation:anon-parametricanalysis. INTED2021 Proceedings,4536-4544,2021.doi:10.21125/inted.2021.0922 | spa |
dc.relation.references | Murillo,K.P.,Rocha,E.M.,andRamalho,J.S.(2018).AbouttheEfficiencyBehavior of thePortugueseManufacturingFirmsDuringtheFinancialCrisis.LibertasMathematica (newseries),38(1),1–27. | spa |
dc.relation.references | PearsonK.OnLinesandPlanesofClosestFittoSystemsofPointsinSpace.TheLon- don, Edinburgh,andDublinPhilosophicalMagazineandJournalofScience,1901;2(11): 559–72. doi:10.1080/14786440109462720 | spa |
dc.relation.references | Abdi,H.,andWilliams,L.J.(2010).PrincipalComponentAnalysis.WileyInterdiscipli- nary Reviews:ComputationalStatistics,2(4),433–59.doi:10.1002/wics.101. | spa |
dc.relation.references | Dray,Stéphane,2008.Onthenumberofprincipalcomponents:atestofdimensionality based onmeasurementsofsimilaritybetweenmatrices.ComputationalStatisticsandData Analysis 52(4),2228–2237.doi:10.1016/j.csda.2007.07.015. | spa |
dc.relation.references | Jahanshahloo,G.R.,Lotfi,F.Hosseinzadeh,Shoja,N.,Tohidi,G.,Razavyan,S.,2005. Undesirable inputsandoutputsinDEAmodels.Appl.Math.Comput.169(2),917–925. doi: 10.1016/j.amc.2004.09.069 | spa |
dc.relation.references | Raith,A.,Fauzi,F.,andPerederieieva.,O.(2016).PyDEAdocumentation. https://araith.github.io/pyDEA | spa |
dc.relation.references | [Castro et al., 2018]Castro,Wilson,Oblitas,Jimy,Maicelo,Jorge,&Avila-George,Himer. 2018. EvaluationofExpertSystemsTechniquesforClassifyingDifferentStagesofCoffee Rust InfectioninHyperspectralImages. International JournalofComputationalIntelligence Systems, 11(01), 86–100. | spa |
dc.relation.references | [Ignacio Cascos&Romo,2011]IgnacioCascos,ÁngelLópez,&Romo,Juan.2011.Data depth inMultivariateStatistics. Boletín deEstadísticaeInvestigaciónOperativa, 27, 151– 174. | spa |
dc.relation.references | [Rousseeuw &Hubert,2018]Rousseeuw,PeterJ.,&Hubert,Mia.2018.Anomalydetection by robuststatistics. WIREs DataMiningandKnowledgeDiscovery, 8(2), e1236. | spa |
dc.relation.references | [Velásquez et al., 2020]Velásquez,David,Sánchez,Alejandro,Sarmiento,Sebastian,Toro, Mauricio, Maiza,Mikel,&Sierra,Basilio.2020.AMethodforDetectingCoffeeLeafRust through WirelessSensorNetworks,RemoteSensing,andDeepLearning:CaseStudyofthe Caturra VarietyinColombia. Applied Sciences, 10(2). | spa |
dc.relation.references | C. Berejnoi, Comparación de diferentes modelos de la Teoría de Respuesta al Ítem MInves- tigaciones en Facultades de Ingeniería del NOA ISSN N° 1853-7871, Universidad Nacional de Salta, 2018. | spa |
dc.relation.references | E. San Martín & P. De Boeck. Quantitative Psychology Research. Chapter: What do you mean by a difficult item? On the interpretation of the difficulty parameter in a Rasch model. Springer Proceedings in Mathematics & Statistics, 2015 | spa |
dc.relation.references | P. Fariña, J. González & E. San Martín. The use of an identifiability-based strategy for the interpretation of parameters in the 1PL-G and Rasch models. Psychometrika, 84(2):511– 528, 2019 | spa |
dc.relation.references | J. Brezezinska Politomous item response theory models using R Econometrika, 2(52):44- 62, 2016. | spa |
dc.relation.references | F. Tuerlinckx & P. De Boeck. Two interpretations of the discrimination parameter. Psycho- metrika, 70(4):629–650, 2005. | spa |
dc.relation.references | P. Mair, Modern Psychometrics with R, Springer, 2018 | spa |
dc.relation.references | Fitzmaurice, G.,Laird,N.,andWare,J.(2011).AppliedLongitudinalAnalysis.Jhon WileyandSons | spa |
dc.relation.references | Hur,K.,etal.,(2002).ModelingClusteredCountDatawithExcessZerosinHealth Care OutcomesResearch.HealthServices&OutcomesResearchMethodology,Vol. 3. pp.5-20. | spa |
dc.relation.references | Hartig, J.(2015).DHARMa:residualdiagnosticsforhierarchical(multi-level/mixed) regressionmodels.UniversityofRegensburg | spa |
dc.relation.references | Nieuwenhuis, R.,Grotenhuis,MandPelzer,B.(2012).influence.ME:ToolsforDe- tecting InfluentialDatainMixedEffectsModels.TheRJournal.Vol.4,No.2.pp. 38-47. | spa |
dc.relation.references | Ortiz,A.(11de01de2019).PorquéestanimportanteelanálisisBigData.Obtenido de Hostdimeblog:https://blog.hostdime.com.co/por-que-es-tan-importante-el-analisis-big- data | spa |
dc.relation.references | Missier,P.,Romanovsky,A.,Miu,T.,Pal,A.,Da,M.,&daSilvaSousa,L.(05de 10 de2016).TrackingDengueEpidemicsUsingTwitterContentClassificationand TopicModelling.InternationalConferenceonWebEngineering,80-92.Obtenidode https://bibliotecavirtual.uis.edu.co:2142/chapter/10.1007/978-3-319-46963-8_7 | spa |
dc.relation.references | Stieglitz,S.,&Bruns,A.(03de2013).Insightsfromhashtag#supplychain and TwitterAnalytics:ConsideringTwitterandTwitterdataforsupplychain practice andresearch.InternationalJournalofSocialResearchMethodology, 16(2), 91-108.Obtenidodehttps://www.scopus.com/record/display.uri?eid=2-s2.0- 84874484025&origin=inward&txGid=b960067d0b9554be42571fbf32a0431f | spa |
dc.relation.references | Twitter.(15de05de2018).Centrodeayuda.ObtenidodeIn- formación sobrelasAPIdeTwitter:https://help.twitter.com/es/rules- and-policies/twitter-api#::text=Twitter%20permite%20acceder%20 a %20partes,opini%C3%B3n%20del%20cliente%20en%20Twitter. | spa |
dc.relation.references | Kalyanam,J.,Katsuki,T.,Lanckriet,G.,&Mackey,T.(02de2017).Exploring trends ofnonmedicaluseofprescriptiondrugsandpolydrugabuseintheTwittersphe- re usingunsupervisedmachinelearning.AddictiveBehaviors,289-295.Obtenidode https://bibliotecavirtual.uis.edu.co:2191/science/article/pii/S0306460316302994#bb0150 | spa |
dc.relation.references | Sorin,M.(2011).AnalyzingSocialMediaNetworkswithNodeXL:Insightsfrom a ConnectedWorldbyDerekHansen,BenShneiderman,andMarcA.Smith. International JournalofHuman–ComputerInteraction,405-408.Obtenidode https://www.tandfonline.com/doi/abs/10.1080/10447318.2011.544971?journalCode=hihc20 | spa |
dc.relation.references | Marqués,P.,Gonzales,M.,Vega,J.,Pinto,A.,&Quiroga,E.(2013).El analisis delasredessociales.Unmétodoparalamejoradelaseguridad en lasorganizacionessanitarias.RevEspSaludPública,209-219.Obtenidode http://scielo.isciii.es/pdf/resp/v87n3/01_colaboracion_especial.pdf | spa |
dc.relation.references | Kagashe,I.,Zhijun,Y.,&Mphil,I.(12de09de2017).EnhancingSeasonalInfluenza Surveillance:TopicAnalysisofWidelyUsedMedicinalDrugsUsingTwitterData.Journal Of MedicalInternetResearch,19(9).Obtenidodehttps://www.jmir.org/2017/9/e315/ | spa |
dc.relation.references | Choi,S.,Lee,J.,Kang,M.,Min,H.,Yoon,C.,Yoon,&Sungroh.(01de10de 2017). Large-scalemachinelearningofmediaoutletsforunderstandingpublicreac- tions tonation-wideviralinfectionoutbreaks.Methods,129(1),50-59.Obtenidode https://bibliotecavirtual.uis.edu.co:2191/science/article/pii/S1046202317300191#! | spa |
dc.relation.references | Field,A.,Miles,J.,&Field,Z.(2012).Discoveringsta- tistics usingR.(S.P.Ltd.,Ed.)1°edición.Obtenidode https://aedmoodle.ufpa.br/pluginfile.php/401852/mod_resource/content/5/Material_PDF/ 1.Discovering%20Statistics%20Using%20R.pdf | spa |
dc.relation.references | X. He,Z.-Y.Zhu,andW.-K.Fung.Estimationinasemiparametricmodelforlongitudinaldata with unspecifieddependencestructure. Biometrika, 89(3):579–590,2002. | spa |
dc.relation.references | B. JonesandM.G.Kenward. Design andAnalysisofCross-OverTrialsThirdEdition. Chap- man &Hall/CRC,BocaRaton,2015. | spa |
dc.relation.references | L. S.McDaniel,N.C.Henderson,andP.J.Rathouz.FastpureRimplementationofGEE:ap- plication oftheMatrixpackage. The RJournal, 5:181–187,2013.URL https://journal. r-project.org/archive/2013-1/mcdaniel-henderson-rathouz.pdf. | spa |
dc.relation.references | R CoreTeam. R: ALanguageandEnvironmentforStatisticalComputing. RFoundationfor Statistical Computing,Vienna,Austria,2022.URL https://www.R-project.org/. | spa |
dc.relation.references | Samuel L Brilleman et al. “Bayesian survival analysis using the rstanarm R package”. In: arXiv preprint arXiv:2002.09633 (2020). | spa |
dc.relation.references | David R Cox. “Partial likelihood”. In: Biometrika 62.2 (1975), pp. 269–276. | spa |
dc.relation.references | David R Cox. “Regression models and life-tables”. In: Journal of the Royal Statistical So- ciety: Series B (Methodological) 34.2 (1972), pp. 187–202. | spa |
dc.relation.references | Andrew Gelman et al. Bayesian data analysis. Chap- man and Hall/CRC, 1995. | spa |
dc.relation.references | Brandon George, Samantha Seals, and Inmaculada Aban. “Survival analysis and regression models”. In: Journal of nuclear cardiology 21.4 (2014), pp. 686– 694. | spa |
dc.relation.references | DHS Program. Demographic and health surveys (DHS). 2021. | spa |
dc.relation.references | AndrewGelman,JohnBCarlin,HalSStern,andDonaldBRubin. Bayesian dataanalysis. Chapman andHall/CRC,1995. | spa |
dc.relation.references | ChristianHundt,MoritzSchlarb,andBertilSchmidt.Sauce:Awebapplicationforinter- activeteachingandlearningofparallelprogramming. JournalofParallelandDistributed Computing, 105:163–173,2017. | spa |
dc.relation.references | Yen-TingLinandMinJou.Integratingpopularwebapplicationsinclassroomlearningenvi- ronments anditseffectsonteaching,studentlearningmotivationandperformance. Turkish Online JournalofEducationalTechnology-TOJET, 12(2):157–165,2013. | spa |
dc.relation.references | GailPotter,JimmyWong,IrvinAlcaraz,PeterChi,etal.Webapplicationteachingtools for statisticsusingrandshiny. TechnologyInnovationsinStatisticsEducation, 9(1),2016. | spa |
dc.relation.references | GE, M.F.,LIU, Y.,JIANG, X.,&LIU, J. A reviewonstateofhealthestimationsand remainingusefullifeprognosticsoflithium-ionbatteries. Measurement, 174,109057,2021. | spa |
dc.relation.references | HU, X.,XU, L.,LIN, X.,&PECHT, M. Battery LifetimePrognostics. Joule, 4(2), 310–346, 2020. | spa |
dc.relation.references | LIU, H.C.,CHENG, C.H.,CHUN-YEN, W.,KUNG-MING, J.,CHEN, Y.G.,CHUNG, C.,CHIH-CHIEN, S.,&YONG-KAI, L. Microcontrollerunitbasedmotorcontrolsystem using fieldorientedcontrolalgorithm. ICICS 2013-ConferenceGuideofthe9thInterna- tional ConferenceonInformation,CommunicationsandSignalProcessing,2013. | spa |
dc.relation.references | NANAKI, E.A. Electric vehiclecapitals–casestudies. Electric VehiclesforSmartCities, 181–247, 2021. | spa |
dc.relation.references | SAHA, B.,&GOEBEL, K. Battery DataSet. NASAAmesResearchCenter.MoffettField, CA, 2007. | spa |
dc.relation.references | UPME. EstrategiaNacionaldeMovilidadEléctrica. Unidad dePlaneaciónMineroEner- gética, 2019. | spa |
dc.relation.references | ZHANG, X.,LI, Z.,LUO, L.,FAN, Y.,&DU, Z. A reviewonthermalmanagementof lithium-ion batteriesforelectricvehicles. Energy,238,121652,2022. | spa |
dc.relation.references | AGRESTI, A., FoundationsofLinearandGeneralizedLinearModels Wiley,2015. | spa |
dc.relation.references | KHAN, G.TARIQ, Z. Y MUHAMMAD, M., Multi-PersonTrackingBasedonFasterR-CNN and DeepAppearanceFeatures IntechOpen, 2019. | spa |
dc.relation.references | SHAOQING, R.KAIMING, H.ROSS, G.YJIAN, S., FasterR-CNN:TowardsReal-Time Object DetectionwithRegionProposalNetworks. Institute ofElectricalandElectronics Engineers, 2017. | spa |
dc.relation.references | VANEGAS, L. Y RONDÓN, M., Notas declase:ModelosLinealesGeneralizados Univer- sidad NacionaldeColombia,2018. | spa |
dc.relation.references | WANG, Q.ZHANG L. Y BERTINETTO, L., FastOnlineObjectTrackingandSegmentation: A UnifyingApproach. IEEE ConferenceOnComputerVisionAndPatternRecognition, 2019. | spa |
dc.relation.references | WARREN, S., NeuralNetworksandStatisticalModels. Proceedings oftheNineteenthAn- nual SASUsersGroupInternationalConference,1994. @articleRen2017,year=2017, publisher=InstituteofElectricalandElectronicsEngineers(IEEE), volume= 39,number=6, pages=1137−−1149,author=ShaoqingRenandKaimingHeandRossGirshickandJianSun, FasterR−CNN : TowardsReal−TimeObjectDetectionwithRegionProposalNetworks, journal = IEEETransactionsonPatternAnalysisandMachineIntelligence | spa |
dc.relation.references | DiazValencia,P.A.DoctoradoenEpidemiología,UniversidaddeAntioquia,2022. | spa |
dc.relation.references | Gelman,Andrew.Analysisofvariance:Whyitismoreimportantthanever. The AnnalsofStatistics,33(1),1-53. | spa |
dc.relation.references | SecretaríadesaluddeMedellín,UnidaddeGestióndelaInformaciónyelConoci- miento. Desnutrición agudaenmenoresde5años. MEData. http://medata.gov. co/dataset/desnutrici%C3%B3n-aguda-en-menores-de-5-a%C3%B1os, 2019. | spa |
dc.relation.references | S.MAKRIDAKIS, E.SPILIOTIS & V.ASSIMAKOPOULOS (2020), The M4Competi- tion: 100,000timeseriesand61forecastingmethods, InternationalJournalofForecasting, 36(1):54–74, DOI:10.1016/j.ijforecast.2019.04.01410.1080/23249935.2021.1990438. | spa |
dc.relation.references | S.HOCHREITER & J.SCHMIDHUBER (1997), Long ShortTermMemory, NeuralCompu- tation, 9(8):1735–1780,DOI:10.1162/neco.1997.9.8.1735. | spa |
dc.relation.references | S.MAKRIDAKISAND E.SPILIOTISAND V.ASSIMAKOPOULOS (2018), Statistical and MachineLearningforecastingmethods:Concernsandwaysforward, PLOSONE,13(3), 10.1371/journal.pone.0194889. | spa |
dc.relation.references | V.FLOVIK (2018), How (not)touseMachineLearningfortimeseriesforecasting:Avoi- ding thepitfalls, Accessed:2022-04-20,URL:https://towardsdatascience.com/how-not-to- use-machine-learning-/for-time-series-forecasting-avoiding-the-pitfalls-19f9d7adf424. | spa |
dc.relation.references | SHEREEN ELSAYEDAND DANIELA THYSSENSAND AHMED RASHEDAND HADI SAMER JOMAAAND LARS SCHMIDT-THIEME (2021), Do WeReallyNeedDeepLearning Models forTimeSeriesForecasting?, DOI:10.48550/arXiv.2101.02118. | spa |
dc.relation.references | V.CERQUEIRAAND L.TORGOAND C.SOARES (2019), MachineLearningvsStatistical Methods forTimeSeriesForecasting:SizeMatters, DOI:10.1371/journal.pone.0194889. | spa |
dc.relation.references | GUIBERT, Q. AND LOISEL, S. AND LOPEZ, O. AND PIETTE, P., Bridging the Li-Carter’s gap: a locally coherent mortality forecast approach, 2020. hal-02472777 | spa |
dc.relation.references | CARRACEDO, P. AND DEBÓN, A. AND IFTIMI, A. AND MONTES, F., Detecting spatio- temporal mortality clusters of European countries by sex and age. International journal for equity in health, Vol. 17, BioMed Central, 2018. | spa |
dc.relation.references | BARBIERI, M. AND DEPLEDGE, R., Mortality in France by département. Population, Vol. 68 (3), 375-417, 2013. | spa |
dc.relation.references | Adam,L.,&Bejda,P.(2018).Robustestimatorsbasedongeneralizationoftrimmed mean. Communications inStatistics-SimulationandComputation, 47(7), 2139-2151. | spa |
dc.relation.references | Akritas,M.G.,Arnold,S.F.,&Brunner,E.(1997).Nonparametrichypothesesandrank statistics forunbalancedfactorialdesigns. Journal oftheAmericanStatisticalAssocia- tion, 92(437), 258-265. | spa |
dc.relation.references | RCoreTeam(2017).R:Alanguageandenvironmentforstatisticalcomputing.RFoun- dation forStatisticalComputing,Vienna,Austria. • https://rpubs.com/MezaStat/nonparametric | spa |
dc.relation.references | T. Harko, F. S. N. Lobo, and M. K. Mak. Exact analytical solutions of the susceptible- infected-recovered (sir) epidemic model and of the sir model with equal death and birth rates. Applied Mathematics and Computation, 236, 2014. | spa |
dc.relation.references | A. G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Bio- metrika, 58(1):83–90, 1971 | spa |
dc.relation.references | D. Higdon, J. L. Swall, and J. Kern. Non-stationary spatial modeling. Bayesian Statistics, 6, 1998. | spa |
dc.relation.references | Y. Ogata. Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50(2):379–402, 1998. | spa |
dc.relation.references | Presidency of the Republic of Colombia. Decrees during the COVID-19 pandemic, 2020. https://coronaviruscolombia.gov.co/Covid19/decretos.html. | spa |
dc.relation.references | A. Reinhart. A review of self-exciting spatio-temporal point processes and their applica- tions. Statistical Science, 2017. | spa |
dc.relation.references | S. Zhu, A. Bukharin, L. Xie, K. Yamin, S. Yang, P. Keskinocak, and Y. Xie. Early detection of covid-19 hotspots using spatio-temporal data. IEEE Journal of Selected Topics in Signal Processing, pages 1–1, 2022. | spa |
dc.relation.references | S. Zhu, R. Ding, M. Zhang, P. Van Hentenryck, and Y. Xie. Spatio-temporal point proces- ses with attention for traffic congestion event modeling. IEEE Transactions on Intelligent Transportation Systems, pages 1–12, 2021. | spa |
dc.relation.references | S. Zhu, H. Wang, Z. Dong, X. Cheng, and Y. Xie. Neural spectral marked point processes. In International Conference on Learning Representations, 2022 | spa |
dc.relation.references | K. S. Chen y H. Tong. On estimating thresholds in autoregresive models. Journal of Time Series Analysis, 7(3):179–190, 1986. | spa |
dc.relation.references | J. González y F. H. Nieto. Bayesian analysis of multiplicative seasonal threshold autoregressive processes. Revista Colombiana de Estadística - Applied Statistics, 43(2):251–285, 2020. | spa |
dc.relation.references | R. Tsay. Testing and modeling threshold autoregressive processes. Journal of the Ame- rican Statistical Association, 84((405)):231–240, 1989. | spa |
dc.relation.references | P. A. Vaca. Analysis of the forecasting performance of the threshold autorregresive model. Tesis de maestría, Universidad Nacional de Colombia, 2018. | spa |
dc.relation.references | Abdou, H.A.,&Pointon,J.(2011).Creditscoring,statisticaltechniquesandevaluationcriteria:areviewofthe literature. Intelligentsystemsinaccounting,financeandmanagement, 18(2-3), 59-88. | spa |
dc.relation.references | Baesens, B.,VanGestel,T.,Viaene,S.,Stepanova,M.,Suykens,J.,&Vanthienen,J.(2003).Benchmarkingstate- of-the-art classificationalgorithmsforcreditscoring. Journaloftheoperationalresearchsociety, 54(6), 627-635. | spa |
dc.relation.references | Breiman, L.(1996).Baggingpredictors. Machinelearning, 24(2), 123-140 | spa |
dc.relation.references | Breiman, L.,Friedman,J.,Stone,C.J.,&Olshen,R.A.(1984). Classification andregressiontrees. CRCpress | spa |
dc.relation.references | Castaño, H.F.,&Ramírez,F.O.P.(2005).Elmodelologístico:unaherramientaestadísticaparaevaluarelriesgo de crédito. RevistaIngenieríasUniversidaddeMedellín, 4(6), 55-75. | spa |
dc.relation.references | Chen, C.,Liaw,A.,Breiman,L.,etal.(2004).Usingrandomforesttolearnimbalanceddata. UniversityofCali- fornia, Berkeley, 110(1-12), 24. | spa |
dc.relation.references | Crook, J.,Thomas,L.,&Edelman,D.(2002). Creditscoringanditsapplications. SIAM | spa |
dc.relation.references | Dastile, X.,Celik,T.,&Potsane,M.(2020).Statisticalandmachinelearningmodelsincreditscoring:Asystematic literature survey. Applied SoftComputing, 91, 106263. | spa |
dc.relation.references | Ganganwar,V.(2012).Anoverviewofclassificationalgorithmsforimbalanceddatasets. International Journalof EmergingTechnologyandAdvancedEngineering, 2(4), 42-47. | spa |
dc.relation.references | Genuer, R.,&Poggi,J.-M.(2020).Randomforests.En Random ForestswithR (pp. 33-55).Springer. | spa |
dc.relation.references | Hand, D.J.,&Henley,W.E.(1993).Canrejectinferenceeverwork? IMA JournalofManagementMathematics, 5(1), 45-55 | spa |
dc.relation.references | Hand, D.J.,&Henley,W.E.(1997).Statisticalclassificationmethodsinconsumercreditscoring:areview. Journal of theRoyalStatisticalSociety:SeriesA(StatisticsinSociety), 160(3), 523-541. | spa |
dc.relation.references | Henley,W.E.(1995). Statistical aspectsofcreditscoring. OpenUniversity(UnitedKingdom). | spa |
dc.relation.references | Liaw,A.,Wiener,M.,etal.(2002).ClassificationandregressionbyrandomForest. R news, 2(3), 18-22 | spa |
dc.relation.references | McCue, C.(2014). Data miningandpredictiveanalysis:Intelligencegatheringandcrimeanalysis. Butterworth- Heinemann. | spa |
dc.relation.references | Schreiner, M.(2003).Scoring:thenextbreakthroughinmicrocredit. Occasional paper, 7. | spa |
dc.relation.references | Sullivan,W.(2017). MachineLearningForBeginnersGuideAlgorithms:Supervised&UnsupervsiedLearning. Decision Tree&RandomForestIntroduction. HealthyPragmaticSolutionsInc. | spa |
dc.relation.references | Vojtek,M.,Koèenda,E.,etal.(2006).Credit-scoringmethods. CzechJournalofEconomicsandFinance(Finance a uver), 56(3-4), 152-167. | spa |
dc.relation.references | Wang,G.,Hao,J.,Ma,J.,&Jiang,H.(2011).Acomparativeassessmentofensemblelearningforcreditscoring. Expert systemswithapplications, 38(1), 223-230 | spa |
dc.relation.references | Wang,G.,Ma,J.,Huang,L.,&Xu,K.(2012).Twocreditscoringmodelsbasedondualstrategyensembletrees. Knowledge-BasedSystems, 26, 61-68. | spa |
dc.relation.references | Wiginton,J.C.(1980).Anoteonthecomparisonoflogitanddiscriminantmodelsofconsumercreditbehavior. JournalofFinancialandQuantitativeAnalysis, 15(3), 757-770. | spa |
dc.relation.references | Zhang, X.,Yang,Y.,&Zhou,Z.(2018).Anovelcreditscoringmodelbasedonoptimizedrandomforest. 2018 IEEE 8thAnnualComputingandCommunicationWorkshopandConference(CCWC), 60-65. | spa |
dc.relation.references | NIETO-REYES, A., Random Projections:ApplicationstoStatisticalDataDepthand Goodness ofFitTest, Vol.35,No.1.,BoletíndeEstadísticaeInvestigaciónOperativa, 2019. | spa |
dc.relation.references | CUESTA-ALBERTOETAL, A sharpformoftheCramér-Woldtheorem. Probab.,Springer, 20, 201–209.,2007. | spa |
dc.relation.references | FRANKL, P., The Johnson-Lindenstrausslemmaandthesphericityofsomegraphs Combin. Theory Ser.B.,44(3),355–362.1988 | spa |
dc.relation.references | Análisisdetexto(textmining)conPythonbyJoaquínAmatRodri- go, availableunderaAttribution4.0International(CCBY4.0)at https://www.cienciadedatos.net/documentos/py25-text-mining-python.html | spa |
dc.relation.references | Arcila-Calderón,C.,Ortega-Mohedano,F.,Jiménez-Amores,J.,Trullenque,S.(2017). Análisis supervisadodesentimientospolíticosenespañol:clasificaciónentiemporealde tweets basadaenaprendizajeautomático.ProfesionaldelaInformación,26(5),973-982. | spa |
dc.relation.references | Aruoba,S.B.,Fernández-Villaverde,J.(2015).Acomparisonofprogramminglanguages in macroeconomics.JournalofEconomicDynamicsandControl,58,265-273. | spa |
dc.relation.references | Collomb,A.,Costea,C.,Joyeux,D.,Hasan,O.,Brunie,L.(2014).Astudyandcomparison of sentimentanalysismethodsforreputationevaluation.RapportderechercheRR-LIRIS- 2014-002. | spa |
dc.relation.references | Dashtipour,K.,Poria,S.,Hussain,A.,Cambria,E.,Hawalah,A.Y.,Gelbukh,A.,Zhou, Q. (2016).Multilingualsentimentanalysis:stateoftheartandindependentcomparisonof techniques. Cognitivecomputation,8(4),757-771. | spa |
dc.relation.references | Hernández,M.B.,Gómez,J.M.(2013).Aplicacionesdeprocesamientodelenguajenatu- ral. RevistaPolitécnica,32. | spa |
dc.relation.references | Hurtado,L.F.,Pla,F.,Buscaldi,D.(2015,September).ELiRF-UPVenTASS2015:Aná- lisis deSentimientosenTwitter.InTASS@SEPLN(pp.75-79). | spa |
dc.relation.references | Islam,M.R.,Zibran,M.F.(2018,March).Acomparisonofsoftwareengineeringdomain specific sentimentanalysistools.In2018IEEE25thinternationalconferenceonsoftware analysis, evolutionandreengineering(SANER)(pp.487-491).IEEE. | spa |
dc.relation.references | Kirilenko,A.P.,Stepchenkova,S.O.,Kim,H.,Li,X.(2018).Automatedsentimentanaly- sis intourism:Comparisonofapproaches.JournalofTravelResearch,57(8),1012-1025 | spa |
dc.relation.references | Kouatchou,J.,Medema,A.(2018).Basiccomparisonofpython,julia,matlab,idlandjava (2018 edition).ModelingGuru–NationalAeronauticsandSpaceAdministration,USA. | spa |
dc.relation.references | Lak,P.,Turetken,O.(2014,January).Starratingsversussentimentanalysis–acomparison of explicitandimplicitmeasuresofopinions.In201447thHawaiiinternationalconference on systemsciences(pp.796-805).IEEE. | spa |
dc.relation.references | LópezBarbosa,R.R.(2015).Aplicacióndelanálisisdesentimientosalaevaluaciónde datos generadosenmediossociales. | spa |
dc.relation.references | Misuraca,MichelangeloForciniti,AlessiaScepi,GermanaSpano,Maria.(2020).Senti- ment AnalysisforEducationwithR:packages,methodsandpracticalapplications. | spa |
dc.relation.references | Morales,E.,Jorge,A.(2017).Comparaciónderendimientodetécnicasdeaprendizaje automático paraanálisisdeafectosobretextosenespañol. | spa |
dc.relation.references | Naldi,M.(2019).AreviewofsentimentcomputationmethodswithRpackages.arXiv preprint arXiv:1901.08319. | spa |
dc.relation.references | Rackauckas,C.(2017).Acomparisonbetweendifferentialequationsolversuitesin MATLAB.R,Julia,Python,C,Mathematica,Maple,andFortran,TheWinnower, 5(e153459), 55 | spa |
dc.relation.references | Cardot,H.,Crambes,C.,andSarda,P(2005). Quantile regressionwhenthecovariatesare functions, NonparametricStatistics,17(7),841-856. | spa |
dc.relation.references | Craig,R.andKeming,Y.,(2009). Gibbs samplerforBayesianquantileregression, (JKe- ming Yu:DepartmentofMathematicalSciences,BrunelUniversity,Uxbridge) | spa |
dc.relation.references | Koenker,R.(2005). Quantile regression, Vol38.Cambridgeuniversitypress | spa |
dc.relation.references | H.Hashem,V.Vinciotti,R.Alhamzawi,K.Yu(sf). Quantile RegressionwithGroupLasso for Classication .(providedbyBrunelUniversityResearchArchive | spa |
dc.relation.references | Xu,X.andGhosh,M.(2015).Bayesian VariableSelectionandEstimationforGroupLasso. Bayesian Analysis.10,Number4,pp.909–936. | spa |
dc.relation.references | Arregocés, H. A., Rojano, R. & Restrepo, G. (2021), ‘Sensitivity analysis of planetary bound- ary layer schemes using the WRF model in Northern Colombia during 2016 dry season’, Dynamics of Atmospheres and Oceans 96(November 2020). | spa |
dc.relation.references | Borge, R., Alexandrov, V., José del Vas, J., Lumbreras, J. & Rodríguez, E. (2008), ‘A compre- hensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula’, Atmospheric Environment 42(37), 8560–8574. | spa |
dc.relation.references | Boylan, J. W. & Russell, A. G. (2006), ‘PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models’, Atmospheric Environment 40(26), 4946–4959 | spa |
dc.relation.references | Carvalho, D., Rocha, A., Gómez-Gesteira, M. & Santos, C. (2012), ‘A sensitivity study of the WRF model in wind simulation for an area of high wind energy’, Environmental Mod- elling and Software 33, 23–34. URL: http://dx.doi.org/10.1016/j.envsoft.2012.01.019 | spa |
dc.relation.references | Carvalho, D., Rocha, A., Gómez-Gesteira, M. & Silva Santos, C. (2014a), ‘Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula’, Applied Energy 135, 234–246. | spa |
dc.relation.references | Carvalho, D., Rocha, A., Gómez-Gesteira, M. & Silva Santos, C. (2014b), ‘WRF wind simu- lation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal’, Applied Energy 117, 116–126. URL: http://dx.doi.org/10.1016/j.apenergy.2013.12.001 | spa |
dc.relation.references | Dillon, M. E., Skabar, Y. G., Ruiz, J., Kalnay, E., Collini, E. A., Echevarría, P., Saucedo, M., Miyoshi, T. & Kunii, M. (2016), ‘Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics’, Weather and Fore- casting 31(1), 217–236. URL: http://journals.ametsoc.org/doi/10.1175/WAF-D-14-00157.1 | spa |
dc.relation.references | Du, J., Berner, J., Buizza, R., Charron, M., Houtekamer, P., Hou, D., Jankov, I., Mu, M., Wang, X., Wei, M. & Yuan, H. (2018), ‘Ensemble Methods for Meteorological Predictions’, Handbook of Hydrometeorological Ensemble Forecasting pp. 1–52. | spa |
dc.relation.references | Dzebre, D. E. & Adaramola, M. S. (2020), ‘A preliminary sensitivity study of Planetary Bound- ary Layer parameterisation schemes in the weather research and forecasting model to sur- face winds in coastal Ghana’, Renewable Energy 146, 66–86. URL: https://doi.org/10.1016/j.renene.2019.06.133 | spa |
dc.relation.references | Efron, B. & Tibshirani, R. J. (1993), An Introduction to the Bootstrap, Springer Series in statis- tics. | spa |
dc.relation.references | Etherton, B. & Santos, P. (2006), ‘Sensitivity of WRF forecasts to initial and boundary condi- tions’, Bulletin of the American Meteorological Society 87(11), 1495–1496. | spa |
dc.relation.references | Etherton, B. & Santos, P. (2008), ‘Sensitivity of WRF forecasts for South Florida to initial conditions’, Weather and Forecasting 23(4), 725–740. | spa |
dc.relation.references | Falasca, S., Gandolfi, I., Argentini, S., Barnaba, F., Casasanta, G., Di Liberto, L., Petenko, I. & Curci, G. (2021), ‘Sensitivity of near-surface meteorology to PBL schemes in WRF simulations in a port-industrial area with complex terrain’, Atmospheric Research 264(May), 105824. URL: https://doi.org/10.1016/j.atmosres.2021.105824 | spa |
dc.relation.references | Farchi, A. & Bocquet, M. (2018), ‘Review article : Comparison of local particle filters and new implementations’, pp. 765–807. | spa |
dc.relation.references | Fernández-González, S., Martín, M. L., García-Ortega, E., Merino, A., Lorenzana, J., Sánchez, J. L., Valero, F. & Rodrigo, J. S. (2018), ‘Sensitivity analysis of the WRF model: Wind- resource assessment for complex terrain’, Journal of Applied Meteorology and Climatol- ogy 57(3), 733–753 | spa |
dc.relation.references | Henao, J. J., Mejía, J. F., Rendón, A. M. & Salazar, J. F. (2020), ‘Sub-kilometer dispersion sim- ulation of a CO tracer for an inter-Andean urban valley’, Atmospheric Pollution Research 11(February), 0–1. URL: https://doi.org/10.1016/j.apr.2020.02.005 | spa |
dc.relation.references | Hill, A. J., Weiss, C. C. & Ancell, B. C. (2016), ‘Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation’, Monthly Weather Review 144(11), 4161–4182. | spa |
dc.relation.references | Hu, X. M., Klein, P. M. & Xue, M. (2013), ‘Evaluation of the updated YSU planetary bound- ary layer scheme within WRF for wind resource and air quality assessments’, Journal of Geophysical Research Atmospheres 118(18), 490–10 | spa |
dc.relation.references | Jankov, I., Gallus, W. A., Segal, M. & Koch, S. E. (2007), ‘Influence of initial conditions on the WRF-ARW Model QPF response to physical parameterization changes’, Weather and Forecasting 22(3), 501–519. | spa |
dc.relation.references | Jee, J. B. & Kim, S. (2017), ‘Sensitivity sudy on high-resolution WRF precipitation forecast for a heavy rainfall event’, Atmosphere 8(6). | spa |
dc.relation.references | Jones, L. A. & Woodall, W. H. (1998), ‘The performance of bootstrap control charts’, Journal of Quality Technology 30(4), 362–375. | spa |
dc.relation.references | Kumar, A., Jiménez, R., Belalcázar, L. C. & Rojas, N. Y. (2016), ‘Application of WRF-Chem Model to Simulate PM10 Concentration over Bogotá’, Aerosol and Air Quality Research 16(5), 1206–1221 | spa |
dc.relation.references | Langland, R. H. & Baker, N. L. (2004), ‘Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system’, Tellus A: Dynamic Meteorology and Oceanography 56(3), 189–201. | spa |
dc.relation.references | Lo, J. C.-F., Yang, Z.-L. & Pielke, R. A. (2008), ‘Assessment of three dynamical climate down- scaling methods using the Weather Research and Forecasting (WRF) model’, Journal of Geophysical Research 113(D9). | spa |
dc.relation.references | Lu, S., Guo, W., Xue, Y., Huang, F. & Ge, J. (2021), ‘Simulation of summer climate over Central Asia shows high sensitivity to different land surface schemes in WRF’, Climate Dynamics 57(7), 2249–2268. URL: https://doi.org/10.1007/s00382-021-05876-9 | spa |
dc.relation.references | Martin, W. J. & Xue, M. (2006), ‘Sensitivity Analysis of Convection of the 24 May 2002 IHOP Case Using Very Large Ensembles’, Monthly Weather Review 134, 192–207. | spa |
dc.relation.references | Martínez-Castro, D., Kumar, S., Flores Rojas, J. L., Moya-Álvarez, A., Valdivia-Prado, J. M., Villalobos-Puma, E., Castillo-Velarde, C. D. & Silva-Vidal, Y. (2019), ‘The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW’, Atmosphere 10(8), 442. | spa |
dc.relation.references | Misenis, C. & Zhang, Y. (2010), ‘An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options’, Atmospheric Research 97(3), 315–334. | spa |
dc.relation.references | Mughal, M. O., Lynch, M., Yu, F., McGann, B., Jeanneret, F. & Sutton, J. (2017), ‘Wind modelling, validation and sensitivity study using Weather Research and Forecasting model in complex terrain’, Environmental Modelling and Software 90, 107–125. URL: http://dx.doi.org/10.1016/j.envsoft.2017.01.009 | spa |
dc.relation.references | National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Depart- ment of Commerce (2015), ‘Ncep gfs 0.25 degree global forecast grids historical archive’. URL: https://doi.org/10.5065/D65D8PWK | spa |
dc.relation.references | Pan, L., Liu, Y., Knievel, J. C., Monache, L. D. & Roux, G. (2018), ‘Evaluations of WRF sensitivities in surface simulations with an ensemble prediction system’, Atmosphere 9(3). | spa |
dc.relation.references | Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B. & Wagener, T. (2016), ‘Sensitivity analysis of environmental models: A systematic review with practical workflow’, Environmental Modelling & Software 79, 214–232. | spa |
dc.relation.references | Posada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F. & Villegas, J. C. (2018), ‘WRF downscaling improves ERA-Interim representation of precipitation around a tropical An- dean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain’, Climate Dynamics 0(0), 0. URL: http://dx.doi.org/10.1007/s00382-018-4403-0 | spa |
dc.relation.references | Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlage, M. J., Yu, W. & Duda, M. G. (2017), ‘The weather research and forecasting model: Overview, system efforts, and future directions’, Bulletin of the American Meteorological Society 98(8), 1717–1737. | spa |
dc.relation.references | Reboredo, B., Arasa, R. & Codina, B. (2015), ‘Evaluating Sensitivity to Different Options and Parameterizations of a Coupled Air Quality Modelling System over Bogotá, Colombia. Part I: WRF Model Configuration’, Open Journal of Air Pollution 04(02), 47– 64 | spa |
dc.relation.references | Rey, D. & Neuhäuser, M. (2011), Wilcoxon-signed-rank test, in ‘International encyclopedia of statistical science’, Springer, pp. 1658–1659. | spa |
dc.relation.references | Ribeiro, L., Caetano, D., Andre, E., Beatriz, S. & Rolim, A. (2021), ‘Reanalysis profile down- scaling with WRF model and sensitivity to PBL parameterization schemes over a subtrop- ical station’, Journal of Atmospheric and Solar-Terrestrial Physics 222(May). | spa |
dc.relation.references | Ritter, M., Müller, M. D., Jorba, O., Parlow, E. & Liu, L. J. (2013), ‘Impact of chemical and meteorological boundary and initial conditions on air quality modeling: WRF-Chem sen- sitivity evaluation for a European domain’, Meteorology and Atmospheric Physics 119(1- 2), 59–70. | spa |
dc.relation.references | SIATA (2022), ‘Siata’. URL: https://siata.gov.co/sitio_web/index.php/ | spa |
dc.relation.references | Sikder, M. S. & Hossain, F. (2018), ‘Sensitivity of initial-condition and cloud microphysics to the forecasting of monsoon rainfall in South Asia’, Meteorological Applications 25(4), 493–509. | spa |
dc.relation.references | Solbakken, K. & Birkelund, Y. (2018), ‘Evaluation of the Weather Research and Forecasting (WRF) model with respect to wind in complex terrain’, Journal of Physics: Conference Series 1102 | spa |
dc.relation.references | Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M. & Xu, C. (2015), ‘Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and appli- cations’, Journal of Hydrology 523(225), 739–757. URL: http://dx.doi.org/10.1016/j.jhydrol.2015.02.013 | spa |
dc.relation.references | Srinivas, C. V., Hari Prasad, K. B., Naidu, C. V., Baskaran, R. & Venkatraman, B. (2016), ‘Sensitivity Analysis of Atmospheric Dispersion Simulations by FLEXPART to the WRF- Simulated Meteorological Predictions in a Coastal Environment’, Pure and Applied Geo- physics 173(2), 675–700 | spa |
dc.relation.references | Torn, R. D. & Hakim, G. J. (2009), ‘Initial condition sensitivity of Western Pacific extratrop- ical transitions determined using ensemble-based sensitivity analysis’, Monthly Weather Review 137(10), 3388–3406. | spa |
dc.relation.references | Wang, J. W. A., Sardeshmukh, P. D., Compo, G. P., Whitaker, J. S., Slivinski, L. C., McColl, C. M. & Pegion, P. J. (2019), ‘Sensitivities of the NCEP global forecast system’, Monthly Weather Review 147(4), 1237–1256. | spa |
dc.relation.references | Wilks, D. S. (2011), Statistical Methods in the Atmospheric Sciences, Elsevier. | spa |
dc.relation.references | Wu, C., Luo, K., Wang, Q. & Fan, J. (2022), ‘Simulated potential wind power sensitivity to the planetary boundary layer parameterizations combined with various topography datasets in the weather research and forecasting model’, Energy 239, 122047. URL: https://doi.org/10.1016/j.energy.2021.122047 | spa |
dc.relation.references | Yang, B., Qian, Y., Berg, L. K., Ma, P. L., Wharton, S., Bulaevskaya, V., Yan, H., Hou, Z. & Shaw, W. J. (2017), ‘Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model’, Boundary-Layer Meteorology 162(1), 117–142. | spa |
dc.relation.references | Žabkar, R., Koracˇin, D. & Rakovec, J. (2013), ‘A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area’, Atmo- spheric Environment 77, 990–1004. | spa |
dc.relation.references | Zack, J., Natenberg, E., Young, S., Knowe, G. V., Waight, K., Manobainco, J. & Kamath, C. (2010), Application of ensemble sensitivity analysis to observation targeting for short-term wind speed forecasting in the Tehachapi region winter season, Technical report, Lawrence Livermore National Laboratory | spa |
dc.relation.references | Breiman, L.(1997).Arcingtheedge.Technicalreport,Tech-nicalReport486,Statis- tics Department,UniversityofCaliforniaat.... | spa |
dc.relation.references | Campos Murcia,M.R.etal.(2016). Strategiesformodellingbrtmassivetransportationsystems-transmileniocase | spa |
dc.relation.references | Elsayed, S.,Thyssens,D.,Rashed,A.,Jomaa,H.S.,andSchmidt-Thieme,L.(2021). Do wereallyneeddeeplearningmodelsfortimeseriesforecasting?arXivpreprint arXiv:2101.02118. | spa |
dc.relation.references | Friedman, J.H.(2001).Greedyfunctionapproximation:agradientboostingmachine. Annals ofstatistics,pages1189–1232. | spa |
dc.relation.references | GriffithDA,ChunY.ImplementingMoraneigenvectorspatialfilteringformassivelylar- ge georeferenceddatasets.InternationalJournalofGeographicalInformationScience. 2019;33(9):1703-1717 | spa |
dc.relation.references | GriffithDA,Peres-NetoPR.Spatialmodelinginecology:theflexibilityofeigenfunction spatial analyses.Ecology.2006;87(10):2603-2613. | spa |
dc.relation.references | Genest, C.,Huang,W.&Dufour,J.-M.(2013),‘Aregularizedgoodness-of-fittestforcopulas’, JournaldelaSociétéfrançaisedestatistique 154(1), 64–77 | spa |
dc.relation.references | Grønneberg,S.&Hjort,N.L.(2014),‘Thecopulainformationcriteria’, Scandinavian Journal of Statistics 41(2), 436–459. | spa |
dc.relation.references | Novales,A.(2017),‘Cópulas’, Madrid: UniversidadComplutense.Departamentode Economía Cuantitativa.Obtenidodehttps://www.ucm.es/data/cont/media/www/pag- 41459/Copulas. pdf . | spa |
dc.relation.references | ParraArboleda,L.F.(2015),‘Modelamientoconjuntodelnúmerodesiniestrosypagospor reclamación ensegurosmedianteunacópulamixtadesdelaperspectivafrecuentistay bayesiana’, Departamento deEstadística . | spa |
dc.relation.references | Jolliffe,I.T. (1995). SampleSizesandtheCentralLimitTheorem:ThePoissonDistribution as anIllustration.InTheAmericanStatistician(Vol.49, Issue3,pp.269–269).Informa UK Limited.https://doi.org/10.1080/00031305.1995.10476161 | spa |
dc.relation.references | CoreTeam. (2022). R:Alanguageandenvironmentforstatisticalcomputing.RFoundation for StatisticalComputing,Vienna,Austria.URLhttps://www.R-project.org/. | spa |
dc.relation.references | LudwigFahrmeir,ThomasKneib,StefanLang,BrianMarx.(2013). Regression:Models, Methods andApplications. SpringerScience&BusinessMedia. | spa |
dc.relation.references | AndoTomohiro.(2010) Bayesian ModelSelectionandStatisticalModeling. Editorial: Chapman &Hall/CRCisanimprintofTaylor&FrancisGroup,anInformabusiness. | spa |
dc.relation.references | DavidL.Weakliem, A CritiqueoftheBayesianInformationCriterionforModelSelection, Sociological Methods&Research,1999,vol.27,issue3,359-397 | spa |
dc.relation.references | ADAMS, FRANCIS K.,ExpertElicitationandBayesianAnalysisofConstructionContract Risks: AnInvestigation. Construction ManagementandEconomics, Vol.24(1),pp.81-96, 2006. | spa |
dc.relation.references | CHAZDON ROBIN. AND PEDRO BRANCALION. RestoringForestsasaMeanstoMany Ends. Science, Vol.364(6448).pp.24-25,2019. | spa |
dc.relation.references | CORREA-MORALES, JUAN CARLOS. AND BARRERA-CAUSIL, C. IntroducciónaLaEs- tadística Bayesiana. FondoEditorialInstitutoTecnológicoMetropolitano(ITM),2018. | spa |
dc.relation.references | CROSSLAND, M. AND ANN, L. AND PAGELLA, T. AND HADGU, K. AND SINCLAIR, F. Implications ofvariationinlocalperceptionofdegradationandrestorationprocessesfor implementing landdegradationneutrality. EnvironmentalDevelopment, Vol.28.pp.42-54, 2018 | spa |
dc.relation.references | EDRISI SHEIKH ADIL. AND ABHILASH PURUSHOTHAMAN CHIRAKKUZHYIL. Needof TransdisciplinaryResearchforAcceleratingLandRestorationduringtheUNDecadeon Ecosystem Restoration. RestorationEcology, Vol.29(8),2021. | spa |
dc.relation.references | ESRI ArcGISPro:Versión2.8.0. Redlands, CA:SistemasAmbientalesInstitutodeinves- tigación,2022. | spa |
dc.relation.references | FISCHER, JOERN. AND MARAJA RIECHERS. AND JACQUELINE LOOS. AND BERTA MARTIN-LOPEZ. AND VICKY M.TEMPERTON. MakingtheUNDecadeonEcosystem Restoration aSocial-EcologicalEndeavour. TrendsinEcologyandEvolution. Vol.36(1). pp.20-28, 2021 | spa |
dc.relation.references | HERNÁNDEZ-GÓMEZ, ROSA CATALINA. AND EDGARD CANTILLO-HIGUERA. LaRes- tauración EcológicaComoEstrategiadeConstrucciónSocialEnLaVeredaChipautá,Mu- nicipio deGuaduas,Cundinamarca. Ambiente yDesarrollo. Vol.22(42).pp.1-15,2019. | spa |
dc.relation.references | JENKINSON, D. The ElicitationofProbabilities-AReviewoftheStatisticalLiterature. TechnicalReport. Sheffield,UK.,2005. | spa |
dc.relation.references | LÓPEZ-GÓMEZ CONNIE. Cartografíasocial:instrumentodegestiónsocialeindicador ambiental. (Tesisdemaestría).UniversidadNacionaldeColombia-SedeMedellín,2012. | spa |
dc.relation.references | METZGER, MORENA MILLS. AND HUGH P.POSSINGHAM. AND RICARDO RIBEIRO RODRIGUES. AND CARLOS ALBERTODE MATTOS SCARAMUZZA. AND FABIO RUBIO SCARANO. AND LEANDRO TAMBOSI. AND MARIA URIARTE. StrategicApproachesto Restoring EcosystemsCanTripleConservationGainsandHalveCosts. NatureEcology and Evolution. Vol.3(1).pp.62-70,2019 | spa |
dc.relation.references | RCORE TEAM. R: Alanguageandenvironmentforstatisticalcomputing.RFoundation for StatisticalComputing. Vienna,Austria,2022. | spa |
dc.relation.references | RAMÍREZ, CRISTIAN Determinantes EspacialmenteExplícitosdeTransicionesEnCo- berturasTerrestresConSignificativoImpactoParaLaProvisióndeServiciosEcosistémi- cos: AnálisisTemporalyEspacial. (TesisdeMaestría).UniversidadNacionaldeColombia - SedeMedellín,2014 | spa |
dc.relation.references | STRASSBURG, BERNARDO B.N. AND ALVARO IRIBARREM. AND HAWTHORNE L. BEYER. AND CARLOS LEANDRO CORDEIRO. AND RENATO CROUZEILLES. AND CATARINA C.JAKOVAC. AND ANDRÉ BRAGA JUNQUEIRA. AND EDUARDO LACERDA. AND AGNIESZKA E.LATAWIEC. AND ANDREW BALMFORD. AND THOMAS M.BROOKS. AND STUART H.M.BUTCHART. AND ROBIN L.CHAZDON. AND KARL HEINZ ERB. AND PEDRO BRANCALION. AND GRAEME BUCHANAN. AND DAVID COOPER. AND SANDRA DÍAZ. AND PAUL F.DONALD. AND VALERIE KAPOS. AND DAVID LECLÈRE. AND LERA MILES. AND MICHAEL OBERSTEINER. AND CHRISTOPH PLUTZAR. AND CARLOS ALBERTO CARLOS. AND FABIO R.SCARANO. AND PIERO VISCONTI. Global Priority AreasforEcosystemRestoration. Nature. Vol.586(7831).pp.724-29,2020. | spa |
dc.relation.references | ELISE CASPERSEN, MARIO ARRIETA-PRIETO & XIAOKUN (CARA) WANG (2021), Latent splitofaggregatecounts:revealinghomedeliveriespercommoditytypes and potentialfreighttripimplications, TransportmetricaA:TransportScience,DOI: 10.1080/23249935.2021.1990438. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | MEMORIA-CONGRESOS, CONFERENCIAS, ETC. | |
dc.subject.lemb | Memory - Congresses | |
dc.subject.lemb | ANALISIS DE REGRESION LOGISTICA | |
dc.subject.lemb | Logistic regression analysis | |
dc.subject.lemb | APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL) | |
dc.subject.lemb | Machine learning | |
dc.subject.lemb | ANALISIS MULTIVARIANTE | |
dc.subject.lemb | Multivariate analysis | |
dc.subject.proposal | Modelos bayesianos | spa |
dc.subject.proposal | Regresión logística | spa |
dc.subject.proposal | Algoritmos de machine learning | spa |
dc.subject.proposal | Métodos no paramétricos | spa |
dc.subject.proposal | Análisis multivariado | spa |
dc.subject.proposal | Modelos de conteo Poisson y ZIP | spa |
dc.subject.proposal | Procesos espaciales y espaciotemporales | spa |
dc.subject.proposal | Métodos de clasificación | spa |
dc.subject.proposal | Pruebas de normalidad | spa |
dc.subject.proposal | Redes neuronales | spa |
dc.title | 31° Simposio Internacional de estadística 2022 : múltiples temáticas | spa |
dc.type | Libro | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/book | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/LIB | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Historico_Memorias 31- SIE 2022- (1) (1).pdf
- Tamaño:
- 63.48 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Memorias Simposio Internacional de Estadística
Bloque de licencias
1 - 2 de 2
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- Licencia para publicación de obras en el Repositorio Institucional UNAL v4_SIE 2022 (1) (1).pdf
- Tamaño:
- 713.42 KB
- Formato:
- Adobe Portable Document Format
- Descripción: