Modelo de relación entre predictores y tratamiento en pacientes colombianos con artritis reumatoide

dc.contributor.advisorNiño Vásquez, Luis Fernandospa
dc.contributor.advisorQuintana López, Gerardospa
dc.contributor.authorFranco Cuervo, Kevin Julianspa
dc.contributor.researchgroupLaboratorio de Investigación en Sistemas Inteligentes - LISIspa
dc.contributor.researchgroupGrupo de Investigación en Reumatología - REUMAVANCEspa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-04-22T20:02:16Zspa
dc.date.available2025-04-22T20:02:16Zspa
dc.date.issued2024spa
dc.descriptionilustraciones (algunas a color), diagramasspa
dc.description.abstractEste proyecto tiene como finalidad realizar un análisis de asociación entre las variables presentes en la base de datos de la Clínica de Artritis Reumatoide de la Fundación Santa Fe de Bogotá enfatizando en aquellas descriptoras de predicción y tratamiento en una cohorte de pacientes diagnosticados con artritis reumatoide tratados en esta clínica especializada a partir de la revisión retrospectiva de la información comprendida en la historia clínica. La población asociada al estudio ha sido aquella que cumple con los criterios ACR 2010 para el diagnóstico de la artritis reumatoide y que asisten a consulta y tratamiento de reumatología. A los datos se les realizó un proceso de agrupación posterior a la limpieza y preprocesamiento. Para este fin se utilizó el método k-prototipos (k-prototypes) lo cual generó cuatro grupos a los que se les aplicó el algoritmo Apriori como método para encontrar asociaciones entre las variables más importantes de cada uno de los grupos. Se encontró importancia en fármacos como la Prednisolona o la Leflunomida dentro de las diferencias significativas del tratamiento, además de resaltar los Anticuerpos antinucleares (ANA) como una variable predictora que complementa a las tradicionales como el Factor Reumatoide o la Anticitrulina, todas estas características en relación con variables como los puntos de fibromialgia y los conteos de articulaciones tanto dolorosas como inflamadas. Se demuestra la importancia de la utilización de la ciencia de datos y las técnicas de inteligencia artificial como una herramienta complementaria que potencializa el estudio de enfermedades como la artritis reumatoide y abre la puerta a nuevos estudios más profundos para determinar más detalles que puedan ayudar en la toma de decisiones terapéuticas que beneficien el tratamiento de los pacientes y su evolución (Texto tomado de la fuente).spa
dc.description.abstractThis project aims to perform an association analysis between the variables present in the database of the Rheumatoid Arthritis Clinic of the Santa Fe de Bogota Foundation, emphasizing those descriptors of prediction and treatment in a cohort of patients diagnosed with Rheumatoid Arthritis treated at this specialized clinic, based on the retrospective review of the information contained in the medical records. The population associated with the study has been those who meet the ACR 2010 criteria for the diagnosis of Rheumatoid Arthritis and who attend consultations and rheumatology treatment. The data underwent a clustering process following cleaning and preprocessing. For this purpose, the k-prototypes method was used, which generated four groups. The Apriori algorithm was then applied to these groups as a method to find associations between the most important variables in each group. Significant findings included the importance of drugs such as Prednisolone and Leflunomide in terms of significant treatment differences, as well as highlighting Antinuclear Antibodies (ANA) as a predictive variable that complements traditional ones like Rheumatoid Factor and Anti-Citrullinated Protein Antibodies, all these characteristics in relation to variables such as fibromyalgia points and the counts of both painful and inflamed joints. This demonstrates the importance of utilizing data science and artificial intelligence techniques as complementary tools that enhance the study of diseases such as Rheumatoid Arthritis. It also opens the door to further studies to determine more details that could help in therapeutic decision-making, benefiting both the treatment and the evolution of patients.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.format.extentxiii, 86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88064spa
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesSanofi-Aventis SA. Medida de la actividad de la enfermedad DAS28 (Disease Activity Score 28); 2016. [Internet; accedido el 20-Nov-2019]. Available from: {http://calc.artritis-il6.es/das28}.spa
dc.relation.referencesDunham MH. Data mining: Introductory and advanced topics. 1st ed. Prentice Hall PTR; 2002.spa
dc.relation.referencesGómez A. Nuevos criterios de clasificación de artritis reumatoide. Reumatología Clínica. 2011;6:33–37.spa
dc.relation.referencesCanhão H, Rodrigues AM, Gregório MJ, Dias SS. Common Evaluations of Disease Activity in Rheumatoid Arthritis Reach Discordant Classifications across Different Populations. 2018;5(March):1–8. Available from: https://www.frontiersin.org/article/10.3389/fmed.2018.00040.spa
dc.relation.referencesvan der Woude D, van der Helm-van Mil AHM. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Practice and Research: Clinical Rheumatology. 2018;32(2):174–187. Available from: https://doi.org/10.1016/j.berh.2018.10.005.spa
dc.relation.referencesDe Cock D, Hyrich K. Malignancy and rheumatoid arthritis: Epidemiology, risk factors and management. Best Practice and Research: Clinical Rheumatology. 2018;32(6):869–886. Available from: https://doi.org/10.1016/j.berh.2019.03.011.spa
dc.relation.referencesFernández-Ávila DG, Rincón-Riaño DN, Bernal-Macías S, Gutiérrez Dávila JM, Rosselli D. Prevalencia de la artritis reumatoide en Colombia según información del Sistema Integral de Información de la Protección Social. Revista Colombiana de Reumatología. 2019;26(2):83–87.spa
dc.relation.referencesMuñetón GA, Quintana G. La epidemiología de la artritis reumatoide. Revista Colombiana de Reumatología. 2015 sep;22(3):145–147. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0121812315000845.spa
dc.relation.referencesPeláez I, Cuervo F, Angarita I, Londo J, Giraldo R, Camilo J, et al. Prevalencia de la enfermedad reumática en Colombia, según estrategia COPCORD-Asociación Colombiana de Reumatología. Estudio de prevalencia de enfermedad reumática en población colombiana mayor de 18 años. Revista Colombiana de Reumatología. 2018;5(4):245–256.spa
dc.relation.referencesMinisterio de Salud y Protección Social. Análisis de Situación de Salud (ASIS) - 2017. Colombia; 2018.spa
dc.relation.referencesMora C, González A, Quintana G, Díaz J. Costos directos de la artritis reumatoide temprana en el primer año de atención: simulación de tres situaciones clínicas en un hospital universitario de tercer nivel en Colombia. Biomedica : revista del Instituto Nacional de Salud. 2009;29(1):43–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19753838.spa
dc.relation.referencesQuintana G, Restrepo JP, Cáceres H, Rueda JD, Rosselli D. Economic Evaluation of the Treatment of Rheumatoid Arthritis With Anti-TNF Biological Therapy in Colombia. Acta Médica Colombiana. 2011 01;36:24 – 29. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-24482011000100005&nrm=iso.spa
dc.relation.referencesvan Vilsteren M, Boot CRL, Knol DL, van Schaardenburg D, Voskuyl AE, Steenbeek R, et al. Productivity at work and quality of life in patients with rheumatoid arthritis. BMC Musculoskeletal Disorders. 2015;p. 1–9.spa
dc.relation.referencesArcher R, Hock E, Hamilton J, Stevens J, Essat M, Poku E, et al. Assessing prognosis and prediction of treatment response in early rheumatoid arthritis: Systematic reviews. Health Technology Assessment. 2018;22(66):i–293. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534451/pdf/Bookshelf{_}NBK534451.pdf.spa
dc.relation.referencesAletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid Arthritis Classification Criteria. Arthritis & Rheumatism. 2010;62(9):2569–2581.spa
dc.relation.referencesHellmann D, Imboden JB. Trastornos reumatológicos, inmunitarios y alérgicos. Diagnóstico clínico y tratamiento. 1. New York, EEUU: McGraw.Hill; 2017.spa
dc.relation.referencesRovenský J, Payer J. Dictionary of Rheumatology. 2nd ed. Rovenský J, Payer J, editors. Switzerland: Springer International; 2016.spa
dc.relation.referencesSmolen JS, Aletaha D, Mcinnes IB. Rheumatoid arthritis. The Lancet. 2016;388(10055):2023–2038. Available from: http://dx.doi.org/10.1016/S0140-6736(16)30173-8.spa
dc.relation.referencesScott DL, Wolfe F, Huizinga TWJ. Rheumatoid arthritis. The Lancet. 2010;376(9746):1094–1108. Available from: http://dx.doi.org/10.1016/S0140-6736(10)60826-4.spa
dc.relation.referencesMartins P, Fonseca JE. How to investigate: Pre-clinical rheumatoid arthritis. Best Practice and Research: Clinical Rheumatology. 2019spa
dc.relation.referencesAletaha D, Martinez-Avila J, Kvien TK, Smolen JS. Definition of treatment response in rheumatoid arthritis based on the simplified and the clinical disease activity index. Annals of the Rheumatic Diseases. 2012;71(7):1190–1196. Available from: https://ard.bmj.com/content/71/7/1190.spa
dc.relation.referencesEmery P. Atlas of Rheumatoid Arthritis. 1st ed. Emery P, editor. Londres, Inglaterra: Springer Healthcare; 2015.spa
dc.relation.referencesAletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA. 2018 oct;320(13):1360–1372. Available from: https://doi.org/10.1001/jama.2018.13103.spa
dc.relation.referencesLittlejohn EA, Monrad SU. Early Diagnosis and Treatment of Rheumatoid Arthritis. Primary Care: Clinics in Office Practice. 2018;45(2):237–255. Available from: https://doi.org/10.1016/j.pop.2018.02.010.spa
dc.relation.referencesJutley GS, Latif ZP, Raza K. Symptoms in individuals at risk of rheumatoid arthritis. Best Practice & Research Clinical Rheumatology. 2017;31(1):59–70. Available from: https://doi.org/10.1016/j.berh.2017.09.016.spa
dc.relation.referencesShah A, Clair EWS. Harrison. Principios de Medicina Interna . 19. New York, EEUU: McGraw.Hill; 2016.spa
dc.relation.referencesVan Der Heijde D, Van’t Hof M, Van Riel P, van de Putte L. Development of a disease activity score based on judgment in clinical practice by rheumatologists. Journal of Rheumatology. 1993;20(1):579–581.spa
dc.relation.referencesPrevoo MLL, Van’T Hof MA, Kuper HH, Van Leeuwen MA, Van De Putte LBA, Van Riel PLCM. Modified disease activity scores that include twenty-eight-joint counts development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis & Rheumatism. 1995;38(1):44–48.spa
dc.relation.referencesMinisterio de Salud y Protección Social. Análisis de Situación de Salud (ASIS) - 2017. Colombia; 2018.spa
dc.relation.referencesAllard-Chamard H, Boire G. Serologic Diagnosis of Rheumatoid Arthritis. Clinics in Laboratory Medicine. 2019;39(4):525–537.spa
dc.relation.referencesCostenbader KH, Gay S, Alarc´on-Riquelme ME, Iaccarino L, Doria A. Genes, epigenetic regulation and environmental factors: Which is the most relevant in developing autoimmune diseases? Autoimmunity Reviews. 2012;11(8):604–609. Available from: http://dx.doi.org/10.1016/j.autrev.2011.10.022.spa
dc.relation.referencesRuiz-Esquide V, Sanmart´ı R. Tabaco y otros factores ambientales en la artritis reumatoide. Reumatologia Clinica. 2012;8(6):342–350. Available from: http://dx.doi.org/10.1016/j.reuma.2012.02.011.spa
dc.relation.referencesLlopis E, Kroon HM, Acosta J, Bloem JL. Conventional Radiology in Rheumatoid Arthritis. Radiologic Clinics of NA. 2017;55(5):917–941. Available from: http://dx.doi.org/10.1016/j.rcl.2017.04.002.spa
dc.relation.referencesBearne LM, Byrne AM, Segrave H, White CM. Multidisciplinary team care for people with rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology International. 2016;36(3):311–324.spa
dc.relation.referencesMunoz-Louis R, Medrano-Sánchez J, Montufar R. Rheumatoid arthritis in Latin America: challenges and solutions to improve its diagnosis and treatment training for medical professionals. Clinical Rheumatology. 2015;34:67–70.spa
dc.relation.referencesSingh JA, Saag KG, Bridges Jr SL, Akl EA, Bannuru RR, Sullivan MC, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care & Research. 2016;68(1):1–25. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/acr.22783.spa
dc.relation.referencesNarváez J. Tratamiento de la artritis reumatoide - Treatment of rheumatoid arthritis. Medicina Clínica (English Edition). 2016;147(4):176–180. Available from: http://dx.doi.org/10.1016/j.medcle.2016.09.023.spa
dc.relation.referencesRestrepo LF, Giraldo R, Londoño J, Pinzón C, Cortés A, Ballesteros G, et al. Farmacogenética del metotrexato en artritis reumatoide. Revisión sistemática. Revista Colombiana de Reumatología. 2016;3(2):102–114.spa
dc.relation.referencesBullock J, Rizvi SAA, Saleh AM, Ahmed SS, Do DP, Ansari RA, et al. Rheumatoid arthritis: A brief overview of the treatment. Medical Principles and Practice. 2019;27(6):501–507.spa
dc.relation.referencesSparks JA. Rheumatoid Arthritis. Annals of Internal Medicine. 2019 01;170(1):ITC1–ITC16. Available from: https://doi.org/10.7326/AITC201901010.spa
dc.relation.referencesFerreira JF, Ahmed Mohamed AA, Emery P. Glucocorticoids and Rheumatoid Arthritis. Rheumatic Disease Clinics of North America. 2016;42(1):33–46.spa
dc.relation.referencesBlanco-Morales EA, Bravo-Ferrer Acosta JM, Rubio Romero E, Gil González E, Gantes Pedraza Má. Glucocorticoides en artritis reumatoide: ¿casi siempre o casi nunca? Reumatología Clinica. 2011;7(6):407–411.spa
dc.relation.referencesSmolen JS, Landewé R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Annals of the Rheumatic Diseases. 2017;76(6):960–977.spa
dc.relation.referencesAbbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. Journal of Cellular Physiology. 2019;234(7):10018–10031.spa
dc.relation.referencesEMC Education Services. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. 1st ed. John Wiley & Sons, Inc; 2015.spa
dc.relation.referencesGandomi A, Haider M. Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management. 2015;35(2):137–144. Available from: http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007.spa
dc.relation.referencesBerthold M, Hand DJ. Intelligent Data Analysis: An Introduction. 2nd ed. Springer; 2007.spa
dc.relation.referencesFayyad U, Piatetsky-Shapiro G, Smyth P. From Data Mining to Knowledge Discovery in Databases. Artificial Intelligence - American Association for Artificial Intelligence. 1996;1079:623–632.spa
dc.relation.referencesTan PN, Steinbach M, Kumar V. Introduction to Data Mining. 1st ed. Pearson Education; 2006.spa
dc.relation.referencesHazen BT, Boone CA, Ezell JD, Jones-Farmer LA. Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics. 2014;154:72–80. Available from: http://dx.doi.org/10.1016/j.ijpe.2014.04.018.spa
dc.relation.referencesTaniya T, Tanaka S, Yamaguchi-Kabata Y, Hanaoka H, Yamasaki C, Maekawa H, et al. A prioritization analysis of disease association by data-mining of functional annotation of human genes. Genomics. 2012;99(1):1–9. Available from: http://dx.doi.org/10.1016/j.ygeno.2011.10.002.spa
dc.relation.referencesBao Y, Chen Z, Wei S, Xu Y, Tang Z, Li H. The State of the Art of Data Science and Engineering in Structural Health Monitoring. Engineering. 2019;5(2):234–242. Available from: https://doi.org/10.1016/j.eng.2018.11.027.spa
dc.relation.referencesHerland M, Khoshgoftaar TM, Wald R. A review of data mining using big data in health informatics. Journal of Big Data. 2014;1(1).spa
dc.relation.referencesFleuren WWM, Alkema W. Application of text mining in the biomedical domain. Methods. 2015;74:97–106. Available from: http://dx.doi.org/10.1016/j.ymeth.2015.01.015.spa
dc.relation.referencesWang W, Krishnan E. Big Data and Clinicians: A Review on the State of the Science. JMIR Med Inform. 2014 Jan;2(1). Available from: http://www.medinform.jmir.org/2014/1/e1/.spa
dc.relation.referencesdos Santos BS, Steiner MTA, Fenerich AT, Lima RHP. Data mining and machine learning techniques applied to public health problems: A bibliometric analysis from 2009 to 2018. Computers and Industrial Engineering. 2019;138(October):106120. Available from: https://doi.org/10.1016/j.cie.2019.106120.spa
dc.relation.referencesRobson B, Boray S. Studies in the use of data mining, prediction algorithms, and a universal exchange and inference language in the analysis of socioeconomic health data. Computers in Biology and Medicine. 2019;112(May):103369. Available from: https://doi.org/10.1016/j.compbiomed.2019.103369.spa
dc.relation.referencesSung SF, Hsieh CY, Kao Yang YH, Lin HJ, Chen CH, Chen YW, et al. Developing a stroke severity index based on administrative data was feasible using data mining techniques. Journal of Clinical Epidemiology. 2015;68(11):1292–1300. Available from: http://dx.doi.org/10.1016/j.jclinepi.2015.01.009.spa
dc.relation.referencesMiller K, Miller M, Moran M, Dai B. Data Management Life Cycle, Final report. Texas A&M Transportation Institute. 2018;Available from: https: //static.tti.tamu.edu/tti.tamu.edu/documents/PRC-17-84-F.pdf{%}0Ahttps://rosap.ntl.bts.gov/view/dot/35445.spa
dc.relation.referencesDoupe P, Faghmous J, Basu S. Machine Learning for Health Services Researchers. Value in Health. 2019;22(7):808–815. Available from: https://doi.org/10.1016/j.jval.2019.02.012.spa
dc.relation.referencesTing G, Schneeweiss S, Scranton R, Katz JN, Weinblatt ME, Young M, et al. Development of a health care utilisation data-based index for rheumatoid arthritis severity: A preliminary study. Arthritis Research and Therapy. 2008;10(4):1–9.spa
dc.relation.referencesSaad MN, Mabrouk MS, Eldeib AM, Shaker OG. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis. Journal of Advanced Research. 2016;7(1):1–16. Available from: http://dx.doi.org/10.1016/j.jare.2015.01.008.spa
dc.relation.referencesVan Beers-Tas MH, Turk SA, Van Schaardenburg D. How does established rheumatoid arthritis develop, and are there possibilities for prevention? Best Practice and Research: Clinical Rheumatology. 2015;29(4-5):527–542. Available from: http://dx.doi.org/10.1016/j.berh.2015.09.001.spa
dc.relation.referencesPombo-Suarez M, Gomez-Reino J. The role of registries in the treatment of rheumatoid arthritis with biologic disease-modifying anti-rheumatic drugs. Pharmacological Research. 2019;148(June):104410. Available from: https://doi.org/10.1016/j.phrs.2019.104410.spa
dc.relation.referencesOttenbacher KJ, Graham JE, Fisher SR. Data Science in Physical Medicine and Rehabilitation: Opportunities and Challenges. Physical Medicine and Rehabilitation Clinics of North America. 2019;30(2):459–471.spa
dc.relation.referencesWalker JG, Jackson HJ, Littlejohn GO. Models of adjustment to chronic illness: Using the example of rheumatoid arthritis. Clinical Psychology Review. 2004;24(4):461–488.spa
dc.relation.referencesRohrbach J, Reinhard T, Sick B, D¨urr O. Bone erosion scoring for rheumatoid arthritis with deep convolutional neural networks. Computers and Electrical Engineering. 2019;78:472–481.spa
dc.relation.referencesHyrich KL. Real world data in rheumatology. Seminars in Arthritis and Rheumatism. 2019;49(3, Supplement):S22–S24. Available from: http://www.sciencedirect.com/science/article/pii/S0049017219306560.spa
dc.relation.referencesHan J, Kamber M, Pei J. Data mining: Data mining concepts and techniques. 3rd ed. Morgan Kaufmann Publishers; 2012.spa
dc.relation.referencesKantardzic M. Data Mining: Concepts, Models, Methods, and Algorithms. 2nd ed.; 2011.spa
dc.relation.referencesKashyap H, Ahmed HA, Hoque N, Roy S, Bhattacharyya DK. Big Data Analytics in Bioinformatics: A Machine Learning Perspective. arXiv - JOURNAL OF LATEX CLASS FILES. 2015;13(9):1–20. Available from: http://arxiv.org/abs/1506.05101.spa
dc.relation.referencesXu D, Tian Y. A Comprehensive Survey of Clustering Algorithms. Annals of Data Science. 2015;2(2):165–193.spa
dc.relation.referencesYu J, Huang H, Tian S. Cluster validity and stability of clustering algorithms. IEEE Transactions on Neural Networks. 2005;16(3):645–678.spa
dc.relation.referencesDevore JL. Probabilidad y estadistica para ingenieria y ciencias. 7th ed. Servantes Gonzales SR, editor. Mexico DF, Mexico: Cengage Learning; 2008.spa
dc.relation.referencesAguilar Marquez A, Altamira Ibarra J, Garcia León O. Introducción a la inferencia estadística. 1st ed. Mexico DF, Mexico: Pearson Education; 2010.spa
dc.relation.referencesAggarwal CC. Outlier Analysis. 2. Cham, Switzerland: Springer; 2017.spa
dc.relation.referencesHuang Z. Clustering large data sets with mixed numeric and categorical values. Computer Science. 1997;.spa
dc.relation.referencesChapman P, Clinton J, Kerber R, Khabaza T, Reinartz T, Shearer C, et al. CRISPDM 1.0: Step-by-step data mining guide. CRISP-DM Consortium; 2000. Available from: https://www.ibm.com/docs/en/spss-modeler/saas?topic=guide-crispdm-help-overview.spa
dc.relation.referencesAsociación Médica Mundial (AMM-WMA). Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos; 2008. Available from: https://www.wma.net/wp-content/uploads/2016/11/DoH-Oct2008.pdf.spa
dc.relation.referencesMinisterio de Salud. Resolución Número 8430 DE 1993. Colombia; 1993.spa
dc.relation.referencesHall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA Data Mining Software: An Update. In: SIGKDD Explorations. vol. 11. ACM; 2009. p. 10–18. Available from: https://www.cs.waikato.ac.nz/ml/weka/.spa
dc.relation.referencesFranco-Cuervo KJ, Maldonado-Cañón K, Niño Vásquez LF, Quintana Lopez G. POS0545 A NEURAL NETWORK BASED CLUSTERING MODEL OF A COLOMBIAN COHORT OF RHEUMATOID ARTHRITIS PATIENTS. Annals of the Rheumatic Diseases. 2022;81(Suppl 1):536–536. Available from: https://ard.bmj.com/content/81/Suppl_1/536.1.spa
dc.relation.referencesFranco-Cuervo KJ, Niño Vásquez LF, Quintana Lopez G. Modelo de agrupación mediante redes neuronales artificiales de una cohorte colombiana de pacientes con artritis reumatoide. - Presentaciones en cartel XVII Encuentro Científico. Biomédica, Revista del Instuto Nacional de Salud. 2021 nov;41(Sp. 3):286–286. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/6411.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.armarcArthritis, Rheumatoid -- Mathematical modelseng
dc.subject.armarcBioinformatics -- Statistical methodseng
dc.subject.armarcArthritis, Rheumatoid -- Treatment -- Data processingeng
dc.subject.bneData miningeng
dc.subject.ddc616.7227spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.decsArtritis reumatoide -- Tratamiento farmacológicospa
dc.subject.decsArthritis, Rheumatoid -- Drug therapyeng
dc.subject.decsFactor reumatoidespa
dc.subject.decsRheumatoid factoreng
dc.subject.decsAnticuerpos antinuclearesspa
dc.subject.decsAntibodies, Antinucleareng
dc.subject.lembArtritis reumatoide -- Modelos matemáticosspa
dc.subject.lembBioinformáticaspa
dc.subject.lembBioinformaticseng
dc.subject.lembBioinformática -- Métodos estadísticosspa
dc.subject.lembArtritis reumatoide -- Tratamiento -- Procesamiento de datosspa
dc.subject.lembTécnicas de predicciónspa
dc.subject.lembForecasting techniqueseng
dc.subject.otherCiencia de datosspa
dc.subject.otherData sciencespa
dc.subject.proposalArtritis reumatoidespa
dc.subject.proposalMinería de datosspa
dc.subject.proposalAgrupaciónspa
dc.subject.proposalAsociaciónspa
dc.subject.proposalRheumatoid Arthritiseng
dc.subject.proposaldata miningeng
dc.subject.proposalclusteringeng
dc.subject.proposalassociationeng
dc.titleModelo de relación entre predictores y tratamiento en pacientes colombianos con artritis reumatoidespa
dc.title.translatedModel of the relationship between predictors and treatment in Colombian patients with rheumatoid arthritiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032466861.2025.pdf
Tamaño:
811.93 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: