En 6 día(s), 20 hora(s) y 45 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación de la espectrometría de fluorescencia de rayos X monocromática como técnica de análisis de cadmio en cacao del departamento de Arauca

dc.contributor.advisorBravo, Danielspa
dc.contributor.advisorAvellaneda Torres, Lizeth Manuelaspa
dc.contributor.authorCifuentes Muñoz, Edwin Alfredospa
dc.contributor.researchgroupBioprospección de Biomoléculas y Microorganismos con Aplicaciones Agropecuariasspa
dc.contributor.researchgroupAgrobiodiversidad y Biotecnologíaspa
dc.coverage.countryColombiaspa
dc.coverage.regionAraucaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000505
dc.date.accessioned2025-12-18T19:30:18Z
dc.date.available2025-12-18T19:30:18Z
dc.date.issued2025-12-18
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEl cacao es un cultivo de alta relevancia en Colombia, no obstante, la presencia de Cd genera impactos ecosistémicos y en la salud de los seres humanos. También limita su exportación, especialmente en departamentos altamente productores, como Arauca. Por ello, es necesario su monitoreo frecuente. Las técnicas actuales para cuantificar Cd, como ICP, suelen ser costosas y complejas. Es por esto que la presente investigación se propuso evaluar el desempeño de la MXRF, como alternativa, para analizar Cd en muestras del sistema de cacao. Esta evaluación se realizó desde tres perspectivas: analítica, ambiental y económica. Para ello, se realizó una validación analítica, un estudio del verdor analítico y un análisis de costos basado en actividades, respectivamente. En la validación del método se encontró un desempeño analítico adecuado en muestras del sistema de cacao. Además, se alcanzó un LOQ de 0.148 mg kg-1 y errores relativos menores al 30%, con respecto a ICP. Por otro lado, la superioridad del grado de sostenibilidad ambiental de la MXRF sobre ICP fue demostrada con la obtención de un verdor analítico de 0.71, 0.31 y 0.34 unidades para MXRF, ICP-MS e ICP-OES, respectivamente. Finalmente, el análisis de costos basado en actividades (ABC) permitió asignar un valor económico de $16,699, $67,013 y $56,294 para MXRF, ICP-MS e ICP-OES, respectivamente, cual implicó una reducción de aproximadamente el 75% del costo. Esta investigación demostró los beneficios técnicos, ambientales y económicos de la MXRF para la cuantificación de Cd en muestras del sistema de cacao. (Texto tomado de la fuente).spa
dc.description.abstractCacao is a crop of major importance in Colombia; however, the presence of Cd generates both ecosystem impacts and risks to human health. It also restricts its export, particularly in high-producing departments such as Arauca. For this reason, frequent monitoring is necessary. Current techniques for quantifying Cd, such as ICP, are often costly and complex. Therefore, the present study aimed to evaluate the performance of MXRF as an alternative method for analyzing Cd in samples from the cacao production system. This evaluation was approached from three perspectives: analytical, environmental, and economic. Accordingly, an analytical validation, a greenness assessment, and an activitybased cost analysis were conducted. The method validation showed adequate analytical performance for samples from the cacao system. In addition, an LOQ of 0.148 mg kg⁻¹ was achieved, and relative errors were below 30% when compared to ICP. Furthermore, the superior environmental sustainability of MXRF over ICP was demonstrated through greenness scores of 0.71, 0.31, and 0.34 for MXRF, ICP-MS, and ICP-OES, respectively. Finally, the activity-based cost (ABC) analysis assigned an economic value of $16,699, $67,013, and $56,294 to MXRF, ICP-MS, and ICP-OES, respectively, representing a cost reduction of approximately 75%. This study demonstrated the technical, environmental, and economic advantages of MXRF for Cd quantification in samples from the cacao production system.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica analíticaspa
dc.format.extentxix, 150 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89236
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives and Contaminants: Part B Surveillance, 11(2), 92–102. https://doi.org/10.1080/19393210.2017.1420700
dc.relation.referencesAbt, E., & Robin, L. P. (2020). Perspective on cadmium and lead in cocoa and chocolate. Journal of Agricultural and Food Chemistry, 68(46), 13008–13015. https://doi.org/10.1021/acs.jafc.9b08295
dc.relation.referencesAdesina, K. E., Burgos, C. J., Grier, T. R., Sayam, A. S. M., & Specht, A. J. (2025). Ways to measure metals: from ICP-MS to XRF. Current environmental health reports, 12(1), 7. https://doi.org/10.1007/s40572-025-00473-y
dc.relation.referencesAdler, K., Piikki, K., Söderström, M., Eriksson, J., & Alshihabi, O. (2020). Predictions of Cu, Zn, and Cd concentrations in soil using portable X-ray fluorescence Measurements. Sensors, 20(2), 1–15. https://doi.org/10.3390/s20020474
dc.relation.referencesAgilent Technologies. (2015). Agilent 7800/7900 ICP-MS: Site Preparation Checklist.
dc.relation.referencesAgilent Technologies. (2023, octubre 14). ICP-MS Instrument & Accessory Supplies. Tools & Manuals for ICP-MS. https://www.agilent.com/en/product/atomic-spectroscopy/inductively-coupled-plasma-mass-spectrometry-icp-ms/icp-ms-instrument-accessory-supplies/tools-manuals-for-icp-ms
dc.relation.referencesAl-Dhubaibi, A. A. S. (2021). Optimizing the value of activity based costing system: The role of successful implementation. Management Science Letters, 179–186. https://doi.org/10.5267/j.msl.2020.8.017
dc.relation.referencesAlmeida, J. S., Meira, L. A., Oliveira, M. S., & Teixeira, L. S. G. (2021). Direct multielement determination of Cd, Pb, Fe, and Mn in ground coffee samples using energy dispersive X-ray fluorescence spectrometry. X-Ray Spectrometry, 50(1), 2–8. https://doi.org/10.1002/xrs.3182
dc.relation.referencesAnastas, P. T., & Warner, J. C. (2000). Principles of green chemistry. En Green Chemistry: Theory and practice (Online edition, pp. 29–56). Oxford Academy. https://doi.org/10.1093/oso/9780198506980.003.0004
dc.relation.referencesÁngel Maya, A. (1996). El reto de la vida: Ecosistema y cultura. Una introducción al estudio del medio ambiente (Ecofondo, Ed.; 2a ed.).
dc.relation.referencesAOAC International. (2023). Appendix F: Guidelines for Standard Method Performance Requirements. En G. W. Latimer Jr (Ed.), Official methods of analysis of AOAC INTERNATIONAL (22a ed., pp. 1–30). Oxford Academic. https://doi.org/10.1093/9780197610145.001.0001
dc.relation.referencesAparicio Rebollo, F. J. (2025, junio 5). XRF: Espectroscopia de fluorescencia de rayos X. https://wpo-altertechnology.com/es/xrf-x-ray-fluorescence-spectroscopy-hi-rel-parts/
dc.relation.referencesAraujo, L. S., Tapia, W., & Villamarín Ortiz, A. (2020). Verificación del método analítico de espectroscopía de absorción atómica con horno de grafito para la cuantificación de cadmio en almendra de cacao (Theobroma cacao). La Granja: Revista de Ciencias de la Vida, 31(1), 46–60. https://doi.org/10.17163/lgr.n31.2020.04
dc.relation.referencesArgüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: A nationwide survey in Ecuador. Science of The Total Environment, 649, 120–127. https://doi.org/10.1016/J.SCITOTENV.2018.08.292
dc.relation.referencesAustralia New Zealand Food Standards Code. (2000). Australia New Zealand Food Standards Code - Standard 1.4.1 - Contaminants and Natural Toxicants. Standard 1.4.1 Published in the Commonwealth of Australia Gazette No. P 30 on 20 December 2000. https://www.legislation.gov.au/details/F2011C00542
dc.relation.referencesBai, S. H., Gallart, M., Singh, K., Hannet, G., Komolong, B., Yinil, D., Field, D. J., Muqaddas, B., & Wallace, H. M. (2022). Leaf litter species affects decomposition rate and nutrient release in a cocoa plantation. Agriculture, Ecosystems & Environment, 324, 107705. https://doi.org/10.1016/J.AGEE.2021.107705
dc.relation.referencesBanco de la República de Colombia. (2025). Informe de Política Monetaria. https://www.banrep.gov.co/es/publicaciones-investigaciones/informe-politica-monetaria/abril-2025
dc.relation.referencesBarraza, F., Schreck, E., Lévêque, T., Uzu, G., López, F., Ruales, J., Prunier, J., Marquet, A., & Maurice, L. (2017). Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador. Environmental Pollution, 229, 950–963. https://doi.org/10.1016/j.envpol.2017.07.080
dc.relation.referencesBerghof Products + Instruments GmbH. (2015). Application note/ Speedwave Xpert. Environment, geology. Microwave digestion of soil. https://www.berghof-instruments.com/en/applications/microwave-digestion-of-soil-according-to-din-en-13346/
dc.relation.referencesBertoldi, D., Barbero, A., Camin, F., Caligiani, A., & Larcher, R. (2016). Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control, 65, 46–53. https://doi.org/https://doi.org/10.1016/j.foodcont.2016.01.013
dc.relation.referencesBhalodia, A., & Desai, S. (2025). Comprehensive assessment of greenness of ICP-OES methods for determination of metals. Green Analytical Chemistry, 12. https://doi.org/10.1016/j.greeac.2025.100222
dc.relation.referencesBravo, D., & Braissant, O. (2022). Cadmium-tolerant bacteria: current trends and applications in agriculture. En Letters in Applied Microbiology (Vol. 74, Número 3, pp. 311–333). John Wiley and Sons Inc. https://doi.org/10.1111/lam.13594
dc.relation.referencesBravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A., & Rodríguez, E. A. G. (2021). The first national survey of cadmium in cacao farm soil in Colombia. Agronomy, 11(4), 1–18. https://doi.org/10.3390/agronomy11040761
dc.relation.referencesBravo, D., León-Moreno, C., Quiroga, R., Moreno, E., Duarte, D., Zamora, A., Gutiérrez, E., Aristizábal, A., Arroyave, C., Cardona, L., Guerra, B., Olarte, H., Cuervo, C., & Orozco, M. L. (2021). ¿Qué es el cadmio y por qué es importante en el cultivo de cacao? En ¿Qué es el cadmio y por qué es importante en el cultivo de cacao? Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/agrosavia.nbook.7404548
dc.relation.referencesBravo, D., León-Moreno, C., Quiroga, R., Zamora, A., Giutiérrez, E., Moreno, E., Duarte, D., Aristizábal, A., Arroyave, C., Cardona, L., Olarte, H., Orozco, M. L., & Guerra-Sierra, B. (2021). Investigación y recomendaciones sobre cadmio en el cultivo de cacao en Colombia. https://doi.org/10.21930/agrosavia
dc.relation.referencesBravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., & Leon-Moreno, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194. https://doi.org/10.1111/jam.13698
dc.relation.referencesBravo, D., Quiroga-Mateus, R., López-Casallas, M., Torres, S., Contreras, R., Otero, A. C. M., Araujo-Carrillo, G. A., & González-Orozco, C. E. (2024). Assessing the cadmium content of cacao crops in Arauca, Colombia. Environmental Monitoring and Assessment, 196(4), 1–20. https://doi.org/10.1007/s10661-024-12539-9
dc.relation.referencesBravo, D., Santander, M., Rodríguez, J., Escobar, S., Ramtahal, G., & Atkinson, R. (2022). ‘From soil to chocolate bar’: identifying critical steps in the journey of cadmium in a Colombian cacao plantation. Food Additives and Contaminants - Part A, 39(5), 949–963. https://doi.org/10.1080/19440049.2022.2040747
dc.relation.referencesBurdett, J. H. Jr., Bailey, A., Chen, Z., Semken, R. S., & Xin, K. (2010). US 7,738,630 B2. Highly aligned x-ray optic and source assembly for precision x-ray analysis applications. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://patentimages.storage.googleapis.com/42/29/74/4c2c82098d54d5/US7738630.pdf
dc.relation.referencesCanadian Council of Ministers of the Environment. (1999). Cadmium. Canadian soil quality guidelines for the protection of environmental and human health. https://ccme.ca/en/res/cadmium-canadian-soil-quality-guidelines-for-the-protection-of-environmental-and-human-health-en.pdf
dc.relation.referencesCarrillo, K., Martínez, M., Ramírez, L., Argüello, D., & Chavez, E. (2023). Cadmium (Cd) distribution and soil-plant relationship in cacao farms in Costa Rica. Environmental Monitoring and Assessment, 195(10). https://doi.org/10.1007/s10661-023-11817-2
dc.relation.referencesCCV de Colombia S.A.S. (2023). Cotización ICP-OES Perkin Elmer Avio 500.
dc.relation.referencesCelis, S. L. H., Bermúdez, J. E. G., Mejía-Ospino, E., & Hernández, R. C. (2022). A predictive model for the determination of cadmium concentration in cocoa beans using laser-induced plasma spectroscopy. Agronomía Colombiana, 40(3), 429–439. https://doi.org/10.15446/agron.colomb.v40n3.104911
dc.relation.referencesCharry, A., Atkinson, R., Junca Paredes, J. J., Perea Ramirez, C. T., & Evert Pulleman, M. M. (2023). Effects of the EU food safety regulation on cadmium on the cacao value chains of Colombia, Ecuador, and Peru. https://hdl.handle.net/10568/130296
dc.relation.referencesChavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R., Li, Y., & Baligar, V. C. (2016). Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations. Environmental Science and Pollution Research, 23(17), 17571–17580. https://doi.org/10.1007/s11356-016-6931-7
dc.relation.referencesChavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214. https://doi.org/10.1016/j.scitotenv.2015.06.106
dc.relation.referencesChen, X., Wang, S., Zhou, M., Wang, J., Song, W., Zhang, J., Wang, Y., Tian, W., & Wu, Y. (2025). Rapid simultaneous quantification of arsenic and lead in grain using improved monochromatic excitation energy dispersive X-ray fluorescence spectrometry. Talanta, 288, 1–7. https://doi.org/10.1016/j.talanta.2025.127719
dc.relation.referencesChen, Z. (2001). US 6,285,506 B1. Curved optical device and method of fabrication. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6285506
dc.relation.referencesChen, Z. (2006). US 7,035,374 B2. Optical device for directing x-rays having a plurality of optical crystals. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7035374
dc.relation.referencesChen, Z. (2010). US 7,738,629 B2. X-ray focusing optic having multiple layers with respective crystal, orientations. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://patentimages.storage.googleapis.com/6c/01/d8/6e098653bf2488/US7738629.pdf
dc.relation.referencesChen, Z. W., Gibson, W. M., & Huang, H. (2008). High Definition X‐Ray Fluorescence: Principles and Techniques. X-Ray Optics and Instrumentation, 2008(1). https://doi.org/10.1155/2008/318171
dc.relation.referencesChen, Z. W., & Wittry, D. B. (1997). Microprobe x-ray fluorescence with the use of point-focusing diffractors. Applied Physics Letters, 71(13), 1884–1886. https://doi.org/10.1063/1.119427
dc.relation.referencesChen, Z. W., & Wittry, D. B. (1998). Microanalysis by monochromatic microprobe x-ray fluorescence - Physical basis, properties, and future prospects. Journal of Applied Physics, 84(2), 1064–1073. https://doi.org/10.1063/1.368105
dc.relation.referencesCheng, D., Ni, Z., Liu, M., Shen, X., & Jia, Y. (2021). Determination of trace Cr, Ni, Hg, As, and Pb in the tipping paper and filters of cigarettes by monochromatic wavelength X-ray fluorescence spectrometry. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 502, 59–65. https://doi.org/10.1016/j.nimb.2021.06.004
dc.relation.referencesChojnacka, K., Samoraj, M., Tuhy, L., Michalak, I., Mironiuk, M., & Mikulewicz, M. (2018). Using XRF and ICP-OES in biosorption studies. Molecules, 23(8). https://doi.org/10.3390/molecules23082076
dc.relation.referencesChuparina, E. V., Chubarov, V. M., & Paradina, L. P. (2019). A comparative determination of major components in coal power plant wastes by wavelength dispersive X-ray fluorescence using pellet and fused bead specimens. Applied Radiation and Isotopes, 152, 162–167. https://doi.org/10.1016/j.apradiso.2019.06.040
dc.relation.referencesCooper, R., & Kaplan, R. S. (1988). Measure costs right: Make the right decisions. Harvard Business Review, 66(5), 96–103.
dc.relation.referencesDahiya, S., Karpe, R., Hegde, A. G., & Sharma, R. M. (2005). Lead, cadmium and nickel in chocolates and candies from suburban areas of Mumbai, India. Journal of Food Composition and Analysis, 18(6), 517–522. https://doi.org/https://doi.org/10.1016/j.jfca.2004.05.002
dc.relation.referencesde La Guardia, M., & Armenta, S. (2011). A Green evaluation of existing analytical methods. En M. de La Guardia & S. Armenta (Eds.), Green Analytical Chemistry (pp. 39–57). Elsevier. https://doi.org/10.1016/S0166-526X(11)57003-5
dc.relation.referencesDeclerck, B., Swaak, M., Martin, M., & Kesteloot, K. (2021). Activity-based cost analysis of laboratory tests in clinical chemistry. Clinical Chemistry and Laboratory Medicine, 59(8), 1369–1375. https://doi.org/10.1515/cclm-2020-1849
dc.relation.referencesDekeyrel, J., Atkinson, R., Chavez, E., da Silva, M., Idarraga-Castaño, O., Pulleman, M., & Smolders, E. (2024). Using optimized monochromatic energy dispersive X-ray fluorescence to determine the cadmium concentration in cacao and soil samples. Heliyon, 10(20), 1–6. https://doi.org/10.1016/j.heliyon.2024.e39034
dc.relation.referencesDevi, P., Bajala, V., Garg, V. K., Mor, S., & Ravindra, K. (2016). Heavy metal content in various types of candies and their daily dietary intake by children. Environmental Monitoring and Assessment, 188(2), 86. https://doi.org/10.1007/s10661-015-5078-1
dc.relation.referencesDouvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. En Science of the Total Environment (Vol. 905). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.167242
dc.relation.referencesDuque Gómez, M. E. (2016). Diseño de un sistema de costos para el servicio de fertilidad en el laboratorio de suelos - análisis químicos, de la Universidad Nacional de Colombia, sede Medellín [Institución Universitaria Esumer]. https://repositorio.esumer.edu.co/browse?type=title&sort_by=1&order=ASC&rpp=20&etal=25&null=&offset=461
dc.relation.referencesEuropean Medicines Agency. (2022). International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH harmonised guideline, validation of analytical procedures Q2 (R2). https://database.ich.org/sites/default/files/ICH_Q2-R2_Document_Step2_Guideline_2022_0324.pdf
dc.relation.referencesFDA. (2018). Bioanalytical Method Validation Guidance for Industry. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htmand/orhttp://www.fda.gov/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm
dc.relation.referencesFerreira de Oliveira, A. P., Milani, R. F., Efraim, P., Morgano, M. A., & Tfouni, S. A. V. (2021). Cd and Pb in cocoa beans: Occurrence and effects of chocolate processing. Food Control, 119. https://doi.org/10.1016/j.foodcont.2020.107455
dc.relation.referencesFlorez Mosquera, L. F. (2014). Diseño de la metodología de costos basado en actividades (ABC) para el hospital Sagrada Familia de Toro Valle para las áreas de urgencias, laboratorio clínico y odontología [Universidad del Valle]. https://bibliotecadigital.univalle.edu.co/server/api/core/bitstreams/090a3d6c-99fe-4dae-b450-6fd0f19d20fd/content
dc.relation.referencesGałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. En TrAC - Trends in Analytical Chemistry (Vol. 37, pp. 61–72). https://doi.org/10.1016/j.trac.2012.03.013
dc.relation.referencesGałuszka, A., Migaszewski, Z., & Namieśnik, J. (2013). The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends in Analytical Chemistry, 50, 78–84. https://doi.org/10.1016/j.trac.2013.04.010
dc.relation.referencesGalvis, D. A., Jaimes-Suárez, Y. Y., Rojas Molina, J., Ruiz, R., León-Moreno, C. E., & Carvalho, F. E. L. (2023). Unveiling Cacao Rootstock-Genotypes with Potential Use in the Mitigation of Cadmium Bioaccumulation. Plants, 12(16), 1–13. https://doi.org/10.3390/plants12162941
dc.relation.referencesGil, J. P., López-Zuleta, S., Quiroga-Mateus, R. Y., Benavides-Erazo, J., Chaali, N., & Bravo, D. (2022). Cadmium distribution in soils, soil litter and cacao beans: A case study from Colombia. International Journal of Environmental Science and Technology, 19(4), 2455–2476. https://doi.org/10.1007/s13762-021-03299-x
dc.relation.referencesGonzalez-Orozco, C., Porcel, M., Escobar, S., Bravo, D., Lopez, Y. G., Yockteng, R., Vaillant, F., Santander, M., Llano, S., Parra, K., Briceño, E., Carmona, J., Torres, S., Contreras, R., Otero, A. M., Pesca, A., & Carrillo, G. A. (2023). Cacao (Theobroma cacao L.) climate zones and its associated agrobiodiversity in Arauca, Colombia. Biodiversity Data Journal, 11. https://doi.org/10.3897/BDJ.11.e112771
dc.relation.referencesGramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., & Schulin, R. (2018). Soil cadmium uptake by cocoa in Honduras. Science of The Total Environment, 612, 370–378. https://doi.org/10.1016/J.SCITOTENV.2017.08.145
dc.relation.referencesGujral, S., Dongre, K., Bhindare, S., Subramanian, P. G., Narayan, H. K. V., Mahajan, A., Batura, R., Hingnekar, C., Chabbria, M., & Nair, C. N. (2010). Activity-based costing methodology as tool for costing in hematopathology laboratory. Indian Journal of Pathology and Microbiology, 53(1), 68–74. https://doi.org/10.4103/0377-4929.59187
dc.relation.referencesGusmiranda Siregar, R., Lubis, M. A., & Muda, I. (2023). How Costs are Treated Under Activity-Based Costing in The Chemical Corporation. European Chemical Bulletin, 12(8), 3109–3119.
dc.relation.referencesHao, J., Li, F., Jiang, X., Wang, Q., Yang, B., & Cao, J. (2023). Improvement approach for determination of cadmium at trace levels in soils by handheld X-ray fluorescence analyzers. Spectrochimica Acta Part B: Atomic Spectroscopy, 206, 1–12. https://doi.org/10.1016/j.sab.2023.106711
dc.relation.referencesHerreros-Chavez, L., Cervera, M. L., & Morales-Rubio, A. (2019). Direct determination by portable ED-XRF of mineral profile in cocoa powder samples. Food Chemistry, 278, 373–379. https://doi.org/10.1016/j.foodchem.2018.11.065
dc.relation.referencesHicks, M. B., Farrell, W., Aurigemma, C., Lehmann, L., Weisel, L., Nadeau, K., Lee, H., Moraff, C., Wong, M., Huang, Y., & Ferguson, P. (2019). Making the move towards modernized greener separations: Introduction of the analytical method greenness score (AMGS) calculator. Green Chemistry, 21(7), 1816–1826. https://doi.org/10.1039/c8gc03875a
dc.relation.referencesInobeme, A., Mathew, J. T., Jatto, E., Inobeme, J., Adetunji, C. O., Muniratu, M., Onyeachu, B. I., Adekoya, M. A., Ajai, A. I., Mann, A., Olori, E., Akhor, S. O., Eziukwu, C. A., Kelani, T., & Omali, P. I. (2023). Recent advances in instrumental techniques for heavy metal quantification. Environmental Monitoring and Assessment, 195(4). https://doi.org/10.1007/s10661-023-11058-3
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación - ICONTEC. (2017). Norma Técnica Colombiana NTC-ISO/IEC 17025 Requisitos generales para la competencia de los laboratorios de ensayo y calibración.
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamento y Alimentos - Invima. (2022). Plan nacional de vigilancia de cadmio en cacao y productos derivados. https://www.invima.gov.co/sites/default/files/alimentos-y-bebidas-alcoholicas/Otros-alimentos-y-bebidas/Vigilancia/planes/documento_plan_cd_en_cacao_2024_vf.pdf
dc.relation.referencesIwegbue, C. M. A. (2011). Concentrations of selected metals in candies and chocolates consumed in southern Nigeria. Food Additives & Contaminants: Part B, 4(1), 22–27. https://doi.org/10.1080/19393210.2011.551943
dc.relation.referencesJalbani, N., Kazi, T., Afridi, H., & Arain, M. (2009). Determination of toxic metals in different brand of chocolates and candies, marketed in Pakistan. Analytical and Environmental Chemistry, 10, 48–52.
dc.relation.referencesJiangyuan, M. A., Xiaoxia, S., Yeli, L. I., & Dengyu, H. (2020). Optimization of tea detection conditions based on EDXRF technology. Food and Fermentation Industries, 46(4), 282–286. https://doi.org/10.13995/j.cnki.11-1802/ts.021738
dc.relation.referencesJohnson-Restrepo, B., Blain, E., Judd, C., Tysoe, A., & Parsons, P. J. (2025). New developments in monochromatic energy dispersive X-ray fluorescence instrumentation for monitoring toxic elements in food matrices: Advantages and limitations. Radiation Physics and Chemistry, 234. https://doi.org/10.1016/j.radphyschem.2025.112749
dc.relation.referencesJoint Committee for Guides in Metrology - JCGM. (2020). JCGM GUM-6:2020 Guide to the expression of uncertainty in measurement-Part 6: Developing and using measurement models. https://www.bipm.org/documents/20126/2071204/JCGM_GUM_6_2020.pdf
dc.relation.referencesJust, P. M., De Charro, F. T., Tschosik, E. A., Noe, L. L., Bhattacharyya, S. K., & Riella, M. C. (2008). Reimbursement and economic factors influencing dialysis modality choice around the world. En Nephrology Dialysis Transplantation (Vol. 23, Número 7, pp. 2365–2373). https://doi.org/10.1093/ndt/gfm939
dc.relation.referencesKannaiah, K. P., & Chanduluru, H. K. (2023). Exploring sustainable analytical techniques using G score and future innovations in green analytical chemistry. En Journal of Cleaner Production (Vol. 428). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2023.139297
dc.relation.referencesKeith, L. H., Gron, L. U., & Young, J. L. (2007). Green analytical methodologies. Chemical Reviews, 107(6), 2695–2708. https://doi.org/10.1021/cr068359e
dc.relation.referencesKhymós. (2023). Cotización ICP-MS Agilent 7900.
dc.relation.referencesLee, J., Park, Y. S., & Lee, D. Y. (2023). Fast and green microwave-assisted digestion with diluted nitric acid and hydrogen peroxide and subsequent determination of elemental composition in brown and white rice by ICP-MS and ICP-OES. LWT, 173, 114351. https://doi.org/10.1016/J.LWT.2022.114351
dc.relation.referencesLewis, C., Bravo, D., Carrillo, M., Ramtahal, G., Peña, K., & Tames, M. (2024). Latin America and the Caribbean standard operating procedure for the analysis of cadmium in cacao. https://hdl.handle.net/11324/22949
dc.relation.referencesLo Dico, G. M., Galvano, F., Dugo, G., D’ascenzi, C., Macaluso, A., Vella, A., Giangrosso, G., Cammilleri, G., & Ferrantelli, V. (2018). Toxic metal levels in cocoa powder and chocolate by ICP-MS method after microwave-assisted digestion. Food Chemistry, 245, 1163–1168. https://doi.org/10.1016/j.foodchem.2017.11.052
dc.relation.referencesLu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., Warren, G., Chatzifragkou, A., McQueen Mason, S., Gomez, L., Faas, L., Balcombe, K., Srinivasan, C., Picchioni, F., Hadley, P., & Charalampopoulos, D. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80–88. https://doi.org/10.1016/j.cogsc.2018.07.007
dc.relation.referencesMa, X., Hua, M. Z., Ji, C., Zhang, J., Shi, R., Xiao, Y., Liu, X., He, X., Zheng, W., & Lu, X. (2022). Rapid screening and quantification of heavy metals in traditional Chinese herbal medicines using monochromatic excitation energy dispersive X-ray fluorescence spectrometry. The Analyst, 147(16), 3628–3633. https://doi.org/10.1039/D2AN00752E
dc.relation.referencesMaddela, N. R., Kakarla, D., García, L. C., Chakraborty, S., Venkateswarlu, K., & Megharaj, M. (2020). Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of The Total Environment, 720, 137645. https://doi.org/10.1016/J.SCITOTENV.2020.137645
dc.relation.referencesMax-Planck-Gesellschaft. (2025, junio 5). Silicon Drift Detector. https://www.hll.mpg.de/2970081/SDD
dc.relation.referencesMayne, S. T. (2023). The FDA’s action plan to reduce dietary exposure to arsenic, lead, cadmium, and mercury for infants and young children. American Journal of Clinical Nutrition, 117(4), 647–648. https://doi.org/10.1016/j.ajcnut.2023.02.004
dc.relation.referencesMERCOSUR. (2011). Reglamento técnico mercosur sobre límites máximos de contaminantes inorgánicos en alimentos (Derogación De Las Res. GMC N° 102/94 y N° 35/96). MERCOSUR/GMC/RES. N° 12/11. https://normas.mercosur.int/public/normativas/2474
dc.relation.referencesMergeay, M. (1995). Heavy metal resistances in microbial ecosystems. En A. D. L. Akkermans, J. D. Van Elsas, & F. J. De Bruijn (Eds.), Molecular Microbial Ecology Manual (pp. 439–455). Springer Netherlands. https://doi.org/10.1007/978-94-011-0351-0_30
dc.relation.referencesMeter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmio en el cacao de América Latina y el Caribe. Análisis de la investigación y soluciones potenciales para la mitigación. https://scioteca.caf.com/handle/123456789/1505
dc.relation.referencesMijatović, N., Vasić, M., Miličić, L., Radomirović, M., & Radojević, Z. (2023). Fired pressed pellet as a sample preparation technique of choice for an energy dispersive X-ray fluorescence analysis of raw clays. Talanta, 252, 1–8. https://doi.org/10.1016/j.talanta.2022.123844
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural de Colombia - MADR. (2018). Cadena de cacao. Indicadores e Instrumentos. https://sioc.minagricultura.gov.co/cacao/documentos/2018-09-30%20cifras%20sectoriales.pdf
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural de Colombia -MADR. (2019). Cadena de cacao. https://sioc.minagricultura.gov.co/Cacao/Documentos/2019-06-30%20Cifras%20Sectoriales.pdf
dc.relation.referencesMinistry of the Environment of Finland. (2007). Government decree on the assessment of soil contamination and remediation needs (214/2007). https://www.finlex.fi/en/laki/kaannokset/2007/en20070214.pdf
dc.relation.referencesMir-Marqués, A., Martínez-García, M., Garrigues, S., Cervera, M. L., & de La Guardia, M. (2016). Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence. Food Chemistry, 196, 1023–1030. https://doi.org/10.1016/j.foodchem.2015.10.048
dc.relation.referencesMite, F., & Durango, W. (2010). Avances del monitoreo de presencia de cadmio en almendras de cacao, suelos y aguas en Ecuador. https://www.researchgate.net/publication/304346639
dc.relation.referencesMohamed, R., Zainudin, B. H., & Yaakob, A. S. (2020). Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chemistry, 303, 1–6. https://doi.org/10.1016/j.foodchem.2019.125392
dc.relation.referencesMounicou, S., J., S., D., A., C., B., & and Lobinski, R. (2003). Concentrations and bioavailability of cadmium and lead in cocoa powder and related products. Food Additives & Contaminants, 20(4), 343–352. https://doi.org/10.1080/0265203031000077888
dc.relation.referencesNaresh, P., Roy, S. D., Pawaskar, P. V., Lokhande, P. S., Gajbhiye, R. L., & Peraman, R. (2025). Analytical quality by design guided white analytical chemistry driven green in the development of LC-ICP-MS method for arsenic speciation analysis in HEK-293 cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1252. https://doi.org/10.1016/j.jchromb.2025.124474
dc.relation.referencesNewton, A., Rule, A. M., Serdar, B., & Koehler, K. (2023). Laboratory comparison of field portable X-ray fluorescence spectrometer (FP-XRF) and inductively coupled plasma mass spectrometry (ICP-MS) for determination of airborne metals in stainless steel welding fume. Journal of Occupational and Environmental Hygiene, 20(11), 536–544. https://doi.org/10.1080/15459624.2023.2244022
dc.relation.referencesOkiyama, D. C. G., Navarro, S. L. B., & Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology, 63, 103–112. https://doi.org/10.1016/J.TIFS.2017.03.007
dc.relation.referencesOrganismo Nacional de Acreditación de Colombia - ONAC. (2024). CEA-3.0-04. Política para la participación en ensayos de aptitud o comparaciones interlaboratorios. https://onac.org.co/?jet_download=a2acdff06e7ce9811850b97487ee2260eba25884
dc.relation.referencesPark, J., Kim, J. Y., Lee, K., Kim, M. S., Kim, M. J., & Choi, J. W. (2020). Comparison of acid extraction and total digestion methods for measuring Cd isotope ratios of environmental samples. Environmental Monitoring and Assessment, 192(1), 1–10. https://doi.org/10.1007/s10661-019-8017-8
dc.relation.referencesPena-Pereira, F., Wojnowski, W., & Tobiszewski, M. (2020). AGREE - Analytical GREEnness Metric Approach and Software. Analytical Chemistry, 92(14), 10076–10082. https://doi.org/10.1021/acs.analchem.0c01887
dc.relation.referencesPerkinElmer. (2022). Preparing your lab. ICP-Optical Emission Spectroscopy. https://resources.perkinelmer.com/lab-solutions/resources/docs/pyl-avio-550-560-max-icp-oes-preparing-your-lab-135925.pdf
dc.relation.referencesPerkinElmer. (2023). Avio ICP-OES. Consumables and supplies. https://cromatec.ro/pdf/179-Consumabile%20ICP-OES.pdf
dc.relation.referencesPłotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta, 181, 204–209. https://doi.org/10.1016/j.talanta.2018.01.013
dc.relation.referencesPłotka-Wasylka, J., & Wojnowski, W. (2021). Complementary Green Analytical Procedure Index (ComplexGAPI) and software. Green Chemistry, 23(21), 8657–8665. https://doi.org/10.1039/d1gc02318g
dc.relation.referencesPothuraju, N., Pogula, H. K., Jagdale, R., Vadla, U. K., Gajbhiye, R. L., Parihar, V. K., Velayutham, R., & Peraman, R. (2025). Impact of microwave-assisted acid extraction (MW-AAE) methods on simultaneous ICP-MS analysis of multi-elements in edibles besides associated greenness and human health risk assessment. Environmental Monitoring and Assessment, 197(3). https://doi.org/10.1007/s10661-025-13788-y
dc.relation.referencesQingya, W., Li, F., Jiang, X., Hao, J., Zhao, Y., Wu, S., Cai, Y., & Huang, W. (2022). Quantitative analysis of soil cadmium content based on the fusion of XRF and Vis-NIR data. Chemometrics and Intelligent Laboratory Systems, 226, 1–8. https://doi.org/10.1016/j.chemolab.2022.104578
dc.relation.referencesQuesado, P., & Silva, R. (2021). Activity-based costing (ABC) and its implication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 1–20. https://doi.org/10.3390/joitmc7010041
dc.relation.referencesQuiroga-Mateus, R., López-Zuleta, S., Chávez, E., & Bravo, D. (2022). Cadmium-Tolerant Bacteria in Cacao Farms from Antioquia, Colombia: Isolation, Characterization and Potential Use to Mitigate Cadmium Contamination. Processes, 10(8). https://doi.org/10.3390/pr10081457
dc.relation.referencesRamírez-Camejo, L. A., Rodríguez, C., & Florez-Buitrago, X. (2025). Phytopathogenic fungi and oomycetes causing diseases in Theobroma cacao: Chemical and genetic features. Fungal Biology, 129(3), 101551. https://doi.org/10.1016/J.FUNBIO.2025.101551
dc.relation.referencesRasmussen, H. T., & Huang, K. (2012). Chromatographic Separations and Analysis: Chromatographic Separations and Analysis of Enantiomers. En Comprehensive Chirality (pp. 96–114). Elsevier. https://doi.org/10.1016/B978-0-08-095167-6.00831-4
dc.relation.referencesRayner, M. H., & Sadler, P. J. (1990). Precipitation of cadmium in a bacterial culture medium: Luria-Bertani broth. FEMS Microbiology Letters, 71, 253–258. https://doi.org/https://doi.org/10.1111/j.1574-6968.1990.tb03832.x
dc.relation.referencesRodríguez Giraldo, Y., Rodriguez Sánchez, E., Torres, L. G., Montenegro, A. C., & Pichimata, M. A. (2022). Development of validation methods to determine cadmium in cocoa almond from the beans by ICP-MS and ICP-OES. Talanta Open, 5, 1–6. https://doi.org/10.1016/J.TALO.2021.100078
dc.relation.referencesRodríguez-Giraldo, Y., Rodriguez-Sánchez, E., Cifuentes-Muñoz, E.-A., Martínez-Hernandez, Y., & Pichimata-Sanabria, M.-A. (2024). Development and comparison of two validated methods to determine cadmium and arsenic in Colombian rice by ICP-MS and ICP-OES*. Biotecnología en el sector agropecuario y agroindustrial, 22(2), 72–87. https://doi.org/10.18684/rbsaa.v22.n2.2024.2345
dc.relation.referencesRomero-Estévez, D., Yánez-Jácome, G. S., Simbaña-Farinango, K., & Navarrete, H. (2019). Content and the relationship between cadmium, nickel, and lead concentrations in Ecuadorian cocoa beans from nine provinces. Food Control, 106. https://doi.org/10.1016/j.foodcont.2019.106750
dc.relation.referencesSchlegel, H. G., Kaltwasser, H., & Gottschalk, G. (1961). Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Archiv für Mikrobiologie, 38(3), 209–222. https://doi.org/10.1007/BF00422356
dc.relation.referencesSchlosser, D. M., Lechner, P., Lutz, G., Niculae, A., Soltau, H., Strüder, L., Eckhardt, R., Hermenau, K., Schaller, G., Schopper, F., Jaritschin, O., Liebel, A., Simsek, A., Fiorini, C., & Longoni, A. (2010). Expanding the detection efficiency of silicon drift detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 624(2), 270–276. https://doi.org/10.1016/J.NIMA.2010.04.038
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2008). Principios de análisis instrumental (S. A. Cengage Learning Editores, Ed.; M. B. Josefina Anzures, Trad.; 6a ed., pp. 303–331). Cengage Learning.
dc.relation.referencesStrüder, L., Lechner, P., & Leutenegger, P. (1998). Silicon drift detector-the key to new experiments The silicon drift detector principle. Naturwissenschaften, 85, 539–543. https://doi.org/doi.org/10.1007/s001140050545
dc.relation.referencesSu, B. G., Chen, S. F., Yeh, S. H., Shih, P. W., & Lin, C. C. (2016). Cost evaluation of clinical laboratory in Taiwan’s National Health System by using activity-based costing. Clinical Chemistry and Laboratory Medicine, 54(11), 1753–1758. https://doi.org/10.1515/cclm-2016-0193
dc.relation.referencesThomas, E., Atkinson, R., Zavaleta, D., Rodriguez, C., Lastra, S., Yovera, F., Arango, K., Pezo, A., Aguilar, J., Tames, M., Ramos, A., Cruz, W., Cosme, R., Espinoza, E., Chavez, C. R., & Ladd, B. (2023). The distribution of cadmium in soil and cacao beans in Peru. Science of the Total Environment, 881. https://doi.org/10.1016/j.scitotenv.2023.163372
dc.relation.referencesUnidad de Planificación Rural Agropecuaria - UPRA. (2022). Cacao de Arauca con potencial para la exportación a Europa. https://www.agronet.gov.co/Noticias/Paginas/Cacao-de-Arauca-con-potencial-para-la-exportaci%C3%B3n-a-Europa.aspx
dc.relation.referencesUnión Europea. (2023). Reglamento (UE) 2023/915 de la Comisión de 25 de abril de 2023. http://data.europa.eu/eli/reg/2023/915/2024-07-22
dc.relation.referencesUnited Nations. (2023). United Nations, Globally Harmonized System of Classification and Labeling of Chemicals (GHS, Rev. 10). https://unece.org/transport/dangerous-goods/ghs-rev10-2023
dc.relation.referencesUSDA. (2018). China Releases the Standard for MaximumLevels of Contaminants in Foods. GAIN Report Number: CH18025. Prepared by Foreign Agricultural Office (FAS) of Agricultural Affairs. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=China%20Releases%20the%20Standard%20for%20Maximum%20Levels%20of%20Contaminants%20in%20Foods_Beijing_China%20-%20People%27s%20Republic%20of_CH2023-0040.pdf
dc.relation.referencesUsman, M., Zia-ur-Rehman, M., Rizwan, M., Abbas, T., Ayub, M. A., Naeem, A., Alharby, H. F., Alabdallah, N. M., Alharbi, B. M., Qamar, M. J., & Ali, S. (2023). Effect of soil texture and zinc oxide nanoparticles on growth and accumulation of cadmium by wheat: a life cycle study. Environmental Research, 216. https://doi.org/10.1016/j.envres.2022.114397
dc.relation.referencesVacchi, A. (2024). Silicon Drift Detectors. En C. Bambi & A. Santangelo (Eds.), Handbook of X-ray and Gamma-ray Astrophysics (pp. 609–661). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6960-7_18
dc.relation.referencesVanderschueren, R., Montalvo, D., De Ketelaere, B., Delcour, J. A., & Smolders, E. (2019). The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. Journal of Food Composition and Analysis, 83, 103277. https://doi.org/https://doi.org/10.1016/j.jfca.2019.103277
dc.relation.referencesWang, X., Li, D., Gao, P., Gu, W., He, X., Yang, W., & Tang, W. (2020). Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. Ecotoxicology and Environmental Safety, 198, 110655. https://doi.org/10.1016/J.ECOENV.2020.110655
dc.relation.referencesWang, Y., Dong, S., Xiao, J., Hu, Q., & Zhao, L. (2022). A Rapid and Multi-Element Method for the Determination of As, Cd, Ni, Pb, Sn, and Zn in Scallops Using High Definition X-Ray Fluorescence (HDXRF) Spectrometry. Food Analytical Methods, 15(10), 2712–2724. https://doi.org/10.1007/s12161-022-02323-1
dc.relation.referencesWang, Y., Yu, M., Pei, L., & Zhao, L. (2023). Rapid detection of cadmium and arsenic in dried Auricularia auricula by high definition X-ray fluorescence spectrometry. Science and Technology of Food Industry, 44(9), 333–339. https://doi.org/10.13386/j.issn1002-0306.2022060260
dc.relation.referencesWilbur, S. (2005). A comparision of the relative cost and productivity of traditional metals analysis techniques versus ICP-MS in high throughput commercial laboratories. Aplication. https://www.agilent.com/cs/library/applications/5989-1585EN.pdf
dc.relation.referencesWilliams, R., Taylor, G., & Orr, C. (2020). pXRF method development for elemental analysis of archaeological soil. Archaeometry, 62(6), 1145–1163. https://doi.org/10.1111/arcm.12583
dc.relation.referencesWojnowski, W., Tobiszewski, M., Pena-Pereira, F., & Psillakis, E. (2022). AGREEprep – Analytical greenness metric for sample preparation. En TrAC - Trends in Analytical Chemistry (Vol. 149). Elsevier B.V. https://doi.org/10.1016/j.trac.2022.116553
dc.relation.referencesXing, Y., Zhang, H., Yang, Z., Song, W., Long, W., Zhu, R., Chang, R., & Zhang, L. (2022). Evaluation of 20 Elements in Soils and Sediments by ED-XRF of Monochromatic Excitation. Metals, 12(11), 1–15. https://doi.org/10.3390/met12111798
dc.relation.referencesYuan, C., Li, Q., Sun, Z., & Sun, H. (2021). Effects of natural organic matter on cadmium mobility in paddy soil: A review. En Journal of Environmental Sciences (China) (Vol. 104, pp. 204–215). Chinese Academy of Sciences. https://doi.org/10.1016/j.jes.2020.11.016
dc.relation.referencesZ-spec. (2022). Z-Spec E-max user manual.
dc.relation.referencesZ-Spec. (2023a). Cotización MXRF E-max.
dc.relation.referencesZ-Spec. (2023b, octubre 15). E-max Rapid cadmium testing in food. https://img1.wsimg.com/blobby/go/df821832-6421-47a2-b246-170f5e126806/downloads/Application%20note_E-max%20for%20food.pdf?ver=1676564501001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.proposalMXRFspa
dc.subject.proposalValidaciónspa
dc.subject.proposalVerdor analíticospa
dc.subject.proposalEco-escala analíticaspa
dc.subject.proposalAGREEspa
dc.subject.proposalAnálisis de costos basado en actividadesspa
dc.subject.proposalABCspa
dc.subject.proposalMXRFeng
dc.subject.proposalValidationeng
dc.subject.proposalAnalytical greennesseng
dc.subject.proposalAnalytical eco-scaleeng
dc.subject.proposalAGREEeng
dc.subject.proposalActivity-based cost analysiseng
dc.subject.proposalABCeng
dc.subject.wikidatametal pesadospa
dc.subject.wikidataheavy metaleng
dc.subject.wikidataanálisis químicospa
dc.subject.wikidatachemical analysiseng
dc.subject.wikidataTheobroma cacaospa
dc.subject.wikidataTheobroma cacaoeng
dc.titleEvaluación de la espectrometría de fluorescencia de rayos X monocromática como técnica de análisis de cadmio en cacao del departamento de Araucaspa
dc.title.translatedEvaluation of monochromatic X-ray fluorescence spectrometry as a cadmium analysis technique in cacao from the department of Araucaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis.pdf
Tamaño:
4.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: