Evaluación de la susceptibilidad a la anfotericina B de parásitos de Leishmania del subgénero Viannia con resistencia adquirida in vitro a miltefosina

dc.contributor.advisorEcheverry Gaitán, María Claraspa
dc.contributor.advisorOvalle Bracho, Clemencia Elenaspa
dc.contributor.authorCastaño Rodríguez, Marcelaspa
dc.contributor.researchgroupGrupo de Parasitologíaspa
dc.date.accessioned2020-09-04T20:49:31Zspa
dc.date.available2020-09-04T20:49:31Zspa
dc.date.issued2020-03-19spa
dc.description.abstractDentro de los fármacos usados como segunda línea de tratamiento para la leishmaniasis están la anfotericina B y la miltefosina. Los dos medicamentos interfieren con la composición de lípidos en la membrana parasitaria y existe evidencia tanto in vitro como en aislamientos clínicos de resistencia cruzada entre estos medicamentos en especies pertenecientes al subgénero Leishmania Leishmania spp. En Suramérica las especies predominantes pertenecen al subgénero Leishmania Viannia spp. El presente estudio evaluó la ocurrencia de disminución de susceptibilidad a anfotericina B in vitro en parásitos de Leishmania Viannia spp con previa exposición a miltefosina. Los parásitos evaluados correspondían a clones inducidos resistentes y a aislamientos de pacientes tratados con miltefosina. El establecimiento de dosis efectivas 50 (EC50) se hizo por el método de rezarsurina, la cuantificación de mRNA de genes involucrados en la biosíntesis y transporte de lípidos se realizó por RT-qPCR. En los parásitos con inducción experimental de resistencia a miltefosina se observó concomitantemente el aumento en la tolerancia a anfotericina B; acompañado por una disminución en la expresión de enzimas involucradas en la biosíntesis de esterol, esterol metil transferasa y latosterol oxidasa; de una proteína de unión endosoma-lisosoma vamp y del transportador de miltefosina. El limitado número de aislamientos clínicos no presentó una correlación entre los valores EC50 calculados para los dos fármacos. Lo anterior permite concluir que es posible generar resistencia cruzada entre miltefosina y anfotericina b en parásitos del subgénero Leishmania Viannia y se requiere estudios con mayor número de aislamientospa
dc.description.abstractAmong the second-line drugs used to treat Leishmaniasis are amphotericin B and miltefosine, both drugs interfere with the lipid composition of the parasite membrane, there is cross-resistance evidence in vitro and in clinical isolates in species of the Leishmania subgenus, Leishmania leishmania spp. In South America the predominant species belong to the subgenus Leishmania viannia spp. The aim of the study was to evaluate the susceptibility to amphotericin B in vitro in parasites of Leishmania viannia spp with previous exposition to miltefosine. The evaluated parasites were clones induce resistant to miltefosine and clinical isolates that have been previously expose to miltefosine in Leishmaniasis treatment. Resarzurin method was used to stablish the EC50, mRNA quantification of genes involve in sterol biosynthesis was done through a RT-qPCR. It was observed in induce resistant clones to miltefosine a higher tolerance to amphotericin B, accompany by a loss of expression of enzymes involved in the sterol biosynthesis, sterol methyl transferase and lathosterol oxidase, of a protein involve in membrane fusion of endosome-lysosome, vamp and miltefosina transporter. The limit number of clinical isolates did not follow the change in susceptibility observed for the induce resistant clones in both drugs. As a conclusion, is possible to induce cross-resistance between amphotericin B and miltefosina in Leishmania viannia parasites and a bigger sample size of clinical isolates is needed to assess cross-resistance.spa
dc.description.additionalLínea de investigación: Leishmaniasisspa
dc.description.degreelevelMaestríaspa
dc.description.projectProyecto número 212074455505 acuerdo 467-2017spa
dc.description.researchareaLeishmaniasis
dc.description.sponsorshipColcienciasspa
dc.format.extent97spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78396
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Maestría en Infecciones y Salud en el Trópicospa
dc.relation.referencesBañuls, A.-L., M. Hide and FP. Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. 2007 [cited 2017 Jul 7];64:1–458. Available from: https://www.mivegec.ird.fr/images/stories/PDF_files/0013.pdfspa
dc.relation.referencesCorredor A, Kreutzer RD, Tesh RB, Boshell J, Palau MT CE et, Al. Distribution and etiology of leishmaniasis in Colombia. Am J Trop Med Hyg. 1990;42:206–14.spa
dc.relation.referencesEcheverry, Maria Clara Jenny Gaona Narvaez, Sandra Milena Gualtero Trujillo et al. Guía de atención de la leishmaniasis. Med y Lab. 2011;17(11–12):553–75.spa
dc.relation.referencesCroft SL, Sundar * Shyam, Fairlamb and AH. Drug Resistance in Leishmaniasis. Clin Rev. 2006;111–126.spa
dc.relation.referencesPerez-Franco J, Cruz-Barrera M, Robayo M et al. Clinical and parasitological features of patients with American cutaneous leishmaniasis 1that did not respond to treatment with meglumine antimoniate. PLoS Negl Trop Dis. 2016;(Accepted for publication.).spa
dc.relation.referencesDumetz F, Cuypers B, Imamura H, Zander D, D’Haenens E, Maes I, et al. Molecular Preadaptation to Antimony Resistance in Leishmania donovani on the Indian Subcontinent . mSphere. 2018 Apr 18;3(2):e00548-17.spa
dc.relation.referencesRugani JN, Gontijo CMF, Frézard F, Soares RP, Do Monte-Neto RL. Antimony resistance in leishmania (Viannia) braziliensis clinical isolates from atypical lesions associates with increased ARM56/ARM58 transcripts and reduced drug uptake. Mem Inst Oswaldo Cruz. 2019 Jul 1;114(7).spa
dc.relation.referencesFernandez-Prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, et al. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. IJP Drugs Drug Resist [Internet]. 2018 [cited 2020 Feb 7];8:165–73. Available from: https://doi.org/10.1016/j.ijpddr.2018.03.004spa
dc.relation.referencesHendrickx S, Guerin PJ, Caljon G, Croft SL, Maes L. Evaluating drug resistance in visceral leishmaniasis: The challenges. Parasitology. 2018 Apr 1;145(4):453–63.spa
dc.relation.referencesPonte-Sucre A. Introduction: Leishmaniasis -- The Biology of a Parasite. In: PonteSucre A, Diaz E, Padrón-Nieves M, editors. Drug Resistance in Leishmania Parasites: Consequences, Molecular Mechanisms and Possible Treatments [Internet]. Vienna: Springer Vienna; 2013. p. 1–12. Available from: http://dx.doi.org/10.1007/978-3-7091-1125-3_1spa
dc.relation.referencesCampino L, Maia C. The Role of Reservoirs: Canine Leishmaniasis. In: PonteSucre A, Diaz E, Padrón-Nieves M, editors. Drug Resistance in Leishmania Parasites: Consequences, Molecular Mechanisms and Possible Treatments [Internet]. Vienna: Springer Vienna; 2013. p. 45–64. Available from: http://dx.doi.org/10.1007/978-3-7091-1125-3_3spa
dc.relation.referencesD. Sereno, P. Holzmuller JLL. Efficacy of second line drugs on antimonyl-resistant amastigotes of Leishmania infantum. Acta Trop. 2000;74:25–31.spa
dc.relation.referencesProtección. GDCM de S y, INS IN de S, Alimentaria D general de salud y seguridad. Boletín Epidemologico Semanal. 2019;spa
dc.relation.referencesInstituto Nacional de Salud – Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. Boletin epidemiologico semanal. 2016;Número 52:103–5.spa
dc.relation.referencesEcheverry, M.C. et al. Guía de atención de la leishmaniasis. 2007;175-213.spa
dc.relation.referencesNovais PS and FO. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev | Immunol. 2016;1–12.spa
dc.relation.referencesCarlos Gustavo Vieira de Morais, 1, 2 Ana Karina Castro Lima 1, Rodrigo Terra, 1, 3 Rosiane Freire dos Santos, 2 4, Silvia Amaral Gonçalves Da-Silva 4 and Patrícia Maria Lourenço Dutra1. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection. Biomed Res Int. 2015.spa
dc.relation.referencesLouis Maes, Raquel Andreia Inocencio da Luz PC, Yardley and V. Classical Versus Novel Treatment Regimens. Drug Resist Leishmania Parasites. 2013;301– 15.spa
dc.relation.referencesVásquez L, Scorza Dagert JV, Scorza JV, Vicuña-Fernández N, de Peña YP, López S et al. Pharmacokinetics of experimental pentavalent antimony after intramuscular administration in adult volunteers. Curr Ther Res Clin Exp. 2006;67(3):193–203.spa
dc.relation.referencesHC M. Drug resistance in visceral leishmaniasis. Drug Resist Visc leishmaniasis. 2010;61(75):21.spa
dc.relation.referencesCarlos E. Muskus MMV. Metaciclogénesis: un proceso fundamental en la biología de Leishmania. Biomédica. 2002;22.spa
dc.relation.referencesWalters LL, Chaplin GL, Modi GB, Tesh RB. Ultrastructural biology of Leishmania (Viannia) panamensis (=Leishmania braziliensis panamensis) in Lutzomyia gomezi (Diptera: Psychodidae): a natural host-parasite association. Am J Trop Med Hyg [Internet]. 1989 Jan [cited 2017 Nov 27];40(1):19–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2916730spa
dc.relation.referencesRalph Lainson. The Neotropical Leishmania species a brief historical review of their discovery, ecology and taxonomy. Rev Pan-Amaz Saude. 2010;1:13–32.spa
dc.relation.referencesAlexa Kaufer1*, John Ellis1 DS and JB. The evolution of trypanosomatid taxonomy. Parasit Vectors. 2017;10(287):1–17.spa
dc.relation.referencesP.A. Bates and M.E. Rogers. New Insights into the Developmental Biology and Transmission Mechanisms of Leishmania. Curr Mol Med. 2004;4:601–9.spa
dc.relation.referencesSACKS DL. Metacyclogenesis in Leishmania Promastigotes. Exp Parasitol. 1989;69:100–3.spa
dc.relation.referencesSchlein Y RH. Leishmania major and L. donovani: effects on proteolytic enzymes of Phlebotomus papatasi (Diptera, Psychodidae). Exp Parasitol. 1986;62(3):376– 80.spa
dc.relation.referencesGuillermo Arango Duque and Albert Descoteaux. Leishmania survival in the macrophage: where the ends justify the means. Curr Opin Microbiol [Internet]. 2015 [cited 2017 Sep 1];26:32–40. Available from: http://ac.elscdn.com.ezproxy.unal.edu.co/S1369527415000508/1-s2.0-S1369527415000508-main.pdf?_tid=646feda4-8f6c-11e7-bcdf-00000aab0f27&acdnat=1504308316_81679cdc767f6454fcf37a40f4495263spa
dc.relation.referencesAtayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C, et al. Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions. Cell Immunol [Internet]. 2016 Nov [cited 2017 Sep 2];309:7–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0008874916300624spa
dc.relation.referencesOlivier Séguin AD. Leishmania, the phagosome, and host responses: The journey of a parasite. Cell Immunol [Internet]. 2016 [cited 2017 Sep 1];309:1–6. Available from: http://ac.els-cdn.com.ezproxy.unal.edu.co/S0008874916300764/1-s2.0-S0008874916300764-main.pdf?_tid=41481f5e-8f6c-11e7-a88f-00000aab0f02&acdnat=1504308257_412b00527029f9b0fdf9bfd2f397b7cbspa
dc.relation.referencesHandman E. Cell Biology of Leishmania. In 1999 [cited 2017 Jul 6]. p. 1–39. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065308X08602298spa
dc.relation.referencesScott PK& P. Leishmaniasis: complexity at the host–pathogen interface. Nat Rev Microbiol. 2011;9:604–15.spa
dc.relation.referencesKai Zhang1, 2 and SMB. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol. 2010;55(170(2)):1–22.spa
dc.relation.referencesDenny PW, Smith DF. Rafts and sphingolipid biosynthesis in the kinetoplastid parasitic protozoa. Molecular Microbiology. 2004spa
dc.relation.referencesBouazizi-Ben Messaoud H, Guichard M, Lawton P, Delton I, Azzouz-Maache S. Changes in Lipid and Fatty Acid Composition During Intramacrophagic Transformation of Leishmania donovani Complex Promastigotes into Amastigotes. Lipids. 2017;52:433–41.spa
dc.relation.referencesChattopadhyay A, Jafurulla M. A novel mechanism for an old drug: Amphotericin B in the treatment of visceral leishmaniasis. Biochem Biophys Res Commun. 2011;416:7–12.spa
dc.relation.referencesPalacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci [Internet]. 2011;108(17):6733–8. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1015023108spa
dc.relation.referencesGray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A [Internet]. 2012 Feb 14 [cited 2017 Oct 28];109(7):2234–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22308411spa
dc.relation.referencesThomas M Anderson, Mary C Clay, Alexander G Cioffi, Katrina A Diaz GSH, Marcus D Tuttle, Andrew J Nieuwkoop, Gemma Comellas, Nashrah Maryum1 SW, Brice E Uno, Erin L Wildeman, Tamir Gonen CMR& MDB. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014spa
dc.relation.referencesLeprohon P, Fernandez-Prada C, Gazanion É, Monte-Neto R, Ouellette M. Drug resistance analysis by next generation sequencing in Leishmania. Int J Parasitol Drugs Drug Resist [Internet]. 2015 Apr [cited 2017 Sep 3];5(1):26–35. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211320714000281spa
dc.relation.referencesPatricia Escobar, Sangeeta Matu, Clá udia Marques SLC. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH3 (edelfosine) and amphotericin B. Acta Trop. 2002;81:151–7.spa
dc.relation.referencesPurkait B, Kumar A, Nandi N, Sardar AH, Das S, Kumar S, et al. Mechanism of Amphotericin B Resistance in Clinical Isolates ofLeishmania donovani. Antimicrob Agents Chemother. 2012;56:1030–41.spa
dc.relation.referencesCohen B. Amphotericin B toxicity and lethality: a tale of two channels. Int J Pharm [Internet]. 1998 [cited 2017 May 20];162(1):95–106. Available from: http://www.sciencedirect.com/science/article/pii/S0378517397004171spa
dc.relation.referencesMbongo N, Loiseau PM, Billion MA, Robert-Gero M. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 1998;spa
dc.relation.referencesJiménez-López JM, Ríos-Marco P, Marco C, Segovia JL, Carrasco MP. Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids. Lipids Health Dis [Internet]. 2010 Mar 25 [cited 2017 May 20];9:33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20338039spa
dc.relation.referencesCenter for Tropical Medicine and Travel Medicine, Division of Infectious Diseases, Academic Medical Center U of A, Amsterdam TN, Department of Pharmacy and Pharmacology SHNCI, Amsterdam TN, Drugs for Neglected Diseases initiative (DNDi), Geneva S. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67:2576– 2597.spa
dc.relation.referencesBarratt G, Saint-Pierre-Chazalet M, Loiseau PM. Cellular transport and lipid interactions of miltefosine. Curr Drug Metab [Internet]. 2009 Mar [cited 2017 May 20];10(3):247–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19442087spa
dc.relation.referencesGamarro F, Sánchez-Cañete MP, Castanys S. Mechanisms of Miltefosine Resistance in Leishmania. In: Drug Resistance in Leishmania Parasites [Internet]. Vienna: Springer Vienna; 2013 [cited 2017 May 20]. p. 351–79. Available from: http://www.springerlink.com/index/10.1007/978-3-7091-1125-3_17spa
dc.relation.referencesDiomede L, Piovani B, Modest EJ, Noseda A, Salmona M. Increased ether lipid cytotoxicity by reducing membrane cholesterol content. Int J Cancer. 1991;49(3):409–13.spa
dc.relation.referencesGarcía-Hernández R, Manzano JI, Castanys S, Gamarro F. Leishmania donovani develops resistance to drug combinations. PLoS Negl Trop Dis [Internet]. 2012 [cited 2017 Sep 4];6(12):e1974. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23285310spa
dc.relation.referencesFernández OL, Diaz-Toro Y, Ovalle C et al. Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS Negl Trop Dis. 2014;8:8:e2871.spa
dc.relation.referencesRakotomanga M, Saint-Pierre-Chazalet M, Loiseau PM. Alteration of Fatty Acid and Sterol Metabolism in Miltefosine-Resistant Leishmania donovani Promastigotes and Consequences for Drug-Membrane Interactions. Antimicrob Agents Chemother [Internet]. 2005 Jul 1 [cited 2017 May 20];49(7):2677–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15980336spa
dc.relation.referencesFernandez-Prada1 C, Vincent1¤ IM, Brotherton1 M-C, Roberts2 M, Roy1 G, Rivas3 L, et al. Different Mutations in a P-type ATPase Transporter in Leishmania Parasites are Associated with Cross-resistance to Two Leading Drugs by Distinct Mechanisms. PLoS Negl Trop Dis. 2016;1–20.spa
dc.relation.referencesSaint-Pierre-Chazalet M, Ben Brahim M, Le Moyec L, Bories C, Rakotomanga M, Loiseau PM. Membrane sterol depletion impairs miltefosine action in wild-type and miltefosine-resistant Leishmania donovani promastigotes. J Antimicrob Chemother [Internet]. 2009 Nov 1 [cited 2017 May 20];64(5):993–1001. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19749205spa
dc.relation.referencesVan Der Luit AH, Budde M, Ruurs P, Verheij M, Van Blitterswijk WJ. Alkyllysophospholipid accumulates in lipid rafts and induces apoptosis via raftdependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem. 2002 Oct 18;277(42):39541–7.spa
dc.relation.referencesFranco-Muñoz C, Manjarré S-Estremor M, Ovalle-Bracho C. Intraspecies differences in natural susceptibility to amphotericine B of clinical isolates of Leishmania subgenus Viannia. 2018 [cited 2020 Feb 5]; Available from: https://doi.org/10.1371/journal.pone.0196247spa
dc.relation.referencesBezerra-Souza A, Yamamoto ES, Laurenti MD, Ribeiro SP, Passero LFD. The antifungal compound butenafine eliminates promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. Parasitol Int [Internet]. 2016 Dec [cited 2019 Oct 26];65(6 Pt A):702–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27546158spa
dc.relation.referencesNieto-Meneses R, Castillo R, Hernández-Campos A, Maldonado-Rangel A, MatiusRuiz JB, Trejo-Soto PJ, et al. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp Parasitol [Internet]. 2018 Jan [cited 2019 Oct 26];184:82–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29191699spa
dc.relation.referencesEspada CR, Ribeiro-Dias F, Dorta ML, De Araújo Pereira LI, De Carvalho EM, Machado PR, et al. Susceptibility to miltefosine in Brazilian clinical isolates of Leishmania (Viannia) braziliensis. Am J Trop Med Hyg. 2017;96(3):656–9.spa
dc.relation.referencesFernández O, Diaz-Toro Y, Valderrama L, Ovalle C, Valderrama M, Castillo H, et al. Novel approach to in vitro drug susceptibility assessment of clinical strains of Leishmania spp. J Clin Microbiol. 2012 Jul;50(7):2207–11.spa
dc.relation.referencesEscobar P, Matu S, Marques C, Croft SL. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH 3 (edelfosine) and amphotericin B. Acta Trop [Internet]. 2002;81:151–7. Available from: www.parasitology-online.comspa
dc.relation.referencesLouis Maes, Paul Cos SLC. The relevance os susceptibility tests, breakpoints and markers. Drug Resist Leishmania Parasites. 2013;407–29.spa
dc.relation.referencesAlicia Ponte-Sucre, Emilia Diaz MP-N. The concept of fitness and drug resistance in Leishmania. Drug Resist Leishmania Parasites. 2013;431–49.spa
dc.relation.referencesHendrickx S, Beyers J, Mondelaers A, Eberhardt E, Lachaud L, Delputte P, et al. Evidence of a drug-specific impact of experimentally selected paromomycin and miltefosine resistance on parasite fitness in Leishmania infantum. [cited 2020 Feb 4]; Available from: https://academic.oup.com/jac/articleabstract/71/7/1914/1751521spa
dc.relation.referencesGarcía-Hernández R, Gómez-Pérez V, Castanys S, Gamarro F. Fitness of Leishmania donovani Parasites Resistant to Drug Combinations. 2015.spa
dc.relation.referencesAl-Mohammed HI, Chance ML, Bates PA. Production and Characterization of Stable Amphotericin-Resistant Amastigotes and Promastigotes of Leishmania mexicana. Antimicrob Agents Chemother [Internet]. 2005 Aug 1 [cited 2017 May 20];49(8):3274–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16048936spa
dc.relation.referencesPountain AW, Weidt SK, Regnault C, Bates PA, Donachie AM, Dickens NJ, et al. Genomic instability at the locus of sterol C24-methyltransferase promotes amphotericin B resistance in leishmania parasites. PLoS Negl Trop Dis. 2019 Feb 1;13(2).spa
dc.relation.referencesVerma A, Bhandari V, Deep DK, Sundar S, Dujardin JC, Singh R, et al. Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. Int J Parasitol Drugs Drug Resist. 2017 Dec 1;7(3):370–7.spa
dc.relation.referencesCollett CF, Kitson C, Baker N, Steele-Stallard HB, Santrot M-V, Hutchinson S, et al. Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei. 2019 [cited 2020 Feb 3]; Available from: https://doi.org/10.1128/AACspa
dc.relation.referencesLlanos-Cuentas A, Tulliano G, Araujo-Castillo R, Miranda-Verastegui C, Santamaria-Castrellon G, Ramirez L, et al. Clinical and Parasite Species Risk Factors for Pentavalent Antimonial Treatment Failure in Cutaneous Leishmaniasis in Peru. Clin Infect Dis [Internet]. 2008 Jan 15 [cited 2020 Feb 13];46(2):223–31. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/524042spa
dc.relation.referencesTuon FF, Amato VS, Graf ME, Siqueira AM, Nicodemo AC AN V. Treatment of New World cutaneous leishmaniasis—a systematic review with a meta-analysis. Int J Dermatol. 2008;47:109– 124.spa
dc.relation.referencesSrivastava P, Prajapati VK, Rai M, Sundar S. Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. J Clin Microbiol [Internet]. 2011 Aug [cited 2017 May 20];49(8):3088– 91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21613432spa
dc.relation.referencesRahman M, Ahmed BN, Faiz MA, Chowdhury MZU, Islam QT, Sayeedur R, et al. Phase IV trial of miltefosine in adults and children for treatment of visceral leishmaniasis (kala-azar) in Bangladesh. Am J Trop Med Hyg. 2011 Jul;85(1):66–9.spa
dc.relation.referencesSundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Vol. 16, Expert Opinion on Pharmacotherapy. Informa Healthcare; 2015. p. 237–52.spa
dc.relation.referencesRai K, Cuypers B, Bhattarai NR, Uranw S, Berg M, Ostyn B, et al. Relapse after treatment with Miltefosine for visceral Leishmaniasis is associated with increased infectivity of the infecting Leishmania donovani strain. MBio. 2013 Nov 1;4(5).spa
dc.relation.referencesLlanos-Cuentas A, Tulliano G, Araujo-Castillo R, Miranda-Verastegui C S-CG, Ramirez L et al. Clinical and parasite species risk factors for pentavalent antimonial treatment failure in cutaneous leishmaniasis in Peru. Clin Infect Dis. 2008;46:223–231.spa
dc.relation.referencesSalgado-almario J, Ovalle-bracho C. Geographical distribution of Leishmania species in. 2019;278–90.spa
dc.relation.referencesWeigle KA, Santrich C, Martinez F, Valderrama L, Saravia NG. Epidemiology of Cutaneous Leishmaniasis in Colombia : A Longitudinal Study of the Natural History , Prevalence , and Incidence of Infection and Clinical Manifestations. :699–708.spa
dc.relation.referencesObonaga R, Fernández OL, Valderrama L, Rubiano LC, Castro MDM, Barrera MC, et al. Treatment failure and miltefosine susceptibility in dermal leishmaniasis caused by leishmania subgenus viannia species. Antimicrob Agents Chemother. 2014 Jan;58(1):144–52.spa
dc.relation.referencesFernández OL, Diaz-Toro Y, Ovalle C, Valderrama L, Muvdi S, Rodríguez I, et al. Miltefosine and Antimonial Drug Susceptibility of Leishmania Viannia Species and Populations in Regions of High Transmission in Colombia. PLoS Negl Trop Dis. 2014;8(5).spa
dc.relation.referencesSoto J, Arana BA, Toledo J, Rizzo N, Vega JC, Diaz A, et al. Miltefosine for New World Cutaneous Leishmaniasis. Clin Infect Dis [Internet]. 2004 May 1 [cited 2020 Feb 14];38(9):1266–72. Available from: https://academic.oup.com/cid/articlelookup/doi/10.1086/383321spa
dc.relation.referencesSteglitz K. ANALOGS OF ALKYLLYSOPHOSPHOLIPIDS : CHEMISTRY , EFFECTS ON THE MOLECULAR LEVEL AND THEIR CONSEQUENCES FOR NORMAL AND MALIGNANT. 1995;66(95):39–82.spa
dc.relation.referencesPegg DE. Principles of cryopreservation. Preserv Hum Oocytes From Cryobiol Sci to Clin Appl. 2009;368:12–24.spa
dc.relation.referencesShaw CD, Lonchamp † J, Downing † T, Imamura ‡ H, Freeman † T M, Cotton JA, et al. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization.spa
dc.relation.referencesRevisión A DE, Mábel Ávila-Portillo L, Madero JI, López C, Fernanda León M, Acosta L, et al. Fundamentos De Criopreservación. Rev Colomb Obstet Ginecol [Internet]. 2006;57(4):291–300. Available from: http://www.scielo.org.co/pdf/rcog/v57n4/v57n4a08.pdfspa
dc.relation.referencesId JH. Modification of cellular membranes conveys cryoprotection to cells during rapid, non-equilibrium cryopreservation. 2018 [cited 2020 Feb 17]; Available from: https://doi.org/10.1371/journal.pone.0205520spa
dc.relation.referencesHendrickx S, Beyers J, Mondelaers A, Eberhardt E, Lachaud L, Delputte P, et al. Evidence of a drug-specific impact of experimentally selected paromomycin and miltefosine resistance on parasite fitness in Leishmania infantum. J Antimicrob Chemother [Internet]. 2016 Jul [cited 2020 Feb 4];71(7):1914–21. Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkw096spa
dc.relation.referencesHendrickx S, Leemans A, Mondelaers A, Rijal S, Khanal B, Dujardin J-C, et al. Comparative Fitness of a Parent Leishmania donovani Clinical Isolate and Its Experimentally Derived Paromomycin-Resistant Strain. 2015spa
dc.relation.referencesOuakad M, Vanaerschot M, Rijal S, Sundar S, Speybroeck N, Kestens L, et al. Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines. Parasitology. 2011;138(11):1392–9.spa
dc.relation.referencesSánchez-Cañete MP, Carvalho L, Javier Pérez-Victoria F, Gamarro F, Castanys S. Low Plasma Membrane Expression of the Miltefosine Transport Complex Renders Leishmania braziliensis Refractory to the Drug. Antimicrob Agents Chemother. 2009;53(4):1305–13.spa
dc.relation.referencesEspada CR, Magalhães RM, Cruz MC, Machado PR, Schriefer A, Carvalho EM, et al. Investigation of the pathways related to intrinsic miltefosine tolerance in Leishmania (Viannia) braziliensis clinical isolates reveals differences in drug uptake. 2019 [cited 2020 Feb 11]; Available from: https://doi.org/10.1016/j.ijpddr.2019.02.005spa
dc.relation.referencesMbongo N, Loiseau PM, Billion MA, Robert-Gero M. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother [Internet]. 1998 Feb [cited 2017 May 20];42(2):352–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9527785spa
dc.relation.referencesNakagawa Y, Umegawa Y, Takano T, Tsuchikawa H, Matsumori N, Murata M. Effect of sterol side chain on ion channel formation by amphotericin b in lipid bilayers. Biochemistry [Internet]. 2014 May 20 [cited 2020 Feb 11];53(19):3088–94. Available from: https://pubs.acs.org/doi/10.1021/bi500122cspa
dc.relation.referencesLaffitte MCN, Leprohon P, Légaré D, Ouellette M. Deep-sequencing revealing mutation dynamics in the miltefosine transporter gene in Leishmania infantum selected for miltefosine resistance. Parasitol Res [Internet]. 2016 Oct 1 [cited 2020 Feb 9];115(10):3699–703. Available from: http://link.springer.com/10.1007/s00436-016-5195-yspa
dc.relation.referencesPérez-Victoria FJ, Sánchez-Cañete MP, Castanys S, Gamarro F. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem. 2006 Aug 18;281(33):23766–75.spa
dc.relation.referencesAires B. Genetic Profiling of the Isoprenoid and Sterol Biosynthesis Pathway Genes of Trypanosoma cruzi. 2014;9(5).spa
dc.relation.referencesMurungi E, Barlow LD, Venkatesh D, Adung’a C, VO, Dacks JB, Field MC, et al. A comparative analysis of trypanosomatid SNARE proteins. Parasitol Int [Internet]. 2014 [cited 2020 Feb 16];63:341–8. Available from: http://dx.doi.org/10.1016/j.parint.2013.11.002spa
dc.relation.referencesCurrier 1¤ RB, Cooper A, Burrell-Saward H, Macleod A, Alsford S. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. 2018 [cited 2020 Feb 16]; Available from: https://doi.org/10.1371/journal.ppat.1006855spa
dc.relation.referencesVanwalleghem G, Fontaine F, Lecordier L, Tebabi P, Klewe K, Nolan DP, et al. ARTICLE Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun [Internet]. 2015 [cited 2020 Feb 16];6. Available from: www.nature.com/naturecommunicationsspa
dc.relation.referencesObonaga R, Fernández OL, Valderrama L, Rubiano LC, Castro MDM, Barrera MC, et al. Treatment failure and miltefosine susceptibility in dermal leishmaniasis caused by leishmania subgenus viannia species. Antimicrob Agents Chemother. 2014;58(1):144–52.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.proposalmiltefosineeng
dc.subject.proposalMiltefosinaspa
dc.subject.proposalanfotericina Bspa
dc.subject.proposalamphotericin Beng
dc.subject.proposalcross-resistanceeng
dc.subject.proposalresistencia cruzadaspa
dc.subject.proposalLeishmania braziliensisspa
dc.subject.proposalLeishmania braziliensiseng
dc.titleEvaluación de la susceptibilidad a la anfotericina B de parásitos de Leishmania del subgénero Viannia con resistencia adquirida in vitro a miltefosinaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1.013.619.489.2020.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: