Documentación de métodos de titulación coulométrico a corriente constante para la determinación de la cantidad de sustancia

dc.contributor.advisorRomero Malagón, Eduard Ricardospa
dc.contributor.authorTorres Quezada, Henryspa
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍAspa
dc.date.accessioned2020-09-03T20:36:02Zspa
dc.date.available2020-09-03T20:36:02Zspa
dc.date.issued2020-02-20spa
dc.description.abstractCoulometry is one of the analytical techniques used by the National Metrology Institutes as a pure substance analysis tool, and they are being accepted and implemented in chemical analysis laboratories. This document presents a review of the coulometric titration method with emphasis on constant current coulometry, as a technique of special interest for the determination of the amount of substance, recognized by the Consultative Committee for Amount of Substance: Metrology in Chemistry (CCQM) as a potential technique to be considered primary method of measurement. The document is organized in four chapters: in chapter one a description is made of the analytical methods, especially electrochemicals and their usefulness in the metrological area. A comparison is made between chemical and physical measurements and a description of the measurement methods and the importance of the primary measurement methods for the determination of the amount of substance. In chapter two, coulometry is presented as an analytical technique, types of coulometry, characteristics and variants of each. Chapter three documents the constant current coulometry, showing the different instruments used to perform the measurement, such as electronic equipment, indicator electrodes and the titration cell where the electrochemical reaction is carried out. Finally, chapter four is presented, dedicated to the evaluation of the possible sources that can contribute to the estimation of uncertainty in measurement in a coulometric titration at constant current, which can be taken into account in a future implementation of the method of coulometric measurementspa
dc.description.abstractLa coulometría es una de las técnicas analíticas utilizadas por los Institutos Nacionales de Metrología como herramienta de análisis de sustancias puras, y están siendo aceptada e implementadas en los laboratorios de análisis químico. En el presente documento se presenta una revisión del método de titulación coulométrico haciendo énfasis en coulometría a corriente constante, como técnica de especial interés para la determinación de la cantidad de sustancia, reconocida por el Comité Consultivo para la Cantidad de Sustancia: metrología en química (CCQM por sus siglas en inglés) como técnica potencial para ser considera método primario de medición. El documento está organizado en cuatro capítulos: en el capítulo uno se realiza una descripción de los métodos analíticos, especialmente los electroquímicos y su utilidad en el área metrológica. Se hace una comparación entre las mediciones químicas y físicas y se presenta una descripción de los métodos de medición y la importancia de los métodos primarios de medición para la determinación de la cantidad de sustancia. En el capítulo dos, se presenta la coulometría como técnica analítica, tipos de coulometría, características y variantes de cada una. El capítulo tres documenta la coulometría a corriente constante, mostrando los diferentes instrumentos utilizados para realizar la medición, tales como equipos electrónicos, electrodos indicadores y la celda de valoración donde se lleva a cabo la reacción electroquímica. Por último, se presenta el capítulo cuatro, dedicado a evaluación de las posibles fuentes que puedan aportar a la estimación de la incertidumbre en la medición en una titulación coulométrica a corriente constante, las cuales pueden ser tenidas en cuenta en una futura implementación del método de medición coulométrico.spa
dc.description.degreelevelMaestríaspa
dc.format.extent74spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78375
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesM. Máriássy, K. W. Pratt, and P. Spitzer, “Major applications of electrochemical techniques at national metrology institutes,” Metrologia, vol. 46, pp. 199–213, 2009.spa
dc.relation.referencesBIPM, “Comité consultatif pour la quantité de matière (CCQM)” Sèvres Cedex, France, 1995.spa
dc.relation.referencesBureau International des Poinds et Mesures BIPM, “The International System of Units.” International Committee for Weights and Measures CIPM, Paris, pp. 114–115, 2006.spa
dc.relation.referencesPTB-Mitteilungen, “Experimentos para el nuevo SI, el Sistema Internacional de Unidades,” 2016.spa
dc.relation.referencesJ. M. L. Romero and R. J. Lazos Martínez, “Constantes fundamentales: lá ultima frontera para el Sistema Internacional de Unidades,” 2011.spa
dc.relation.referencesM. J. T. Milton and T. J. Quinn, “Primary methods for the measurement of amount of substance,” Metrologia, vol. 38, no. 4, pp. 289–296, 2001.spa
dc.relation.referencesG. I. Terentiev, A. V Sobina, A. J. Shimolin, and V. M. Zyskin, “Application of Coulometric Titration for the Certification of Primary Reference Materials of Pure Substances,” Am. J. Anal. Chem., vol. 5, no. June, pp. 559–565, 2014.spa
dc.relation.referencesS. P. Sobral, P. P. Borges, I. Cristina, and S. Fraga, “Determinação Coulométrica Da Pureza Do Hidrogenoftalato De Potássio Para O Desenvolvimento De Material De Referência Certificado De Padrões Primários,” Analysis, pp. 9–11, 2009.spa
dc.relation.referencesP. P. Borges, I. C. S. Fraga, V. De Souza, S. Pereira Sobral, J. Cesar Dias, and B. S. R. Marques, “Análise da pureza do cloreto de potássio pelo sistema primário de coulometria,” 14o Encontro Nacional de Química Analítica, Joao Pessoa - Brasil, 2007.spa
dc.relation.referencesM. Máriássy, A. Skutina, and P. P. Borges, “Final report on key comparison CCQM-K34.2: Assay of potassium hydrogen phthalate,” Metrologia, vol. 47, no. 1A, pp. 08003–08003, 2010.spa
dc.relation.referencesM. Máriássy, L. Vyskočil, and A. Mathiasová, “Link to the SI via primary direct methods,” Accredit. Qual. Assur., no. 5, pp. 437–440, 2000.spa
dc.relation.referencesW. Richter, “Primary methods of measurement in chemical analysis,” Accredit. Qual. Assur., vol. 2, no. 8, pp. 354–359, 1997.spa
dc.relation.referencesBIPM, “Report of the 20th meeting. Consultative Committee for Amount of Substance: metrology in chemistry (CCQM).,” 2014.spa
dc.relation.referencesA. Takatsu, S. Eyama, and M. Saeki, “Preparation and certification of creatinine and urea reference materials with certified purity as a traceability source in clinical chemical measurements,” Accredit. Qual. Assur., vol. 13, no. 7, pp. 409–413, 2008spa
dc.relation.referencesR. Yanet et al., “Trazabilidad en las mediciones químicas,” Redalyc, pp. 1–20, 2006.spa
dc.relation.referencesI. Asimov and M. I. Villena, Breve historia de la química: Introducción a las ideas y conceptos de la química. Alianza Editorial, 2010.spa
dc.relation.referencesS. K. Lower, Electrochemistry a Chem1 Supplement Text. Simon Fraser University, 1994.spa
dc.relation.referencesK.-H. Lubert and K. Kalcher, “History of Electroanalytical Methods,” Electroanalysis, no. april 26, pp. 1937–1946, 2010.spa
dc.relation.referencesM. Valcárcel, Principles of Analytical Chemistry, vol. 53. 1989.spa
dc.relation.referencesM. Valcárcel and S. Cárdenas, Automatización y miniaturización en química analítica - Miguel Valcárcel - Google Libros, Primera Ed. Barcelona: Springer-Verlag Ibérica, 2000.spa
dc.relation.referencesG. K. Budnikov and V. I. Shirokova, “Electroanalytical Methods, Contents,” J. Anal. Chem., vol. 45, no. 10, pp. 973–984, 2006.spa
dc.relation.referencesJ. Wang, Analytical Electrochemistry, Third Edition. New York, USA: John Wiley & Sons, 2006.spa
dc.relation.referencesD. A. Skoog, F. J. Holler, and T. A. Nieman, Principios de Análisis Instrumental, Quinta Edi. Madrid- España: McGraw-Hill, 2001.spa
dc.relation.referencesK. A. Rubinsun and J. F. Rubinsun, Analisis Instrumental. Madrid- España: Prentice Hall, 2001.spa
dc.relation.referencesL. S. Horst Czichos, Tetsuya Saito, Springer Handbook of Materials Measurement Methods. Springer Science, 2006.spa
dc.relation.referencesB. N. Taylor, “The International System of Units (SI) NIST Special Publication 330. 2008 Edition,” 2008.spa
dc.relation.referencesM. Stock, R. Davis, E. De Mirandés, and M. J. T. Milton, “The revision of the SI - The result of three decades of progress in metrology,” Metrologia, vol. 56, no. 2. Institute of Physics Publishing, 22-Feb-2019.spa
dc.relation.referencesJ. Fischer and J. Ullrich, “The new system of units,” Nat. Phys., vol. 12, no. 1, pp. 4–7, 2016.spa
dc.relation.referencesA. P. Castorena, C. N. De Metrología, L. Cués, and E. Marqués, “Trazabilidad en las mediciones químicas,” pp. 1–20, 2006.spa
dc.relation.referencesP. De Bièvre, R. Dybkaer, A. Fajgelj, and D. B. Hibbert, “Metrological traceability of measurement results in chemistry: Choncepts and implementation (IUPAC Technical Report),” Pure Appl. Chem., vol. 83, no. 10, pp. 1873-1935 (1891), 2011.spa
dc.relation.referencesP. De Bièvre, R. Kaarls, H. S. Peiser, S. D. Rasberry, and W. P. Reed, “Measurement principles for traceability in chemical analysis,” Accredit. Qual. Assur., vol. 1, no. 1, pp. 3–13, Jan. 1996.spa
dc.relation.references“CODATA Value: Avogadro constant.” [Online]. Available: https://physics.nist.gov/cgi-bin/cuu/Value?na. [Accessed: 01-Jan-2020].spa
dc.relation.referencesN. Wheatley, “A sorites paradox in the conventional definition of amount of substance,” Metrologia, vol. 48, no. 3, 2011.spa
dc.relation.referencesBureau International des Poinds et Mesures (BIPM), “Resolution 1 of the 24th CGPM,” 2011.spa
dc.relation.references“BIPM - SI base unit (mole).” [Online]. Available: https://www.bipm.org/metrology/chemistry-biology/units.html. [Accessed: 25-Jan-2020].spa
dc.relation.referencesCCQM, “Mise en pratique - mole - Appendix 2 - SI Brochure,” 2019.spa
dc.relation.referencesJoint Committee For Guides In Metrology (JCGM), “International vocabulary of metrology — Basic and general concepts and associated terms (VIM),” vol. 3, no. VIM. p. 104, 2008.spa
dc.relation.references“CODATA Value: Faraday constant.” [Online]. Available: https://physics.nist.gov/cgi-bin/cuu/Value?f. [Accessed: 12-Jan-2020].spa
dc.relation.referencesB. King, “Review of the potential of titrimetry as a primary method,” Metrologia, vol. 34, no. 1, p. 77, 1997spa
dc.relation.referencesGoldbook, “Coulometric Detection Method in Electrochemical Analysis,” IUPAC Compend. Chem. Terminol., vol. 62, p. 2186, 2014.spa
dc.relation.referencesP. C. Hauser, “Coulometry,” Sensors And Actuators, pp. 234–240, 2005.spa
dc.relation.referencesH. L. Kies, “Coulometry,” J. Electroanal. Chem., vol. 4, pp. 257–286, 1962.spa
dc.relation.referencesK. W. Pratt, “Automated , high-precision coulometric titrimetry Part I . Engineering and implementation,” Anal. Chim. Acta, vol. 289, pp. 125–134, 1994.spa
dc.relation.referencesK. W. Pratt, “Automated, high-precision coulometric titrimetry part II. Strong and weak acids and bases,” Anal. Chim. Acta, vol. 289, no. 2, pp. 135–142, 1994.spa
dc.relation.referencesI. C. Serta Fraga et al., “Certified reference material of bioethanol for metrological traceability in electrochemical parameters analyses,” Talanta, vol. 99, pp. 99–103, 2012.spa
dc.relation.referencesP. P. Borges and W. B. D. S. Junior, “International comparisons for coulometric determinations of dichromate used to develop certified reference material for oxidation-reduction titration,” J. Braz. Chem. Soc., vol. 25, no. 6, pp. 1101–1107, 2014.spa
dc.relation.referencesT. L. Frazzini, M. K. Holland, J. R. Weiss, and C. E. Pietri, “A digital integrator for controlled-potential coulometry,” Anal. Chim. Acta, vol. 129, no. C, pp. 125–132, 1981.spa
dc.relation.referencesK. Kellner, T. Posnicek, J. Ettenauer, K. Zuser, and M. Brandl, “A New, Low-cost Potentiostat for Environmental Measurements with an Easy-to-use PC Interface,” Procedia Eng., vol. 120, pp. 956–960, Jan. 2015.spa
dc.relation.referencesO. V. Shlyamina, G. K. Ziyatdinova, S. G. Abdullina, and G. K. Budnikov, “Use of galvanostatic coulometry for determining nitroxoline,” J. Anal. Chem., vol. 62, no. 10, pp. 957–959, 2007.spa
dc.relation.referencesS. G. Abdullina, I. K. Petrova, O. A. Lira, G. K. Ziyatdinova, and H. C. Budnikov, “Use of galvanostatic coulometry in the analysis of arbidol drug,” J. Anal. Chem., vol. 67, no. 3, pp. 269–272, 2012.spa
dc.relation.referencesA. Siddiqui and D. C. Shelly, “Amperostatic-potentiometric detection for micro high- performance liquid chromatography,” J. Chromatogr., vol. 691, pp. 55–65, 1995.spa
dc.relation.referencesEdress-Hauser, “Medición del pH en procesos industriales. Guía técnica y de selección para distintas industrias y aplicaciones,” Barcelona (España), 2001.spa
dc.relation.referencesP. Bruttel and R. Schlink, “Water Determination by Karl Fischer Titration.” Metrhom. 2003.spa
dc.relation.referencesS. Yazgan, A. Bernreather, F. Ulberth, and H. Isendard, “Water – an important parameter for the preparation and proper use of certified reference materials,” Food Chem., vol. 96, no. 3, pp. 411–417, Jun. 2006.spa
dc.relation.referencesK. Schöffski, “New Karl Fischer reagents for the water determination in food,” Food Control, vol. 12, no. 7, pp. 427–429, Oct. 2001.spa
dc.relation.referencesC. C. Chan, H. Lam, Y. C. Lee, and Z. Xue-Ming, Analytical Method Validation and Instrument Performance Verication. New Jersey: Wiley-Intercience, 2004.spa
dc.relation.referencesH. Wang, K. Ma, W. Zhang, J. Li, G. Sun, and H. Li, “Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance,” Food Chem., vol. 134, no. 4, pp. 2362–2366, 2012.spa
dc.relation.referencesL. M. Schwartz and J. E. Harrar, “Predictive coulometry based on first-order kinetic linearization,” Anal. Chim. Acta, vol. 155, no. C, pp. 66–77, 1983.spa
dc.relation.referencesA. J. Bard, G. Inzelt, and F. Scholz, “Electrochemical Dictionary,” 2012.spa
dc.relation.referencesS. Recknagel, M. Breitenbach, J. Pautz, and D. Lück, “Purity of potassium hydrogen phthalate, determination with precision coulometric and volumetric titration-A comparison,” Anal. Chim. Acta, vol. 599, no. 2, pp. 256–263, 2007.spa
dc.relation.referencesT. Asakai, M. Murayama, and T. Tanaka, “Determination of the purity of acidimetric standards by constant-current coulometry, and the intercomparison between CRMs,” Accredit. Qual. Assur., vol. 12, no. 3–4, pp. 151–155, 2007.spa
dc.relation.referencesT. Yoshimori, Takayoshi; Tanaka, “Precise Coulometric Titration of the Potassium Hydrogen Phthalate (NBS-SRM 84d). The use of the Faraday Constant as an International standard,” Bull. Chem. Soc. Japa, vol. 52 (5), pp. 1366–1379, 1979.spa
dc.relation.referencesP. P. Borges, I. C. S. Fraga, S. P. Sobral, B. D. S. R. Marques, J. C. Dias, and V. S. Cunha, “Constant-Current Coulometry Studies for Assay of Primary Reference Materials To Develop Standards for Titrimetric Analysis,” Simposio de Metrología, pp. 1–5, 2008.spa
dc.relation.referencesP. P. Borges et al., “Caracterizacao de KCl e solucoes de HCl por titulacao coulométrica para o monitoramento da qualidade da água,” Congresso da Qualidade em Metrologia, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial - Inmetro, São Paulo, Brasil CARACTERIZAÇÃO, 2008.spa
dc.relation.referencesP. P. Borges, I. C. S. Fraga, B. S. R. Marques, and J. C. Dias, “O Sistema Primario de Coulometria e o seu uso na certificacao de materiais de referencia,” Congresso da Qualidade em Metrologia Rede Metrológica do Estado de São Paulo - REMESP, São Paulo, Brasil, pp. 1–3, 2007.spa
dc.relation.referencesP. P. Borges and W. B. da Silva, “Metrological evaluation of the certification of primary reference materials characterized by high precision constant current coulometry for the reliability of the titration analyses,” J. Appl. Electrochem., vol. 44, no. 12, pp. 1411–1420, 2014.spa
dc.relation.referencesA. Reyes, G. Moreno, R. Arvizu, and M. Pedrero, “Optimización del sistema primario de titulación coulombimétrica a corriente constante del cenam.,” Simp. Metrol., 2001.spa
dc.relation.referencesM. Elba Pedrero, “Caracterización De Las Fuentes De Incertidumbre Y Optimización Del Sistema Primario De Titulación Coulombimétrica,” 2002.spa
dc.relation.referencesE. Kirowa-Eisner, D. Tzur, and V. Dozortsev, “New developments in coulometric titrations non-isolated counter electrodes,” Anal. Chim. Acta, vol. 359, no. 1–2, pp. 115–123, 1998.spa
dc.relation.referencesH. Parham and B. Zargar, “Simultaneous coulometric determination of iodide, bromide and chloride in a mixture by automated coupling of constant current chronopotentiometry and square wave voltammetry,” Anal. Chim. Acta, vol. 464, no. 1, pp. 115–122, 2002.spa
dc.relation.referencesS. Carroll, M. M. Marei, T. J. Roussel, R. S. Keynton, and R. P. Baldwin, “Microfabricated electrochemical sensors for exhaustive coulometry applications,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 318–326, 2011.spa
dc.relation.referencesR. C. Alkire and D. M. Kolb, Advances in Electrochemical Science and Engineeriing. Vol 7, vol. 7. Wile-VCH Verlang GmbH, 2001.spa
dc.relation.referencesC. Amendment, “Electrochemical Detection (Amperometry, Voltametry and Coulometry),” in Electrochemical Detection, 2016, pp. 291–321.spa
dc.relation.referencesKenneth A. Rubinson and J. F. Rubisson, Análisis Instrumental. Madrid, España: Prentice Hall, 2001.spa
dc.relation.referencesG. J. Hills and D. J. G. Ives, “The hydrogen–calomel cell. Part II. The calomel electrode,” J. Chem. Soc., vol. 0, no. 0, pp. 311–318, 1951.spa
dc.relation.referencesR. G. Bates and R. A. Robinson, “Standardization of silver-silver chloride electrodes from 0 to 60 °C,” J. Solution Chem., vol. 9, no. 7, pp. 455–456, Jul. 1980.spa
dc.relation.referencesR. G. Bates and V. E. Bower, “Treasure of the past VI. Standard potential of the silver-silver chloride electrode from 0o to 95o C and the thermodynamic propiesties of dilute hydrochloric acid solution,” J. Res. Natl. Inst. Stand. Technol., vol. 53, no. 2, pp. 471–478, 2001.spa
dc.relation.referencesP. J. Brewer, D. Stoica, and R. J. C. Brown, “Sensitivities of key parameters in the preparation of silver/silver chloride electrodes used in Harned cell measurements of pH,” Sensors, vol. 11, no. 8, pp. 8072–8084, 2011.spa
dc.relation.referencesP. J. Brewer and R. J. C. Brown, “Effect of structural design of silver/silver chloride electrodes on stability and response time and the implications for improved accuracy in pH measurement,” Sensors, vol. 9, no. 1, pp. 118–130, 2009.spa
dc.relation.referencesS. K. Lower, “Electrochemistry,” Simon Fraser Univ., pp. 1–39, 1994.spa
dc.relation.referencesDaniel C. Harris, Quantitative Chemical Analysis, Seventh Ed. New York, USA: W. H. Freeman and Company, 2007.spa
dc.relation.referencesW. C. Milner and G. Phillips, Coulometry in Analytical Chemistry. 1967.spa
dc.relation.referencesC. N. Reilley and R. W. Schmid, “Chelometric Titrations with Potentiometric End Point Detection: Mercury as pM Indicator Electrode,” Anal. Chem., vol. 30, no. 5, pp. 947–953, 1958.spa
dc.relation.referencesE. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. 2005.spa
dc.relation.referencesA. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications. New York, USA: John Wiley & Sons, Inc., 2001.spa
dc.relation.referencesA. R. Gennaro, J. P. (Joseph P. Remington, and S. Belluci, Remington farmacia. Editorial Médica Panamericana, 2003.spa
dc.relation.referencesR. L. A. Villela, P. P. Borges, and L. Vyskočil, “Comparison of methods for accurate end-point detection of potentiometric titrations,” J. Phys. Conf. Ser., vol. 575, p. 6, 2015.spa
dc.relation.referencesW. F. Koch, D. P. Poe, and H. Diehl, “Location of end-points in high precision coulometry,” Talanta, vol. 22, no. 7, pp. 609–611, 1975.spa
dc.relation.referencesP. P. Borges, I. C. Fraga, A. P. Ordine, H. C. Carnaval, B. S. Rossini, and J. C. Dias, “Potentiometric titration of hydrochloric acid dilute solution using a metrological approach,” XVIII IMEKO WORLD CONGRESS, Rio de Janeiro, Brazil, pp. 4–6, 2006.spa
dc.relation.referencesCRISON, “La celda de conductividad. Partes esenciales y consideraciones prácticas,” 2004.spa
dc.relation.referencesMetrohm, “pHt Kit- Give your electrodes a treat.” 2010.spa
dc.relation.referencesElectrodos Thermo Scientific Orion, “Electrodos de pH,” 2009.spa
dc.relation.referencesC. M. A. Brett, A. N. A. Maria, and O. Brett, Principles , Methods , and Applications. Great Britain: Bookcraft (Bath) Ltd., 1994.spa
dc.relation.referencesK. Izutsu, Electrochemistry in Nonaqueous Solutions, vol. 5. Wile-VCH Verlang GmbH and Co, 2002.spa
dc.relation.referencesH. Suarez, R. Cristancho, and H. Torres, “Implementation of Coulometric Titration system at constant current for developing of certified materials as primary standards,” IOP Con. Ser. J. Phys. Conf. Ser., vol. 786, no. 012041, pp. 1–5, 2017.spa
dc.relation.referencesJCGM 100:2008, “Evaluation of measurement data — Guide to the expression of uncertainty in measurement,” 2008.spa
dc.relation.referencesT. Metrol and M. Anal, “Guía Técnica de Trazabilidad Metrológica e Incertidumbre de Medida en las Mediciones Analíticas que Emplean la Técnica de Medición de pH,” pp. 1–47, 2013.spa
dc.relation.referencesBureau International des Poinds et Mesures (BIPM), “Vocabulario Internacional de Metrología. Conceptos Fundamentales, Generales y Términos Asociados (VIM). GTC-ISO/IEC 99,” 2009.spa
dc.relation.referencesEURACHEM, Cuantificación de la Incertidumbre en Mediciones Analíticas Eureachem. 2000.spa
dc.relation.referencesA. Maroto, R. Boqué, J. Riu, and F. X. Rius, “Incertidumbre y precisión,” Tarragona. España, 2000.spa
dc.relation.referencesCENAM (Centro Nacional de Metrología de México) and EMA (Entidad Mexicana de Acreditación), Guía técnica sobre trazabilidad e incertidumbre en las mediciones analíticas que emplean la técnica de pH, vol. 1. 2008, pp. 1–49.spa
dc.relation.referencesComité Internacional de Pesas y Medidas (CIPM), “Sistema Internacional de Unidades (SI),” BIPM, Oficina Internacional de Pesas y Medidas (BIPM), pp. 45–46, 2006.spa
dc.relation.referencesJCGM/ WG 1 and JCGM 100:2008, Evaluación de datos de medición Guía para la Expresión de la Incertidumbre. BIPM, 2008.spa
dc.relation.referencesEURACHEM/CITAC, “Quantifying Uncertainty in Analytical Measurement,” in English, 2012, vol. 3nd, p. 141.spa
dc.relation.referencesICONTEC, “Guía Técnica Colombiana GTC 115. Guía sobre la incertidumbre de la medición para principiantes,” Colombia, 2005.spa
dc.relation.referencesL. A. Rodriguez Saucedo, “Metrología: Conceptos y definiciones,” Bogotá, D.C. (Colombia), 2002.spa
dc.relation.referencesJoint Committee for Guides in Metrology, “Evaluation of measurement data — Supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ — Propagation of distributions using a Monte Carlo method,” Evaluation, vol. JCGM 101:2, p. 90, 2008.spa
dc.relation.referencesS. J. Sáez Ruiz and L. Font Avila, “Incertidumbre de la Medición, Teoría y Práctica,” L&S Consultores, Maracay, Estado de Aragua, 2001.spa
dc.relation.referencesS. a. Margolis, “Amperometric Measurement of Moisture in Transformer Oil Using Karl Fischer Reagents,” Anal. Chem., vol. 67, no. 23, pp. 4239–4246, 1995.spa
dc.relation.referencesB. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” Washington, D.C., U.S., Thechcnical Note 1297, 1994.spa
dc.relation.references“BIPM - Metre Convention.” [Online]. Available: https://www.bipm.org/en/worldwide-metrology/metre-convention/. [Accessed: 12-Jan-2020].spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalCoulometríaspa
dc.subject.proposalCoulometryeng
dc.subject.proposalMétodo de mediciónspa
dc.subject.proposalMeasurement methodeng
dc.subject.proposalMedición químicaspa
dc.subject.proposalChemical measurementeng
dc.subject.proposalCorriente constantespa
dc.subject.proposalConstant currenteng
dc.subject.proposalQuantity of substanceeng
dc.subject.proposalCantidad de sustanciaspa
dc.titleDocumentación de métodos de titulación coulométrico a corriente constante para la determinación de la cantidad de sustanciaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80209094.2020.pdf
Tamaño:
1.31 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: