Evaluación de la espectrometría de fluorescencia de rayos X monocromática como técnica de análisis de cadmio en cacao del departamento de Arauca
| dc.contributor.advisor | Bravo, Daniel | spa |
| dc.contributor.advisor | Avellaneda Torres, Lizeth Manuela | spa |
| dc.contributor.author | Cifuentes Muñoz, Edwin Alfredo | spa |
| dc.contributor.researchgroup | Bioprospección de Biomoléculas y Microorganismos con Aplicaciones Agropecuarias | spa |
| dc.contributor.researchgroup | Agrobiodiversidad y Biotecnología | spa |
| dc.coverage.country | Colombia | spa |
| dc.coverage.region | Arauca | spa |
| dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000505 | |
| dc.date.accessioned | 2025-12-18T19:30:18Z | |
| dc.date.available | 2025-12-18T19:30:18Z | |
| dc.date.issued | 2025-12-18 | |
| dc.description | ilustraciones, fotografías, gráficas, tablas | spa |
| dc.description.abstract | El cacao es un cultivo de alta relevancia en Colombia, no obstante, la presencia de Cd genera impactos ecosistémicos y en la salud de los seres humanos. También limita su exportación, especialmente en departamentos altamente productores, como Arauca. Por ello, es necesario su monitoreo frecuente. Las técnicas actuales para cuantificar Cd, como ICP, suelen ser costosas y complejas. Es por esto que la presente investigación se propuso evaluar el desempeño de la MXRF, como alternativa, para analizar Cd en muestras del sistema de cacao. Esta evaluación se realizó desde tres perspectivas: analítica, ambiental y económica. Para ello, se realizó una validación analítica, un estudio del verdor analítico y un análisis de costos basado en actividades, respectivamente. En la validación del método se encontró un desempeño analítico adecuado en muestras del sistema de cacao. Además, se alcanzó un LOQ de 0.148 mg kg-1 y errores relativos menores al 30%, con respecto a ICP. Por otro lado, la superioridad del grado de sostenibilidad ambiental de la MXRF sobre ICP fue demostrada con la obtención de un verdor analítico de 0.71, 0.31 y 0.34 unidades para MXRF, ICP-MS e ICP-OES, respectivamente. Finalmente, el análisis de costos basado en actividades (ABC) permitió asignar un valor económico de $16,699, $67,013 y $56,294 para MXRF, ICP-MS e ICP-OES, respectivamente, cual implicó una reducción de aproximadamente el 75% del costo. Esta investigación demostró los beneficios técnicos, ambientales y económicos de la MXRF para la cuantificación de Cd en muestras del sistema de cacao. (Texto tomado de la fuente). | spa |
| dc.description.abstract | Cacao is a crop of major importance in Colombia; however, the presence of Cd generates both ecosystem impacts and risks to human health. It also restricts its export, particularly in high-producing departments such as Arauca. For this reason, frequent monitoring is necessary. Current techniques for quantifying Cd, such as ICP, are often costly and complex. Therefore, the present study aimed to evaluate the performance of MXRF as an alternative method for analyzing Cd in samples from the cacao production system. This evaluation was approached from three perspectives: analytical, environmental, and economic. Accordingly, an analytical validation, a greenness assessment, and an activitybased cost analysis were conducted. The method validation showed adequate analytical performance for samples from the cacao system. In addition, an LOQ of 0.148 mg kg⁻¹ was achieved, and relative errors were below 30% when compared to ICP. Furthermore, the superior environmental sustainability of MXRF over ICP was demonstrated through greenness scores of 0.71, 0.31, and 0.34 for MXRF, ICP-MS, and ICP-OES, respectively. Finally, the activity-based cost (ABC) analysis assigned an economic value of $16,699, $67,013, and $56,294 to MXRF, ICP-MS, and ICP-OES, respectively, representing a cost reduction of approximately 75%. This study demonstrated the technical, environmental, and economic advantages of MXRF for Cd quantification in samples from the cacao production system. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Química | spa |
| dc.description.researcharea | Química analítica | spa |
| dc.format.extent | xix, 150 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89236 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Química | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química | spa |
| dc.relation.indexed | Agrosavia | spa |
| dc.relation.indexed | Agrovoc | spa |
| dc.relation.references | Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives and Contaminants: Part B Surveillance, 11(2), 92–102. https://doi.org/10.1080/19393210.2017.1420700 | |
| dc.relation.references | Abt, E., & Robin, L. P. (2020). Perspective on cadmium and lead in cocoa and chocolate. Journal of Agricultural and Food Chemistry, 68(46), 13008–13015. https://doi.org/10.1021/acs.jafc.9b08295 | |
| dc.relation.references | Adesina, K. E., Burgos, C. J., Grier, T. R., Sayam, A. S. M., & Specht, A. J. (2025). Ways to measure metals: from ICP-MS to XRF. Current environmental health reports, 12(1), 7. https://doi.org/10.1007/s40572-025-00473-y | |
| dc.relation.references | Adler, K., Piikki, K., Söderström, M., Eriksson, J., & Alshihabi, O. (2020). Predictions of Cu, Zn, and Cd concentrations in soil using portable X-ray fluorescence Measurements. Sensors, 20(2), 1–15. https://doi.org/10.3390/s20020474 | |
| dc.relation.references | Agilent Technologies. (2015). Agilent 7800/7900 ICP-MS: Site Preparation Checklist. | |
| dc.relation.references | Agilent Technologies. (2023, octubre 14). ICP-MS Instrument & Accessory Supplies. Tools & Manuals for ICP-MS. https://www.agilent.com/en/product/atomic-spectroscopy/inductively-coupled-plasma-mass-spectrometry-icp-ms/icp-ms-instrument-accessory-supplies/tools-manuals-for-icp-ms | |
| dc.relation.references | Al-Dhubaibi, A. A. S. (2021). Optimizing the value of activity based costing system: The role of successful implementation. Management Science Letters, 179–186. https://doi.org/10.5267/j.msl.2020.8.017 | |
| dc.relation.references | Almeida, J. S., Meira, L. A., Oliveira, M. S., & Teixeira, L. S. G. (2021). Direct multielement determination of Cd, Pb, Fe, and Mn in ground coffee samples using energy dispersive X-ray fluorescence spectrometry. X-Ray Spectrometry, 50(1), 2–8. https://doi.org/10.1002/xrs.3182 | |
| dc.relation.references | Anastas, P. T., & Warner, J. C. (2000). Principles of green chemistry. En Green Chemistry: Theory and practice (Online edition, pp. 29–56). Oxford Academy. https://doi.org/10.1093/oso/9780198506980.003.0004 | |
| dc.relation.references | Ángel Maya, A. (1996). El reto de la vida: Ecosistema y cultura. Una introducción al estudio del medio ambiente (Ecofondo, Ed.; 2a ed.). | |
| dc.relation.references | AOAC International. (2023). Appendix F: Guidelines for Standard Method Performance Requirements. En G. W. Latimer Jr (Ed.), Official methods of analysis of AOAC INTERNATIONAL (22a ed., pp. 1–30). Oxford Academic. https://doi.org/10.1093/9780197610145.001.0001 | |
| dc.relation.references | Aparicio Rebollo, F. J. (2025, junio 5). XRF: Espectroscopia de fluorescencia de rayos X. https://wpo-altertechnology.com/es/xrf-x-ray-fluorescence-spectroscopy-hi-rel-parts/ | |
| dc.relation.references | Araujo, L. S., Tapia, W., & Villamarín Ortiz, A. (2020). Verificación del método analítico de espectroscopía de absorción atómica con horno de grafito para la cuantificación de cadmio en almendra de cacao (Theobroma cacao). La Granja: Revista de Ciencias de la Vida, 31(1), 46–60. https://doi.org/10.17163/lgr.n31.2020.04 | |
| dc.relation.references | Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of The Total Environment, 649, 120–127. https://doi.org/10.1016/J.SCITOTENV.2018.08.292 | |
| dc.relation.references | Australia New Zealand Food Standards Code. (2000). Australia New Zealand Food Standards Code - Standard 1.4.1 - Contaminants and Natural Toxicants. Standard 1.4.1 Published in the Commonwealth of Australia Gazette No. P 30 on 20 December 2000. https://www.legislation.gov.au/details/F2011C00542 | |
| dc.relation.references | Bai, S. H., Gallart, M., Singh, K., Hannet, G., Komolong, B., Yinil, D., Field, D. J., Muqaddas, B., & Wallace, H. M. (2022). Leaf litter species affects decomposition rate and nutrient release in a cocoa plantation. Agriculture, Ecosystems & Environment, 324, 107705. https://doi.org/10.1016/J.AGEE.2021.107705 | |
| dc.relation.references | Banco de la República de Colombia. (2025). Informe de Política Monetaria. https://www.banrep.gov.co/es/publicaciones-investigaciones/informe-politica-monetaria/abril-2025 | |
| dc.relation.references | Barraza, F., Schreck, E., Lévêque, T., Uzu, G., López, F., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080 | |
| dc.relation.references | Berghof Products + Instruments GmbH. (2015). Application note/ Speedwave Xpert. Environment, geology. Microwave digestion of soil. https://www.berghof-instruments.com/en/applications/microwave-digestion-of-soil-according-to-din-en-13346/ | |
| dc.relation.references | Bertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46–53. https://doi.org/https://doi.org/10.1016/j.foodcont.2016.01.013 | |
| dc.relation.references | Bhalodia, A., & Desai, S. (2025). Comprehensive assessment of greenness of ICP-OES methods for determination of metals. Green Analytical Chemistry, 12. https://doi.org/10.1016/j.greeac.2025.100222 | |
| dc.relation.references | Bravo, D., & Braissant, O. (2022). Cadmium-tolerant bacteria: current trends and applications in agriculture. En Letters in Applied Microbiology (Vol. 74, Número 3, pp. 311–333). John Wiley and Sons Inc. https://doi.org/10.1111/lam.13594 | |
| dc.relation.references | Bravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4), 1–18. https://doi.org/10.3390/agronomy11040761 | |
| dc.relation.references | Bravo, D., León-Moreno, C., Quiroga, R., Moreno, E., Duarte, D., Zamora, A., Gutiérrez, E., Aristizábal, A., Arroyave, C., Cardona, L., Guerra, B., Olarte, H., Cuervo, C., & Orozco, M. L. (2021). ¿Qué es el cadmio y por qué es importante en el cultivo de cacao? En ¿Qué es el cadmio y por qué es importante en el cultivo de cacao? Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/agrosavia.nbook.7404548 | |
| dc.relation.references | Bravo, D., León-Moreno, C., Quiroga, R., Zamora, A., Giutiérrez, E., Moreno, E., Duarte, D., Aristizábal, A., Arroyave, C., Cardona, L., Olarte, H., Orozco, M. L., & Guerra-Sierra, B. (2021). Investigación y recomendaciones sobre cadmio en el cultivo de cacao en Colombia. https://doi.org/10.21930/agrosavia | |
| dc.relation.references | Bravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., & Leon-Moreno, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698 | |
| dc.relation.references | Bravo, D., Quiroga-Mateus, R., López-Casallas, M., Torres, S., Contreras, R., Otero, A. C. M., Araujo-Carrillo, G. A., & González-Orozco, C. E. (2024). Assessing the cadmium content of cacao crops in Arauca, Colombia. Environmental Monitoring and Assessment, 196(4), 1–20. https://doi.org/10.1007/s10661-024-12539-9 | |
| dc.relation.references | Bravo, D., Santander, M., Rodríguez, J., Escobar, S., Ramtahal, G., & Atkinson, R. (2022). ‘From soil to chocolate bar’: identifying critical steps in the journey of cadmium in a Colombian cacao plantation. Food Additives and Contaminants - Part A, 39(5), 949–963. https://doi.org/10.1080/19440049.2022.2040747 | |
| dc.relation.references | Burdett, J. H. Jr., Bailey, A., Chen, Z., Semken, R. S., & Xin, K. (2010). US 7,738,630 B2. Highly aligned x-ray optic and source assembly for precision x-ray analysis applications. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://patentimages.storage.googleapis.com/42/29/74/4c2c82098d54d5/US7738630.pdf | |
| dc.relation.references | Canadian Council of Ministers of the Environment. (1999). Cadmium. Canadian soil quality guidelines for the protection of environmental and human health. https://ccme.ca/en/res/cadmium-canadian-soil-quality-guidelines-for-the-protection-of-environmental-and-human-health-en.pdf | |
| dc.relation.references | Carrillo, K., Martínez, M., Ramírez, L., Argüello, D., & Chavez, E. (2023). Cadmium (Cd) distribution and soil-plant relationship in cacao farms in Costa Rica. Environmental Monitoring and Assessment, 195(10). https://doi.org/10.1007/s10661-023-11817-2 | |
| dc.relation.references | CCV de Colombia S.A.S. (2023). Cotización ICP-OES Perkin Elmer Avio 500. | |
| dc.relation.references | Celis, S. L. H., Bermúdez, J. E. G., Mejía-Ospino, E., & Hernández, R. C. (2022). A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy. Agronomía Colombiana, 40(3), 429–439. https://doi.org/10.15446/agron.colomb.v40n3.104911 | |
| dc.relation.references | Charry, A., Atkinson, R., Junca Paredes, J. J., Perea Ramirez, C. T., & Evert Pulleman, M. M. (2023). Effects of the EU food safety regulation on cadmium on the cacao value chains of Colombia, Ecuador, and Peru. https://hdl.handle.net/10568/130296 | |
| dc.relation.references | Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R., Li, Y., & Baligar, V. C. (2016). Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations. Environmental Science and Pollution Research, 23(17), 17571–17580. https://doi.org/10.1007/s11356-016-6931-7 | |
| dc.relation.references | Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106 | |
| dc.relation.references | Chen, X., Wang, S., Zhou, M., Wang, J., Song, W., Zhang, J., Wang, Y., Tian, W., & Wu, Y. (2025). Rapid simultaneous quantification of arsenic and lead in grain using improved monochromatic excitation energy dispersive X-ray fluorescence spectrometry. Talanta, 288, 1–7. https://doi.org/10.1016/j.talanta.2025.127719 | |
| dc.relation.references | Chen, Z. (2001). US 6,285,506 B1. Curved optical device and method of fabrication. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6285506 | |
| dc.relation.references | Chen, Z. (2006). US 7,035,374 B2. Optical device for directing x-rays having a plurality of optical crystals. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7035374 | |
| dc.relation.references | Chen, Z. (2010). US 7,738,629 B2. X-ray focusing optic having multiple layers with respective crystal, orientations. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://patentimages.storage.googleapis.com/6c/01/d8/6e098653bf2488/US7738629.pdf | |
| dc.relation.references | Chen, Z. W., Gibson, W. M., & Huang, H. (2008). High Definition X‐Ray Fluorescence: Principles and Techniques. X-Ray Optics and Instrumentation, 2008(1). https://doi.org/10.1155/2008/318171 | |
| dc.relation.references | Chen, Z. W., & Wittry, D. B. (1997). Microprobe x-ray fluorescence with the use of point-focusing diffractors. Applied Physics Letters, 71(13), 1884–1886. https://doi.org/10.1063/1.119427 | |
| dc.relation.references | Chen, Z. W., & Wittry, D. B. (1998). Microanalysis by monochromatic microprobe x-ray fluorescence - Physical basis, properties, and future prospects. Journal of Applied Physics, 84(2), 1064–1073. https://doi.org/10.1063/1.368105 | |
| dc.relation.references | Cheng, D., Ni, Z., Liu, M., Shen, X., & Jia, Y. (2021). Determination of trace Cr, Ni, Hg, As, and Pb in the tipping paper and filters of cigarettes by monochromatic wavelength X-ray fluorescence spectrometry. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 502, 59–65. https://doi.org/10.1016/j.nimb.2021.06.004 | |
| dc.relation.references | Chojnacka, K., Samoraj, M., Tuhy, L., Michalak, I., Mironiuk, M., & Mikulewicz, M. (2018). Using XRF and ICP-OES in biosorption studies. Molecules, 23(8). https://doi.org/10.3390/molecules23082076 | |
| dc.relation.references | Chuparina, E. V., Chubarov, V. M., & Paradina, L. P. (2019). A comparative determination of major components in coal power plant wastes by wavelength dispersive X-ray fluorescence using pellet and fused bead specimens. Applied Radiation and Isotopes, 152, 162–167. https://doi.org/10.1016/j.apradiso.2019.06.040 | |
| dc.relation.references | Cooper, R., & Kaplan, R. S. (1988). Measure costs right: Make the right decisions. Harvard Business Review, 66(5), 96–103. | |
| dc.relation.references | Dahiya, S., Karpe, R., Hegde, A. G., & Sharma, R. M. (2005). Lead, cadmium and nickel in chocolates and candies from suburban areas of Mumbai, India. Journal of Food Composition and Analysis, 18(6), 517–522. https://doi.org/https://doi.org/10.1016/j.jfca.2004.05.002 | |
| dc.relation.references | de La Guardia, M., & Armenta, S. (2011). A Green evaluation of existing analytical methods. En M. de La Guardia & S. Armenta (Eds.), Green Analytical Chemistry (pp. 39–57). Elsevier. https://doi.org/10.1016/S0166-526X(11)57003-5 | |
| dc.relation.references | Declerck, B., Swaak, M., Martin, M., & Kesteloot, K. (2021). Activity-based cost analysis of laboratory tests in clinical chemistry. Clinical Chemistry and Laboratory Medicine, 59(8), 1369–1375. https://doi.org/10.1515/cclm-2020-1849 | |
| dc.relation.references | Dekeyrel, J., Atkinson, R., Chavez, E., da Silva, M., Idarraga-Castaño, O., Pulleman, M., & Smolders, E. (2024). Using optimized monochromatic energy dispersive X-ray fluorescence to determine the cadmium concentration in cacao and soil samples. Heliyon, 10(20), 1–6. https://doi.org/10.1016/j.heliyon.2024.e39034 | |
| dc.relation.references | Devi, P., Bajala, V., Garg, V. K., Mor, S., & Ravindra, K. (2016). Heavy metal content in various types of candies and their daily dietary intake by children. Environmental Monitoring and Assessment, 188(2), 86. https://doi.org/10.1007/s10661-015-5078-1 | |
| dc.relation.references | Douvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. En Science of the Total Environment (Vol. 905). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.167242 | |
| dc.relation.references | Duque Gómez, M. E. (2016). Diseño de un sistema de costos para el servicio de fertilidad en el laboratorio de suelos - análisis químicos, de la Universidad Nacional de Colombia, sede Medellín [Institución Universitaria Esumer]. https://repositorio.esumer.edu.co/browse?type=title&sort_by=1&order=ASC&rpp=20&etal=25&null=&offset=461 | |
| dc.relation.references | European Medicines Agency. (2022). International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH harmonised guideline, validation of analytical procedures Q2 (R2). https://database.ich.org/sites/default/files/ICH_Q2-R2_Document_Step2_Guideline_2022_0324.pdf | |
| dc.relation.references | FDA. (2018). Bioanalytical Method Validation Guidance for Industry. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htmand/orhttp://www.fda.gov/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm | |
| dc.relation.references | Ferreira de Oliveira, A. P., Milani, R. F., Efraim, P., Morgano, M. A., & Tfouni, S. A. V. (2021). Cd and Pb in cocoa beans: Occurrence and effects of chocolate processing. Food Control, 119. https://doi.org/10.1016/j.foodcont.2020.107455 | |
| dc.relation.references | Florez Mosquera, L. F. (2014). Diseño de la metodología de costos basado en actividades (ABC) para el hospital Sagrada Familia de Toro Valle para las áreas de urgencias, laboratorio clínico y odontología [Universidad del Valle]. https://bibliotecadigital.univalle.edu.co/server/api/core/bitstreams/090a3d6c-99fe-4dae-b450-6fd0f19d20fd/content | |
| dc.relation.references | Gałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. En TrAC - Trends in Analytical Chemistry (Vol. 37, pp. 61–72). https://doi.org/10.1016/j.trac.2012.03.013 | |
| dc.relation.references | Gałuszka, A., Migaszewski, Z., & Namieśnik, J. (2013). The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends in Analytical Chemistry, 50, 78–84. https://doi.org/10.1016/j.trac.2013.04.010 | |
| dc.relation.references | Galvis, D. A., Jaimes-Suárez, Y. Y., Rojas Molina, J., Ruiz, R., León-Moreno, C. E., & Carvalho, F. E. L. (2023). Unveiling Cacao Rootstock-Genotypes with Potential Use in the Mitigation of Cadmium Bioaccumulation. Plants, 12(16), 1–13. https://doi.org/10.3390/plants12162941 | |
| dc.relation.references | Gil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: A case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455–2476. https://doi.org/10.1007/s13762-021-03299-x | |
| dc.relation.references | Gonzalez-Orozco, C., Porcel, M., Escobar, S., Bravo, D., Lopez, Y. G., Yockteng, R., Vaillant, F., Santander, M., Llano, S., Parra, K., Briceño, E., Carmona, J., Torres, S., Contreras, R., Otero, A. M., Pesca, A., & Carrillo, G. A. (2023). Cacao (Theobroma cacao L.) climate zones and its associated agrobiodiversity in Arauca, Colombia. Biodiversity Data Journal, 11. https://doi.org/10.3897/BDJ.11.e112771 | |
| dc.relation.references | Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, 612, 370–378. https://doi.org/10.1016/J.SCITOTENV.2017.08.145 | |
| dc.relation.references | Gujral, S., Dongre, K., Bhindare, S., Subramanian, P. G., Narayan, H. K. V., Mahajan, A., Batura, R., Hingnekar, C., Chabbria, M., & Nair, C. N. (2010). Activity-based costing methodology as tool for costing in hematopathology laboratory. Indian Journal of Pathology and Microbiology, 53(1), 68–74. https://doi.org/10.4103/0377-4929.59187 | |
| dc.relation.references | Gusmiranda Siregar, R., Lubis, M. A., & Muda, I. (2023). How Costs are Treated Under Activity-Based Costing in The Chemical Corporation. European Chemical Bulletin, 12(8), 3109–3119. | |
| dc.relation.references | Hao, J., Li, F., Jiang, X., Wang, Q., Yang, B., & Cao, J. (2023). Improvement approach for determination of cadmium at trace levels in soils by handheld X-ray fluorescence analyzers. Spectrochimica Acta Part B: Atomic Spectroscopy, 206, 1–12. https://doi.org/10.1016/j.sab.2023.106711 | |
| dc.relation.references | Herreros-Chavez, L., Cervera, M. L., & Morales-Rubio, A. (2019). Direct determination by portable ED-XRF of mineral profile in cocoa powder samples. Food Chemistry, 278, 373–379. https://doi.org/10.1016/j.foodchem.2018.11.065 | |
| dc.relation.references | Hicks, M. B., Farrell, W., Aurigemma, C., Lehmann, L., Weisel, L., Nadeau, K., Lee, H., Moraff, C., Wong, M., Huang, Y., & Ferguson, P. (2019). Making the move towards modernized greener separations: Introduction of the analytical method greenness score (AMGS) calculator. Green Chemistry, 21(7), 1816–1826. https://doi.org/10.1039/c8gc03875a | |
| dc.relation.references | Inobeme, A., Mathew, J. T., Jatto, E., Inobeme, J., Adetunji, C. O., Muniratu, M., Onyeachu, B. I., Adekoya, M. A., Ajai, A. I., Mann, A., Olori, E., Akhor, S. O., Eziukwu, C. A., Kelani, T., & Omali, P. I. (2023). Recent advances in instrumental techniques for heavy metal quantification. Environmental Monitoring and Assessment, 195(4). https://doi.org/10.1007/s10661-023-11058-3 | |
| dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC. (2017). Norma Técnica Colombiana NTC-ISO/IEC 17025 Requisitos generales para la competencia de los laboratorios de ensayo y calibración. | |
| dc.relation.references | Instituto Nacional de Vigilancia de Medicamento y Alimentos - Invima. (2022). Plan nacional de vigilancia de cadmio en cacao y productos derivados. https://www.invima.gov.co/sites/default/files/alimentos-y-bebidas-alcoholicas/Otros-alimentos-y-bebidas/Vigilancia/planes/documento_plan_cd_en_cacao_2024_vf.pdf | |
| dc.relation.references | Iwegbue, C. M. A. (2011). Concentrations of selected metals in candies and chocolates consumed in southern Nigeria. Food Additives & Contaminants: Part B, 4(1), 22–27. https://doi.org/10.1080/19393210.2011.551943 | |
| dc.relation.references | Jalbani, N., Kazi, T., Afridi, H., & Arain, M. (2009). Determination of toxic metals in different brand of chocolates and candies, marketed in Pakistan. Analytical and Environmental Chemistry, 10, 48–52. | |
| dc.relation.references | Jiangyuan, M. A., Xiaoxia, S., Yeli, L. I., & Dengyu, H. (2020). Optimization of tea detection conditions based on EDXRF technology. Food and Fermentation Industries, 46(4), 282–286. https://doi.org/10.13995/j.cnki.11-1802/ts.021738 | |
| dc.relation.references | Johnson-Restrepo, B., Blain, E., Judd, C., Tysoe, A., & Parsons, P. J. (2025). New developments in monochromatic energy dispersive X-ray fluorescence instrumentation for monitoring toxic elements in food matrices: Advantages and limitations. Radiation Physics and Chemistry, 234. https://doi.org/10.1016/j.radphyschem.2025.112749 | |
| dc.relation.references | Joint Committee for Guides in Metrology - JCGM. (2020). JCGM GUM-6:2020 Guide to the expression of uncertainty in measurement-Part 6: Developing and using measurement models. https://www.bipm.org/documents/20126/2071204/JCGM_GUM_6_2020.pdf | |
| dc.relation.references | Just, P. M., De Charro, F. T., Tschosik, E. A., Noe, L. L., Bhattacharyya, S. K., & Riella, M. C. (2008). Reimbursement and economic factors influencing dialysis modality choice around the world. En Nephrology Dialysis Transplantation (Vol. 23, Número 7, pp. 2365–2373). https://doi.org/10.1093/ndt/gfm939 | |
| dc.relation.references | Kannaiah, K. P., & Chanduluru, H. K. (2023). Exploring sustainable analytical techniques using G score and future innovations in green analytical chemistry. En Journal of Cleaner Production (Vol. 428). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2023.139297 | |
| dc.relation.references | Keith, L. H., Gron, L. U., & Young, J. L. (2007). Green analytical methodologies. Chemical Reviews, 107(6), 2695–2708. https://doi.org/10.1021/cr068359e | |
| dc.relation.references | Khymós. (2023). Cotización ICP-MS Agilent 7900. | |
| dc.relation.references | Lee, J., Park, Y. S., & Lee, D. Y. (2023). Fast and green microwave-assisted digestion with diluted nitric acid and hydrogen peroxide and subsequent determination of elemental composition in brown and white rice by ICP-MS and ICP-OES. LWT, 173, 114351. https://doi.org/10.1016/J.LWT.2022.114351 | |
| dc.relation.references | Lewis, C., Bravo, D., Carrillo, M., Ramtahal, G., Peña, K., & Tames, M. (2024). Latin America and the Caribbean standard operating procedure for the analysis of cadmium in cacao. https://hdl.handle.net/11324/22949 | |
| dc.relation.references | Lo Dico, G. M., Galvano, F., Dugo, G., D’ascenzi, C., Macaluso, A., Vella, A., Giangrosso, G., Cammilleri, G., & Ferrantelli, V. (2018). Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion. Food Chemistry, 245, 1163–1168. https://doi.org/10.1016/j.foodchem.2017.11.052 | |
| dc.relation.references | Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., Warren, G., Chatzifragkou, A., McQueen Mason, S., Gomez, L., Faas, L., Balcombe, K., Srinivasan, C., Picchioni, F., Hadley, P., & Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80–88. https://doi.org/10.1016/j.cogsc.2018.07.007 | |
| dc.relation.references | Ma, X., Hua, M. Z., Ji, C., Zhang, J., Shi, R., Xiao, Y., Liu, X., He, X., Zheng, W., & Lu, X. (2022). Rapid screening and quantification of heavy metals in traditional Chinese herbal medicines using monochromatic excitation energy dispersive X-ray fluorescence spectrometry. The Analyst, 147(16), 3628–3633. https://doi.org/10.1039/D2AN00752E | |
| dc.relation.references | Maddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of The Total Environment, 720, 137645. https://doi.org/10.1016/J.SCITOTENV.2020.137645 | |
| dc.relation.references | Max-Planck-Gesellschaft. (2025, junio 5). Silicon Drift Detector. https://www.hll.mpg.de/2970081/SDD | |
| dc.relation.references | Mayne, S. T. (2023). The FDA’s action plan to reduce dietary exposure to arsenic, lead, cadmium, and mercury for infants and young children. American Journal of Clinical Nutrition, 117(4), 647–648. https://doi.org/10.1016/j.ajcnut.2023.02.004 | |
| dc.relation.references | MERCOSUR. (2011). Reglamento técnico mercosur sobre límites máximos de contaminantes inorgánicos en alimentos (Derogación De Las Res. GMC N° 102/94 y N° 35/96). MERCOSUR/GMC/RES. N° 12/11. https://normas.mercosur.int/public/normativas/2474 | |
| dc.relation.references | Mergeay, M. (1995). Heavy metal resistances in microbial ecosystems. En A. D. L. Akkermans, J. D. Van Elsas, & F. J. De Bruijn (Eds.), Molecular Microbial Ecology Manual (pp. 439–455). Springer Netherlands. https://doi.org/10.1007/978-94-011-0351-0_30 | |
| dc.relation.references | Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmio en el cacao de América Latina y el Caribe. Análisis de la investigación y soluciones potenciales para la mitigación. https://scioteca.caf.com/handle/123456789/1505 | |
| dc.relation.references | Mijatović, N., Vasić, M., Miličić, L., Radomirović, M., & Radojević, Z. (2023). Fired pressed pellet as a sample preparation technique of choice for an energy dispersive X-ray fluorescence analysis of raw clays. Talanta, 252, 1–8. https://doi.org/10.1016/j.talanta.2022.123844 | |
| dc.relation.references | Ministerio de Agricultura y Desarrollo Rural de Colombia - MADR. (2018). Cadena de cacao. Indicadores e Instrumentos. https://sioc.minagricultura.gov.co/cacao/documentos/2018-09-30%20cifras%20sectoriales.pdf | |
| dc.relation.references | Ministerio de Agricultura y Desarrollo Rural de Colombia -MADR. (2019). Cadena de cacao. https://sioc.minagricultura.gov.co/Cacao/Documentos/2019-06-30%20Cifras%20Sectoriales.pdf | |
| dc.relation.references | Ministry of the Environment of Finland. (2007). Government decree on the assessment of soil contamination and remediation needs (214/2007). https://www.finlex.fi/en/laki/kaannokset/2007/en20070214.pdf | |
| dc.relation.references | Mir-Marqués, A., Martínez-García, M., Garrigues, S., Cervera, M. L., & de La Guardia, M. (2016). Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence. Food Chemistry, 196, 1023–1030. https://doi.org/10.1016/j.foodchem.2015.10.048 | |
| dc.relation.references | Mite, F., & Durango, W. (2010). Avances del monitoreo de presencia de cadmio en almendras de cacao, suelos y aguas en Ecuador. https://www.researchgate.net/publication/304346639 | |
| dc.relation.references | Mohamed, R., Zainudin, B. H., & Yaakob, A. S. (2020). Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chemistry, 303, 1–6. https://doi.org/10.1016/j.foodchem.2019.125392 | |
| dc.relation.references | Mounicou, S., J., S., D., A., C., B., & and Lobinski, R. (2003). Concentrations and bioavailability of cadmium and lead in cocoa powder and related products. Food Additives & Contaminants, 20(4), 343–352. https://doi.org/10.1080/0265203031000077888 | |
| dc.relation.references | Naresh, P., Roy, S. D., Pawaskar, P. V., Lokhande, P. S., Gajbhiye, R. L., & Peraman, R. (2025). Analytical quality by design guided white analytical chemistry driven green in the development of LC-ICP-MS method for arsenic speciation analysis in HEK-293 cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1252. https://doi.org/10.1016/j.jchromb.2025.124474 | |
| dc.relation.references | Newton, A., Rule, A. M., Serdar, B., & Koehler, K. (2023). Laboratory comparison of field portable X-ray fluorescence spectrometer (FP-XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for determination of airborne metals in stainless steel welding fume. Journal of Occupational and Environmental Hygiene, 20(11), 536–544. https://doi.org/10.1080/15459624.2023.2244022 | |
| dc.relation.references | Okiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103–112. https://doi.org/10.1016/J.TIFS.2017.03.007 | |
| dc.relation.references | Organismo Nacional de Acreditación de Colombia - ONAC. (2024). CEA-3.0-04. Política para la participación en ensayos de aptitud o comparaciones interlaboratorios. https://onac.org.co/?jet_download=a2acdff06e7ce9811850b97487ee2260eba25884 | |
| dc.relation.references | Park, J., Kim, J. Y., Lee, K., Kim, M. S., Kim, M. J., & Choi, J. W. (2020). Comparison of acid extraction and total digestion methods for measuring Cd isotope ratios of environmental samples. Environmental Monitoring and Assessment, 192(1), 1–10. https://doi.org/10.1007/s10661-019-8017-8 | |
| dc.relation.references | Pena-Pereira, F., Wojnowski, W., & Tobiszewski, M. (2020). AGREE - Analytical GREEnness Metric Approach and Software. Analytical Chemistry, 92(14), 10076–10082. https://doi.org/10.1021/acs.analchem.0c01887 | |
| dc.relation.references | PerkinElmer. (2022). Preparing your lab. ICP-Optical Emission Spectroscopy. https://resources.perkinelmer.com/lab-solutions/resources/docs/pyl-avio-550-560-max-icp-oes-preparing-your-lab-135925.pdf | |
| dc.relation.references | PerkinElmer. (2023). Avio ICP-OES. Consumables and supplies. https://cromatec.ro/pdf/179-Consumabile%20ICP-OES.pdf | |
| dc.relation.references | Płotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta, 181, 204–209. https://doi.org/10.1016/j.talanta.2018.01.013 | |
| dc.relation.references | Płotka-Wasylka, J., & Wojnowski, W. (2021). Complementary Green Analytical Procedure Index (ComplexGAPI) and software. Green Chemistry, 23(21), 8657–8665. https://doi.org/10.1039/d1gc02318g | |
| dc.relation.references | Pothuraju, N., Pogula, H. K., Jagdale, R., Vadla, U. K., Gajbhiye, R. L., Parihar, V. K., Velayutham, R., & Peraman, R. (2025). Impact of microwave-assisted acid extraction (MW-AAE) methods on simultaneous ICP-MS analysis of multi-elements in edibles besides associated greenness and human health risk assessment. Environmental Monitoring and Assessment, 197(3). https://doi.org/10.1007/s10661-025-13788-y | |
| dc.relation.references | Qingya, W., Li, F., Jiang, X., Hao, J., Zhao, Y., Wu, S., Cai, Y., & Huang, W. (2022). Quantitative analysis of soil cadmium content based on the fusion of XRF and Vis-NIR data. Chemometrics and Intelligent Laboratory Systems, 226, 1–8. https://doi.org/10.1016/j.chemolab.2022.104578 | |
| dc.relation.references | Quesado, P., & Silva, R. (2021). Activity-based costing (ABC) and its implication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 1–20. https://doi.org/10.3390/joitmc7010041 | |
| dc.relation.references | Quiroga-Mateus, R., López-Zuleta, S., Chávez, E., & Bravo, D. (2022). Cadmium-Tolerant Bacteria in Cacao Farms from Antioquia, Colombia: Isolation, Characterization and Potential Use to Mitigate Cadmium Contamination. Processes, 10(8). https://doi.org/10.3390/pr10081457 | |
| dc.relation.references | Ramírez-Camejo, L. A., Rodríguez, C., & Florez-Buitrago, X. (2025). Phytopathogenic fungi and oomycetes causing diseases in Theobroma cacao: Chemical and genetic features. Fungal Biology, 129(3), 101551. https://doi.org/10.1016/J.FUNBIO.2025.101551 | |
| dc.relation.references | Rasmussen, H. T., & Huang, K. (2012). Chromatographic Separations and Analysis: Chromatographic Separations and Analysis of Enantiomers. En Comprehensive Chirality (pp. 96–114). Elsevier. https://doi.org/10.1016/B978-0-08-095167-6.00831-4 | |
| dc.relation.references | Rayner, M. H., & Sadler, P. J. (1990). Precipitation of cadmium in a bacterial culture medium: Luria-Bertani broth. FEMS Microbiology Letters, 71, 253–258. https://doi.org/https://doi.org/10.1111/j.1574-6968.1990.tb03832.x | |
| dc.relation.references | Rodríguez Giraldo, Y., Rodriguez Sánchez, E., Torres, L. G., Montenegro, A. C., & Pichimata, M. A. (2022). Development of validation methods to determine cadmium in cocoa almond from the beans by ICP-MS and ICP-OES. Talanta Open, 5, 1–6. https://doi.org/10.1016/J.TALO.2021.100078 | |
| dc.relation.references | Rodríguez-Giraldo, Y., Rodriguez-Sánchez, E., Cifuentes-Muñoz, E.-A., Martínez-Hernandez, Y., & Pichimata-Sanabria, M.-A. (2024). Development and comparison of two validated methods to determine cadmium and arsenic in Colombian rice by ICP-MS and ICP-OES*. Biotecnología en el sector agropecuario y agroindustrial, 22(2), 72–87. https://doi.org/10.18684/rbsaa.v22.n2.2024.2345 | |
| dc.relation.references | Romero-Estévez, D., Yánez-Jácome, G. S., Simbaña-Farinango, K., & Navarrete, H. (2019). Content and the relationship between cadmium, nickel, and lead concentrations in Ecuadorian cocoa beans from nine provinces. Food Control, 106. https://doi.org/10.1016/j.foodcont.2019.106750 | |
| dc.relation.references | Schlegel, H. G., Kaltwasser, H., & Gottschalk, G. (1961). Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Archiv für Mikrobiologie, 38(3), 209–222. https://doi.org/10.1007/BF00422356 | |
| dc.relation.references | Schlosser, D. M., Lechner, P., Lutz, G., Niculae, A., Soltau, H., Strüder, L., Eckhardt, R., Hermenau, K., Schaller, G., Schopper, F., Jaritschin, O., Liebel, A., Simsek, A., Fiorini, C., & Longoni, A. (2010). Expanding the detection efficiency of silicon drift detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 624(2), 270–276. https://doi.org/10.1016/J.NIMA.2010.04.038 | |
| dc.relation.references | Skoog, D. A., Holler, F. J., & Crouch, S. R. (2008). Principios de análisis instrumental (S. A. Cengage Learning Editores, Ed.; M. B. Josefina Anzures, Trad.; 6a ed., pp. 303–331). Cengage Learning. | |
| dc.relation.references | Strüder, L., Lechner, P., & Leutenegger, P. (1998). Silicon drift detector-the key to new experiments The silicon drift detector principle. Naturwissenschaften, 85, 539–543. https://doi.org/doi.org/10.1007/s001140050545 | |
| dc.relation.references | Su, B. G., Chen, S. F., Yeh, S. H., Shih, P. W., & Lin, C. C. (2016). Cost evaluation of clinical laboratory in Taiwan’s National Health System by using activity-based costing. Clinical Chemistry and Laboratory Medicine, 54(11), 1753–1758. https://doi.org/10.1515/cclm-2016-0193 | |
| dc.relation.references | Thomas, E., Atkinson, R., Zavaleta, D., Rodriguez, C., Lastra, S., Yovera, F., Arango, K., Pezo, A., Aguilar, J., Tames, M., Ramos, A., Cruz, W., Cosme, R., Espinoza, E., Chavez, C. R., & Ladd, B. (2023). The distribution of cadmium in soil and cacao beans in Peru. Science of the Total Environment, 881. https://doi.org/10.1016/j.scitotenv.2023.163372 | |
| dc.relation.references | Unidad de Planificación Rural Agropecuaria - UPRA. (2022). Cacao de Arauca con potencial para la exportación a Europa. https://www.agronet.gov.co/Noticias/Paginas/Cacao-de-Arauca-con-potencial-para-la-exportaci%C3%B3n-a-Europa.aspx | |
| dc.relation.references | Unión Europea. (2023). Reglamento (UE) 2023/915 de la Comisión de 25 de abril de 2023. http://data.europa.eu/eli/reg/2023/915/2024-07-22 | |
| dc.relation.references | United Nations. (2023). United Nations, Globally Harmonized System of Classification and Labeling of Chemicals (GHS, Rev. 10). https://unece.org/transport/dangerous-goods/ghs-rev10-2023 | |
| dc.relation.references | USDA. (2018). China Releases the Standard for MaximumLevels of Contaminants in Foods. GAIN Report Number: CH18025. Prepared by Foreign Agricultural Office (FAS) of Agricultural Affairs. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=China%20Releases%20the%20Standard%20for%20Maximum%20Levels%20of%20Contaminants%20in%20Foods_Beijing_China%20-%20People%27s%20Republic%20of_CH2023-0040.pdf | |
| dc.relation.references | Usman, M., Zia-ur-Rehman, M., Rizwan, M., Abbas, T., Ayub, M. A., Naeem, A., Alharby, H. F., Alabdallah, N. M., Alharbi, B. M., Qamar, M. J., & Ali, S. (2023). Effect of soil texture and zinc oxide nanoparticles on growth and accumulation of cadmium by wheat: a life cycle study. Environmental Research, 216. https://doi.org/10.1016/j.envres.2022.114397 | |
| dc.relation.references | Vacchi, A. (2024). Silicon Drift Detectors. En C. Bambi & A. Santangelo (Eds.), Handbook of X-ray and Gamma-ray Astrophysics (pp. 609–661). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6960-7_18 | |
| dc.relation.references | Vanderschueren, R., Montalvo, D., De Ketelaere, B., Delcour, J. A., & Smolders, E. (2019). The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. Journal of Food Composition and Analysis, 83, 103277. https://doi.org/https://doi.org/10.1016/j.jfca.2019.103277 | |
| dc.relation.references | Wang, X., Li, D., Gao, P., Gu, W., He, X., Yang, W., & Tang, W. (2020). Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. Ecotoxicology and Environmental Safety, 198, 110655. https://doi.org/10.1016/J.ECOENV.2020.110655 | |
| dc.relation.references | Wang, Y., Dong, S., Xiao, J., Hu, Q., & Zhao, L. (2022). A Rapid and Multi-Element Method for the Determination of As, Cd, Ni, Pb, Sn, and Zn in Scallops Using High Definition X-Ray Fluorescence (HDXRF) Spectrometry. Food Analytical Methods, 15(10), 2712–2724. https://doi.org/10.1007/s12161-022-02323-1 | |
| dc.relation.references | Wang, Y., Yu, M., Pei, L., & Zhao, L. (2023). Rapid detection of cadmium and arsenic in dried Auricularia auricula by high definition X-ray fluorescence spectrometry. Science and Technology of Food Industry, 44(9), 333–339. https://doi.org/10.13386/j.issn1002-0306.2022060260 | |
| dc.relation.references | Wilbur, S. (2005). A comparision of the relative cost and productivity of traditional metals analysis techniques versus ICP-MS in high throughput commercial laboratories. Aplication. https://www.agilent.com/cs/library/applications/5989-1585EN.pdf | |
| dc.relation.references | Williams, R., Taylor, G., & Orr, C. (2020). pXRF method development for elemental analysis of archaeological soil. Archaeometry, 62(6), 1145–1163. https://doi.org/10.1111/arcm.12583 | |
| dc.relation.references | Wojnowski, W., Tobiszewski, M., Pena-Pereira, F., & Psillakis, E. (2022). AGREEprep – Analytical greenness metric for sample preparation. En TrAC - Trends in Analytical Chemistry (Vol. 149). Elsevier B.V. https://doi.org/10.1016/j.trac.2022.116553 | |
| dc.relation.references | Xing, Y., Zhang, H., Yang, Z., Song, W., Long, W., Zhu, R., Chang, R., & Zhang, L. (2022). Evaluation of 20 Elements in Soils and Sediments by ED-XRF of Monochromatic Excitation. Metals, 12(11), 1–15. https://doi.org/10.3390/met12111798 | |
| dc.relation.references | Yuan, C., Li, Q., Sun, Z., & Sun, H. (2021). Effects of natural organic matter on cadmium mobility in paddy soil: A review. En Journal of Environmental Sciences (China) (Vol. 104, pp. 204–215). Chinese Academy of Sciences. https://doi.org/10.1016/j.jes.2020.11.016 | |
| dc.relation.references | Z-spec. (2022). Z-Spec E-max user manual. | |
| dc.relation.references | Z-Spec. (2023a). Cotización MXRF E-max. | |
| dc.relation.references | Z-Spec. (2023b, octubre 15). E-max Rapid cadmium testing in food. https://img1.wsimg.com/blobby/go/df821832-6421-47a2-b246-170f5e126806/downloads/Application%20note_E-max%20for%20food.pdf?ver=1676564501001 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica | spa |
| dc.subject.proposal | MXRF | spa |
| dc.subject.proposal | Validación | spa |
| dc.subject.proposal | Verdor analítico | spa |
| dc.subject.proposal | Eco-escala analítica | spa |
| dc.subject.proposal | AGREE | spa |
| dc.subject.proposal | Análisis de costos basado en actividades | spa |
| dc.subject.proposal | ABC | spa |
| dc.subject.proposal | MXRF | eng |
| dc.subject.proposal | Validation | eng |
| dc.subject.proposal | Analytical greenness | eng |
| dc.subject.proposal | Analytical eco-scale | eng |
| dc.subject.proposal | AGREE | eng |
| dc.subject.proposal | Activity-based cost analysis | eng |
| dc.subject.proposal | ABC | eng |
| dc.subject.wikidata | metal pesado | spa |
| dc.subject.wikidata | heavy metal | eng |
| dc.subject.wikidata | análisis químico | spa |
| dc.subject.wikidata | chemical analysis | eng |
| dc.subject.wikidata | Theobroma cacao | spa |
| dc.subject.wikidata | Theobroma cacao | eng |
| dc.title | Evaluación de la espectrometría de fluorescencia de rayos X monocromática como técnica de análisis de cadmio en cacao del departamento de Arauca | spa |
| dc.title.translated | Evaluation of monochromatic X-ray fluorescence spectrometry as a cadmium analysis technique in cacao from the department of Arauca | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis.pdf
- Tamaño:
- 4.41 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

