Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas

dc.contributor.advisorOlivar-Tost, Gerard
dc.contributor.advisorOsorio Londoño, Gustavo Adolfo
dc.contributor.authorOspina Aguirre, Carolina
dc.contributor.cvlacCarolina Ospina Aguirrespa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=F3rcKnMAAAAJ&hl=enspa
dc.contributor.orcidOspina Aguirre, Carolina [0000000339924289]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Carolina-Ospinaspa
dc.contributor.researchgroupAbcDynamicsspa
dc.date.accessioned2024-02-28T17:59:41Z
dc.date.available2024-02-28T17:59:41Z
dc.date.issued2021
dc.descriptiongraficas, mapas, tablasspa
dc.description.abstractEn este trabajo se presenta la formulación de un modelo compartimental en el que se utilizan ecuaciones diferenciales y redes complejas para representar la dinámica de transmisión del dengue en el departamento de Caldas. La población está dividida en cuatro compartimentos: susceptibles, infectados, hospitalizados y recuperados; y los mosquitos que transmiten la enfermedad en dos: susceptibles e infectados. Se explora el efecto de las lluvias, de aplicar medidas de control, de la hospitalización y de la movilidad sobre la cantidad de personas infectadas. En el departamento de Caldas, hay dos temporadas de lluvias al a ̃no, las cuales fueron simuladas generando un aumento en la población de mosquitos. Se encuentra que el incremento de las precipitaciones incrementa los casos de dengue en 5, 45 %. Las medidas de control vectorial analizadas son fumigación y eliminación de criaderos. Se encontró que el uso conjunto de estas medidas tiene un efecto reductor mayor en la cantidad de infectados que si se aplican de manera individual. La hospitalización temprana del 20 % los contagiados de dengue redujo en un 17,83 % la cantidad total de casos en el departamento. La red compleja implementada para modelar el transporte vehicular define la probabilidad de movilidad en- tre un parche y otro mediante una matriz de tasa de transición. Esta matriz se calcula con base en un modelo gravitacional. La estimación de los parámetros del modelo, fue realizada con datos reales de cada uno de los municipios incluidos en este estudio, esto es, los 27 de Caldas y los 7 municipios vecinos que tienen conexión terrestre directa con algún municipio del departamento. Los casos de dengue obtenidos cuando los municipios están conectados, es decir, que hay movilidad de personas, incrementaron un 83,17 % respecto a los resultados obtenidos cuando no había movilidad. Se pudo observar que cada municipio es afectado de manera diferente por el movimiento de sus residentes. En aquellos donde la incidencia de dengue es alta y una proporción de sus habitantes se desplazan a zonas de menor incidencia se presenta una disminución en la cantidad de infectados. Los habitantes de municipios sin casos de dengue contraen la enfermedad al desplazarse a zonas con presencia de la enfermedad. Es por esto que se propone restringir el acceso a municipios endémicos durante un brote para disminuir la cantidad total de casos en el departamento (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis, the formulation of a compartmental model is presented in which differential equations and complex networks are used to represent the transmission dynamics of dengue in the department of Caldas in Colombia. The population is divided into four compartments: susceptible, infected, hospitalized, and recovered; and mosquitoes that transmit the disease into two: susceptible and infected. The following effects are explored: (i) rain, (2) applying vector control measures, (iii) hospitalization, and (iv) mobility of infected people. In the department of Caldas, there are two rainy seasons a year, which were simulated, generating an increase in the mosquito population. The increase in rainfall is found to increase dengue cases by 5,45 %. The vector control measures analyzed are fumigation and elimination of breeding sites. It was identified that the joint use of these measures has a greater reducing effect on the number of infected than if these measures are applied individually. Moreover, the early hospitalization of the 20 % of those infected people with dengue produced a reduction of 17,83 % in the total number of cases in the department. The complex network implemented to model vehicular transport defines the mobility pro- bability between one patch and another through a transition rate matrix. This matrix is calculated based on a gravitational model. The estimation of the model parameters was carried out with real data from each of the municipalities included in this study, that is, the 27 municipalities of Caldas and the 7 neighboring municipalities that have direct border connection with a municipality in the department. Dengue cases acquired when municipalities are connected, it means, when there is mobility of people, increased by 83,17 % compared to the results obtained when there is no mobility. It is observed that each municipality is affected differently by the movement of its residents. In those municipalities where the incidence of dengue is high and a proportion of its residents moves to areas of lower incidence, there is a decrease in the number of infected people. Residents of municipalities without dengue cases contracted the disease by moving to areas where the disease is presented. For this reason, it is proposed to restrict access to endemic municipalities during an outbreak to reduce the total number of cases in the departmeeng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaModelado matemático y simulaciónspa
dc.format.extentxiii, 150 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85736
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesAffandi, P ; Faisal: Optimal control mathemathical SIR model of malaria spread in South Kalimantan. En: Journal of Physics: Conference Series 116 (2018), Nr. 2, p.02200spa
dc.relation.referencesAfrane, YA ; Githeko, AK ; Yan, G.: The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. En: Annals of the New York Academy of Sciences 1249 (2012), p. 204–1spa
dc.relation.referencesAlbert, R ; Barab ́asi, A.L.: Statistical mechanics of complex networks. En: Rev.Mod. Phys 74 (2002), Nr. 1, p. 47–9spa
dc.relation.referencesAldila, D. ; Situngkir, N. ; Nareswari, K.: Understanding resistant effect of mosquito on fumigation strategy in dengue control program. En: Journal of Physics: Conference Series (2018), Nr. 1, p. 01206spa
dc.relation.referencesAleta Casas, A: Modelos metapoblacionales para la difusi ́on de epidemias, Universidad de Zaragoza, Tesis de Grado, 20spa
dc.relation.referencesAllen, J.S. L.: An Introduction to Mathematical Biology. Pearson/Prentice Hall, 200spa
dc.relation.referencesAnderson, R. M. ; May, R. M.: Infectious diseases in humans. Oxford University Press, Oxford, 1992spa
dc.relation.referencesApolloni, A. ; Poletto, C. ; Ramasco, J. ; Jensen, P. ; Colizza, V.: Metapopulation epidemic models with heterogeneous mixing and travel behaviour. En: Theoretical Biology and Medical Modelling 11 (2014), Nr. 1, p.spa
dc.relation.referencesBailey, Norman T. J.: The role of Statistics in controlling and eradicating infectious diseases. En: Journal of the Royal Statistical Society 34 (1985), p. 3–1spa
dc.relation.referencesBalcan, D. ; Hu, H. ; Goncalves, B. ; Bajardi, P. ; Poletto, C. ; Ramasco, J. J. ; Paolotti, D. ; Perra, N. ; Tizzoni, M. ; Van den Broeck, W. ; Colizza, V. ; Vespignani, A.: Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. En: BMC Medicine 7 (2009), Nr. 45spa
dc.relation.referencesBarmak, D. H. ; Dorso, C. O. ; Otero, M. ; Solari, H. G.: Dengue epidemics and human mobility. En: Physical Review E 84 (2011), Nr.spa
dc.relation.referencesBarrera, R ; Amador, M ; MacKay, A. J.: Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico. En: PLoS Negl Trop Dis 5 (2011), Nr. 12, p. e137spa
dc.relation.referencesBarrera, Roberto ; Amador, Manuel ; Acevedo, Veronica ; Caban, Belkis ; Felix, Gilberto ; Mackay, Andrew J.: Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of ¡I¿Aedes aegypti¡/I¿(Diptera: Culicidae). En: Journal of Medical Entomology 51 (2014), Nr. 1, p. 145–15spa
dc.relation.referencesBarrios, E. ; Lee, S. ; Vasilievaa, O.: Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia. En: Journal of Theoretical Biology 453 (2018), p. 14–3spa
dc.relation.referencesBasáñez, M.G. ; Rodríguez, D. J.: Dinámica de transmisión y modelos matemáticos en enfermedades transmitidas por vectores. En: Entomotropica 19 (2004), Nr. 3, p.113–13spa
dc.relation.referencesBenedum, C. M. ; Seidahmed, O. M. E. ; Eltahir, N.: Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. En: PLoS Negl Trop Dis (2018)spa
dc.relation.referencesBernoulli, D.: Epidemiological model. En: Mem. Math. Phys. Acad. Roy. Sci (1760)spa
dc.relation.referencesBeserra, E ; Fernandes, J ; Freitas, E ; Santos, K.: Efeito da Qualidade da Água no Ciclo de Vida e na Atracao para Oviposicao de Aedes aegypti (L.) (Diptera: Culicidae). En: Neotrop Entomol 39 (2010), Nr. 6, p. 1016–102spa
dc.relation.referencesBhatt, S.r ; Gething, O. J.and Messina J. P. ; Farlow, A. W. ; Moyes, J. M. ; Brownstein, J. S. ; Hoen, A. G. ; Sankoh, O. ; Myers, D. B. ; Jaenisch, T. ; G. R. Wint, W. ; Simmons, C. P. ; Scott, J. J. Hay S. I.: The global distribution and burden of dengue. En: Nature 496 (2013), p. 504–50spa
dc.relation.referencesBistritz, I. ; Bambos, N. ; Kahana, D. ; Ben-Gal, I. ; Yamin, D.: Controlling Contact Network Topology to Prevent Measles Outbreaks. En: 2019 IEEE Global Communications Conference (GLOBECOM), 2019, p. 1–6spa
dc.relation.referencesBiswas, K. ; Khaleque, A. ; Sen, P.: Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network. En: arXiv: Physics and Society (2020)spa
dc.relation.referencesBogua, M. ; Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. En: Physical Review E 66 (2002), p. 047104spa
dc.relation.referencesBonyah, Ebenezer ; Khan, Muhammad A. ; Okosun, K. O. ; Islam, Saeed: A theoretical model for Zika virus transmission. En: PLOS ONE 12 (2017), 10, Nr. 10, p. 1–26spa
dc.relation.referencesBrady, O. J. ; Gething, P.r W. ; Bhatt, Messina J. P. ; Brownstein, J. S. ; Hoen, A. G. ; Moyes, C. L. ; Farlow, A. W. ; Scott, T. W. ; Hay, S. I.: Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. En: PLoS Negl Trop Dis 6 (2012), Nr. 8spa
dc.relation.referencesBrauer, C: MMathematical Models in Population Biology and Epidemiology.Texts in Applied Mathematics. Springer, 2012spa
dc.relation.referencesBriere, Jean-Francois ; PRACROS, Pascale ; Le Roux, Alain-Yves ; Pierre, Jean Sebastien: A Novel Rate Model of Temperature-Dependent Development for Arthropods. En: Environ Entomol 28 (2008), Nr. 1, p. 22–2spa
dc.relation.referencesBrunkard, J ; Cifuentes, E ; Rothenberg, S: Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. En: Salud P ́ublica Mex 50 (2008), p. 227–234spa
dc.relation.referencesCamargo España, G. F.: Modelamiento de la dinámica del dengue en Colombia, Universidad Nacional de Colombia, Tesis de Grado, 2012spa
dc.relation.referencesCastillo, M ; Torres, C. Caracterización de la ciudad, el hábitat y la vivienda. Informe, Colombia en los años 90. Bogotá. 2005spa
dc.relation.referencesChao, D. L. ; Halloran, M. E. ; Obenchain, V. J. ; Longini, I. M. ; Jr.: FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model. En: PLoS Computational Biologi 6 (2010), Nr. e1000656spa
dc.relation.referencesChaparro, P. ; de la Hoz, F. ; Lozano Becerra, J. C. ; Repetto, S. ; Alba Soto, C. D.: Internal travel and risk of dengue transmission in Colombia. En: Rev Panam Salud Publica 36 (2014), Nr. 3, p. 197–200spa
dc.relation.referencesChiatchoua, C. ; Lozano, J.: Análisis de los efectos del COVID-19 en la economía mexicana. En: Revista Del Centro De Investigación De La Universidad La Salle 14 (2020), Nr. 53, p. 265–290spa
dc.relation.referencesChuang, T. W. ; Chaves, L.F. ; Chen, P. J.: Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. En: PLoS Negl Trop Dis (2017)spa
dc.relation.referencesColizza, . ; Barrat, A. ; Barthélemy, M. ; Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. En: Proceedings of the National Academy of Sciences of the United States of America 103 (2006), Nr. 7, p. 2015–2020spa
dc.relation.referencesColizza, V. ; Pastor-Satorras, R. ; Vespignani, A.: Reaction diffusion processes and metapopulation models in heterogeneous networks. En: Nature Phys 3 (2007), p. 276–282spa
dc.relation.referencesUniversidad Nacional de Colombia, CORPOCALDAS. (2015). CDIAC Centro de Datos e Indicadores Ambientales de C. Recuperado de cdiac.manizales.unal.edu.co/ el 30 de Septiembre. 2020spa
dc.relation.referencesConde, M ; Orjuela, LI ; Castellanos, CA ; Herrera-Varela, M ; Licastro, S ; ML., Quiñones: Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. 35 (2015), Nr. 1, p. 43–2spa
dc.relation.referencesConde Osorio, A. Estudio de la longevidad y el ciclo gonotrófico del Aedes (Stegomyia) aegypti (linnaeus, 1762), cepa Girardot (Cundinamarca) en condiciones de laboratorio. 2003spa
dc.relation.referencesCosta, E.A.P de A. ; Santos, E. M. de M. ; Correia, J. C. ; Ribeiro de Albuquerque, C. M.: Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). En: Revista Brasileira de Entomologia 54 (2012), Nr. 3, p. 488–493spa
dc.relation.referencesCusick, M.E ; Klitgord, N ; Vidal, M ; Hill, D.E: Interactome: gateway into systems biology. En: Hum Mol Genet 14 (2005), Nr. 2, p. 171–181spa
dc.relation.referencesDANE. Censo general de Colombia, 2005. Bogotá: Departamento Administrativo Nacional de Estadística;. 2009spa
dc.relation.referencesDarwish, N.T. ; Alias, Y. B. ; Khor, S.M: An introduction to dengue-disease diagnostics. En: Trends in Analytical Chemistry 67 (2015), p. 45–55spa
dc.relation.referencesDerouich, M ; Boutayeb, A ; Twizell, EH: A model of dengue fever. En: Biomed Eng Online 2 (2003), p. 4spa
dc.relation.referencesDiekmann, J. A. P. ; Metz, J. A. J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. En: Journal of Mathematical Biology 28 (1990), Nr. 4spa
dc.relation.referencesorado Gracia, Mar ́ıa A. Análisis de tabla de vida de una población de Aedes aegypti (Diptera: Culicidae) bajo condiciones de laboratorio en Bogotá. 2018spa
dc.relation.referencesDurán, Fabio Andrés C.: Dinámica de epidemias en metapoblaciones basada en redes complejas, Universidad Nacional de Colombia, Tesis de Grado, 2010spa
dc.relation.referencesEscobar-Montoya, J. I.: Conocimientos sobre el dengue y las enfermedades cardiocerebro-vasculares en un municipio de Colombia. En: Rev. salud pública 15 (2013), Nr. 4, p. 625–636spa
dc.relation.referencesFenichel, C. ; Ceddia, M. G. ; Chowell, G. ; Gonzalez Parra, G. J.and Holloway G. ; Horan, R. ; Morin, B. ; Perrings, C. ; Springborn, M. ; Velazquez, L. ; Villalobos, C.: Addaptive human behavior in epidemiological models. En: Proceedings of the National Academy of Sciences 108 (2011), Nr. 15, p. 6306–6311spa
dc.relation.referencesFerreira, G. L.: Global dengue epidemiology trends. En: Revista do Instituto de Medicina Tropical de Sao Paulo 54 (2012), 10, p. 5 – 6spa
dc.relation.referencesFunk, S. ; Gilad, E. ; Watkins, C. ; Jansen, V. A. A.: The spread of awareness and its impact on epidemic outbreaks. En: Proceedings of the National Academy of Sciences 106 (2009), p. 6872–7spa
dc.relation.referencesGagnon, A ; Bush, A. ; Smoyer-Tomic, K.: Dengue epidemics and the El Niño Southern Oscillation. En: Clim Res 19 (2001), p. 35–43spa
dc.relation.referencesGiordano, F.and Bruno R.and Colaneri P.and Di Filippo A.and Di Matteo A.and Colaneri M.: Modelling the COVID-19 epidemic and implementation of population wide interventions in Italy. En: Nature Medicine. 26 (2020), p. 855–860spa
dc.relation.referencesGiraldo, G ; Cuevas, H ; Pabón, JD ; Padilla, JC.: Comportamiento del dengue clásico asociado con la temperatura superficial del mar como indicador del ciclo ENOS en Colombia. En: Inf Quinc Epid Nac 4 (1998), p. 322–327spa
dc.relation.referencesGobernación, de C. Información del departamento. 4 octubre 2020spa
dc.relation.referencesGómez, D.: Dengue in the Americas. A problem of regional health. En: Salud Pública Mexico 33 (1991), 07, Nr. 4, p. 347–55spa
dc.relation.referencesGubler, D. J.: The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. En: Ann. Acad. Med. Singapore 27 (1998), p. 227–234spa
dc.relation.referencesGubler, D. J.: Dengue, urbanization and globalization: the unholy trinity of the 21st century. En: Trop Med Health 39 (2001), Nr. 4Suppl, p. 3–11spa
dc.relation.referencesGubler, D. J.: The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? En: Comp Immunol Microbiol Infect Dis 27 (2004), p. 319–330spa
dc.relation.referencesGubler, D J.: Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. En: Tropical Medicine and Health 39 (2011), Dezember, Nr. 4 Suppl, p. 3–11. – ISSN 1348–8945spa
dc.relation.referencesGuzman, M. G. ; Halstead, S. B. ; Artsob, H. ; Buchy, P. ; Farrar, J. ; Gubler, D. J. ; Hunsperger, E. ; Kroeger, A. ; Margolis, H. S. ; Mart ̃Anez, E. ; Nathan, M. B. ; Pelegrino, J. L. ; Simmons, C. ; Yoksan, S. ; Peeling, R. W.: Dengue: a continuing global threat. En: Nature reviews. Microbiology 8 (2010), Nr. 12, p. S7–16spa
dc.relation.referencesGállego, J ; del Atlántico, Universidad (Ed.): Ecolog ́ıa del Aedes aegypti. 1990spa
dc.relation.referencesGállego, J ; de la Universidad de Barcelona. España., Editorial (Ed.): Ma- nual de parasitología: morfología y biología de los parásitos de interés sanitario. 2006spa
dc.relation.referencesGómez-Gardeñes, J ; Soriano-Paños, D ; Arenas, A.: Critical regimes driven by recurrent mobility patterns of reaction?diffusion processes in networks. 14 (2018), p. 391–395spa
dc.relation.referencesGómez Tejeda, J ; Besteiro Arjona, Eliana ; Hernández Pérez, Claudia ; Góngora Villares, Yudys: Impacto psicológico causado por la pandemia de COVID-19. En: Revista Científica Estudiantil de Cienfuegos Inmedsur 3 (2020), Nr. 2, p. 36–43spa
dc.relation.referencesGónima, L ; Meza, Ballesta A.: Influencia del clima y de la cobertura vegetal en la ocurrencia del dengue (2001-2010). En: Rev Salud Pública 16 (2014), Nr. 2spa
dc.relation.referencesHalloran, M. E. ; Ferguson, N. M. ; Eubank, S. ; Longini, I. M. ; Jr ; Cum- mings, D. A. T. ; Lewis, B. ; Xu, S. ; Fraser, C. ; Vullikanti, A. ; Germann, T. C. ; Wagener, D. ; Beckman, R. ; Kadau, K. ; Barrett, C. ; Macken, C. A. ; Burke, D. S. ; Cooley, P.: Modeling targeted layered containment of an influenza pandemic in the United States. En: PNAS 105 (2008), Nr. 12spa
dc.relation.referencesHamdan, N. I. ; Kilicman, A: A fractional order SIR epidemic model for dengue transmission. En: Chaos, Solitons & Fractals 114 (2018), p. 52–62spa
dc.relation.referencesHidalgo, C.A ; Klinger, B ; Barábasi, A.L ; Hausmann, R: The product space conditions the development of nations. En: Science 317 (2007), Nr. 5837, p. 482–487 [69] Holme, P. ; Kim, B. J.: Growing scale-free networks with tunable clustering. En: Physical Review E 65 (2002), Nr. 2spa
dc.relation.referencesHongjing, Shi ; Zhisheng, Duan ; Guanrong, Chen: An SIS model with infectivespa
dc.relation.referencesmedium on complex networks. En: Physica A 387 (2008), p. 2133–2144spa
dc.relation.referencesHuber, J. H. ; Childs, M. L. ; Caldwell, E. A.: Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. En: PLoS Negl Trop Dis 12 (2018), Nr. 5spa
dc.relation.referencesHurtado Díaz, M ; Riojas Rodríguez, H ; Rothenberg, SJ ; Gomez Dantes, H ; Cifuentes, E: Impact of Climate Variability on the Incidence of Dengue in Mexico. En: Trop Med Int Health 12 (2007), p. 1327–1337spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi, Ministerio de la Protección S. Distri- bución del mosquito Aedes aegypti, vector del virus del dengue en Colombia [mapa]. Bogotá Instituto Geográfico Agustín Codazzi. 2008spa
dc.relation.referencesInstituto nacional, de S. Protocolo para la Vigilancia en Salud Publica del Dengue. junio 2014spa
dc.relation.referencesIvorra, B ; Ramos, á. M.: Application of the Be-CoDiS mathematical model to forecast the international spread of the 2019–20 Wuhan coronavirus outbreak / Uni- versidad Complutense de Madrid. 2020. – Informe de Investigaciónspa
dc.relation.referencesIvorra, B. ; Ramos, á.l M.: Validation of the forecasts for the international spread of the coronavirus disease 2019 (COVID-19) done with the Be-CoDiS mathematical model / Universidad Complutense de Madrid. 2020. – Informe de Investigaciónspa
dc.relation.referencesIvorraa, B. ; Ngomb, D. ; Ramos, á. M.: Be-CoDiS: A Mathematical Model to Predict the Risk of Human Diseases Spread Between Countries-Validation and Appli- cation to the 2014-2015 Ebola Virus Disease Epidemic. 77 (2015), Nr. 9, p. 1668–1704spa
dc.relation.referencesIvorraa, B. ; Ngomb, D. ; Ramos, á. M.: Stability and sensitivity analisys if the epidemiological model BE-CODIS predicting the spread of human diseases between countries. 62 (2020), p. 1–29spa
dc.relation.referencesackson, M.O ; Rogers, B.W: Meeting strangers and friends of friends: How random are social networks? En: Am. Econ. Rev 97 (2007), Nr. 3, p. 890–915spa
dc.relation.referencesKarl, Stephan ; Halder, Nilimesh ; Kelso, Joel K. ; A Ritchie, Scott: A spa- tial simulation model for dengue virus infection in urban areas. En: BMC Infectious Diseases 14 (2014), Nr. 1spa
dc.relation.referencesKeeling, M ; Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press,Princeton, 2007spa
dc.relation.referencesKhan, M. A. ; Khan, A.and Elsadany A. A.: Modeling and simulation results of a fractional dengue model. En: The European Physical Journal Plus 134 (2019), Nr. 8, p. 379spa
dc.relation.referencesKivelä, M ; Pan, R. K. ; Kaski, K ; Kertész, J ; Saramäki, J ; Karsai, M.: Multiscale analysis of spreading in a large communication network. En: J. Stat. Mech (2012), p. P03005spa
dc.relation.referencesKossinets, G ; Watts, D. J.: Empirical analysis of an evolving social network. En: Science 311 (2006), Nr. 5757, p. 88–90spa
dc.relation.referencesKroeger, A. ; Lenhart, A. ; Ochoa, M. ; Villegas, E. ; Levy, M. ; Alexander, N. ; McCall, P J.: Effective control of dengue vectors with curtains and water ontainer covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. En: British Medical Journal 332 (2006), Nr. 1247spa
dc.relation.referencesKurahashi, S: An Agent-Based Infectious Disease Model of Rubella Outbreaks. En: Jezic, Gordan (Ed.) ; Chen-Burger, Yun-Heh J. (Ed.) ; Kusek, Mario (Ed.) ; ˇSperka, Roman (Ed.) ; Howlett, Robert J. (Ed.) ; Jain, Lakhmi C. (Ed.): Agents and Multi-agent Systems: Technologies and Applications 2019. Singapore : Springer Singapore, 2020, p. 237–247spa
dc.relation.referencesLai, Y: The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis. En: BioMedical Engineering OnLine 17 (2018), Nr. S2spa
dc.relation.referencesLal, A ; Baker, MG ; Hales, S ; French, NP: Potential effects of global envi- ronmental changes on cryptosporidiosis and giardiasis transmission. En: Trends in parasitology 29 (2013), Nr. 2, p. 83–90spa
dc.relation.referencesLambrechts, L. ; Paaijmans, K. P. ; Fansiri, T. ; Carringtond, L. B. ; Krame- re, M. B. ; Scott, T. W.: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. En: PNAS 108 (2011), Nr. 18, p. 7460–7465spa
dc.relation.referencesLiao, W. ; Zhang, Z. ; Pan, Z. ; Mantini, D. ; Ding, J. ; Duan, X. ; Luo, C. ; Lu, G. ; Chen, H.: Altered functional connectivity and small-world in mesial temporal lobe epilepsy. En: PLoS One 5 (2010), Nr. 1, p. e8525spa
dc.relation.referencesLiu, J ; Tang, Y ; Yang, Z.R: The spread of disease with birth and death on networks. En: T. J. Stat. Mech (2004), p. P08008spa
dc.relation.referencesLiu, J ; Wu, J ; Yang, Z.R: The spread of infectious disease on complex networks with household-structure. En: Physica A 341 (2004), p. 273–280spa
dc.relation.referencesLiu-Helmersson, J ; Stenlund, H ; Wilder-Smith, A ; Rockl ̈ov, J: Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. En: PLoS ONE 9 (2014), Nr. 3, p. e89783spa
dc.relation.referencesLopez Montenegro, L. E.: Modelos y Control Optimo Poblacional del Aedes aegypti con Retardos de Tiempo, Universidad Nacional de Colombia sede Manizales, Tesis de Grado, 2012spa
dc.relation.referencesLouch, H: Personal network integration: Transitivity and homophily in strong-tie relations. En: Soc.Netw 22 (2000), Nr. 1, p. 45–64spa
dc.relation.referencesLowe, R. ; Gasparrini, A. ; Van Meerbeeck, C. J. ; Lippi, C. A. ; Mahon, R. ; Trotman, L. ; Hinds, A. Q. J. ; Ryan, S. J. ; Stewart-Ibarra, A. M.: Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. En: PLOS MEDICINE (2018)spa
dc.relation.referencesLópez, R. ; Molina, R.: Cambio climático en España y riesgo de enfermedades infecciosas y parasitarias transmitidas por artrópodos y roedores. En: Revista Española Salud Pública 79 (2005), Julio-Diciembre, Nr. 1spa
dc.relation.referencesMaidana, N. A. ; Yang, H. M.: Describing the geographic spread of dengue disease by traveling waves. En: Mathematical Biosciences 215 (2008), p. 64–77spa
dc.relation.referencesMarcombe, S ; Corbel, V. ; Yébakima, A. ; Etienne, M. ; Yp-Tcha, M.-M. ; Darriet, F. ; Agnew, P.: Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies). En: Emerging Infectious Diseases 84 (2011), Nr. 1, p. 118–126spa
dc.relation.referencesMarinho, R. A. ; Beserra, E. B. ; Bezerra-Gusm ̃ao, M. A. ; Porto, V de S. ; Olinda, R. A. ; Dos Santos, C. A.: Effects of temperature on the life cycle, expsan- cion and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. En: Journal of Vector Ecology 4 (2015), Nr. 1spa
dc.relation.referencesMarquetti, M.: Aspectos bioecológicos de importancia para el control de Aedes aegy- pti y otros culícidos en el ecosistema urbano., Instituto de Medicina Tropical Pedro Kourí, Tesis de Grado, 2008spa
dc.relation.referencesMcGavin, G ; McGavin, G. (Ed.): Essential entomology. An order by order intro- duction. Oxford University Press, 2001spa
dc.relation.referencesMercado Reyes, M: Informe Final Dengue, Colombia, 2014 / Instituto Nacional de Salud. 2014 ( 2). – Informe de Investigaciónspa
dc.relation.referencesMerler, S. ; Ajelli, M. ; Pugliese, A. ; Ferguson, N. M.: Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling. En: PLoS Computational Biologi 7 (2011), Nr. 9, p. e1002205spa
dc.relation.referencesMessina, J. P. ; Brady, O. J. ; Golding, N. ; Kraemer, M. U. G. ; Wint, G. R. W. ; Ray, S. E. ; Ray, and Shearer F. M. ; Johnson, K. ; Earl, L. ; Marczak, L. B. ; Shirude, S. ; Weaver, N. D. ; Gilbert, M. ; Velayudhan, R. ; Jones, P. ; Jaenisch, T. ; Scott, T. W. ; Reiner Jr, R. C. ; ; Hay, S. I.: The current and future global distribution and population at risk of dengue. En: Nature Microbioly 4 (2019), p. 1508–1515spa
dc.relation.referencesMontesinos López, O. A. ; Hernández Suárez, C. M.: Modelos matemáticos para enfermedades infecciosas. En: Salud pública de méxico 49 (2007), Nr. 3spa
dc.relation.referencesMoore, C. ; Newman, M. E. J.: Epidemics and percolation in small-world networks. En: Physical Review E 61 (2000), Nr. 5, p. 5678–5682spa
dc.relation.referencesMora, A ; Jiménez, F ; Treviño, S: Distribución geoespacial y detección del virus del dengue en mosquitos Aedes (Stegomyia) aegypti de Ciudad Juárez. En: Salud Pública Mex 52 (2009), p. 127–133spa
dc.relation.referencesMoreno, Y. ; Pastor-Satorras, R. ; A., Vespignani: Epidemic outbreaks in com- plex heterogeneous networks. En: The European Physical Journal B 26 (2002), p. 521–529spa
dc.relation.referencesMoreno Sotelo, G. N.: Análisis del umbral epidemiológico en enfermedades trans- mitidas por un vector, Universidad Nacional de Colombia sede Bogotá, Facultad de Ciencias, Departamento de Física, Tesis de Grado, 2013spa
dc.relation.referencesMurray, N. E. A. ; Quam, M. B. ; Wilder-Smith, A.: Epidemiology of dengue: past, present and future prospects. En: Clinical Epidemiology 5 (2013), p. 299–309. – ISSN 1179–1349spa
dc.relation.referencesNawawi, D.: Mathematical assessment on the effect of hospitalization in dengue intervention. (2020)spa
dc.relation.referencesNewman, M.: Percolation and epidemics in a two dimensional small world. En: Physical Review E 65 (2002), Nr. 2, p. 021904spa
dc.relation.referencesNewman, M.: Networks: An Introduction. Oxford University Press, 2010. – ISBN 01992066519780199206650spa
dc.relation.referencesNguyen, L. T. ; Le, H. X. ; Nguyen, D. T. ; Ho, H. Q. ; Chuang, T.-W.: Impact of Climate Variability and Abundance of Mosquitoes on Dengue Transmission in Central Vietnam. En: International Journal of Environmental Research and Public Health 17 (2020), Nr. 7spa
dc.relation.referencesOcampo, N. J.and Carabalí M.and Alexander N.and Osorio L.: Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. En: Acta Tropica 132 (2014), p. 15–22spa
dc.relation.referencesOnnela, J. P. ; Chakraborti, A ; Kaski, K ; Kertész, J ; Kanto, A: Dynamics of market correlations: Taxonomy and portfolio analysis. En: Physical Review E 68 (2003), Nr. 5spa
dc.relation.referencesOoi, EE ; Gubler, DJ: Dengue in Southeast Asia:epidemiological characteristics and strategic challenges in disease prevention. En: Cad Saude Publica 25 (2009), p. 115–124spa
dc.relation.referencesOrganization, World H. Dengue guidelines for diagnosis, treatment, prevention and control : new edition. 2009spa
dc.relation.referencesPadilla, J. C. ; Rojas, D. P. ; Sáenz Gómez, R.: Dengue en Colombia:Epidemiología de la reemergencia a la hiperendemia. Los Autores, 2012. – ISBN 9789584606617spa
dc.relation.references(PAHO), Pan American Health O. Actualización Epidemiológica Denguespa
dc.relation.references(PAHO), Pan American Health O. A timeline for Dengue in the americasto december 31, 2000 and noted first occurences, 2001spa
dc.relation.referencesPandey, Abhishek ; Mubayi, Anuj ; Medlock, Jan: Comparing vector host and SIR models for dengue transmission. En: Mathematical Biosciences 246 (2013), p. 252–259spa
dc.relation.referencesPastor, J. ; Sola, R. G. ; Vega-Zelaya, L. ; Garnés, O ; Ortega, G. J.: Conec- tividad funcional y redes complejas en el estudio de la epilepsia focal. Implicaciones fisiopatológicas y terapéuticas. En: Revista de Neurología 58 (2014), Nr. 9, p. 411–419spa
dc.relation.referencesPastor-Satorras, R: Epidemic dynamics in finite size scale-free networks. En: Physical Review E 65 (2002)spa
dc.relation.referencesPastor-Satorras, R. ; Castellano, C. ; Mieghem, P. V. ; Vespignani, A.: Epidemic processes in complex networks. En: Reviews of Modern Physics 87 (2015), Nr. 925spa
dc.relation.referencesPham, HV ; Doan, HTM ; Phan, TTT ; Tran Minh, NN.: Ecological factors asso- ciated with dengue fever in a central highlandsProvince, Vietnam. En: BMC Infectious Diseases 11 (2011), Nr. 1spa
dc.relation.referencesPhillips, M. L.: Phillips, M. L. Dengue reborn: widespread resurgence of a resilient vector. En: Environ. Health Perspect 116 (2008), Nr. A382-A388spa
dc.relation.referencesPinto, F. A. ; Martínez, S. ; Fuentes, M. ; Borrero, E: Análisis de las demoras en salud en personas que enfermaron de gravedad o fallecieron por dengue en cinco ciudades de Colombia. En: Physis: Revista de Saúde Coletiva 25 (2015), Nr. 2spa
dc.relation.referencesMinisterio de la Protección Social, Organización Panamericana de la S.: Gestón para la vigilancia entomológica y control del dengue / Instituto Nacional de Salud. 2013. – Informe de Investigaciónspa
dc.relation.referencesQuintero, D ; Osorio, J ; M, Martínez: Competencia vectorial: consideraciones entomológicas y su influencia sobre la epidemiología del Dengue. En: Iatreia 23 (2010), Nr. 2spa
dc.relation.referencesQuintero, J ; Ronderos Pulido, N ; Logan, J ; Ant, T ; Bruce, J ; G, Ca- rrasquilla: Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue. En: PLoS ONE 15 (2020), Nr. 4spa
dc.relation.referencesQuintero-Herrera, L. L. ; Ramirez-Jaramillo, V. ; Bernal-Gutierrez, S. ; Cardenas-Giraldo, E. V. ; Guerrero-Matituy, E. A. ; Molina-Delgado, A. H. ; Montoya-Arias, C. P. ; Rico-Gallego, J. A. ; Herrera-Giraldo, A. C. ; Botero-Franco, S. ; Rodriguez-Morales, A. J.: Potential impact of clima- tic variability onthe epidemiology of dengue in Risaralda,Colombia, 2010-2011. En: Journal of Infection and Public Health 8 (2015), p. 291–297spa
dc.relation.referencesfor Research, Special P. ; in Tropical Diseases, Training ; World Health Or- ganization, Scientific Working Group on D. ; World Health Organization, Scientific Working Group. Meeting on D.: Report of the Scientific Working Group Meeting on Dengue: Geneva, 1-5 October, 2006. WHO, Special Programme for Re- search and Training in Tropical Diseases, 2007spa
dc.relation.referencesDe los Reyes V, A. A. ; Escaner, J. M. L.: Dengue in the Philippines: model and analysis of parameters affecting transmission. En: Journal of Biological Dynamics 12 (2018), Nr. 1, p. 894–912spa
dc.relation.referencesRibot Reyes, Victoria de la C. ; Chang Paredes, Niurka ; González Castillo, Antonio L.: Efectos de la COVID-19 en la salud mental de la población. En: Revista Habanera de Ciencias médicas 19 (2020)spa
dc.relation.referencesRodríguez Cruz, R: Estrategias para el control del dengue y del Aedes aegypti en las Américas. En: Revista Cubana de Medicina Tropical 54 (2002), p. 189–201spa
dc.relation.referencesRodríguez, H ; De La Hoz, F: Dengue and dengue and vector behaviour in Cáqueza, Colombia, 2004. En: Rev. salud pública 7 (2005), Nr. 1spa
dc.relation.referencesRojas, C: Cuarentena, aislamiento forzado y uso de drogas. En: Panamerican journal of neuropsychology 14 (2020), Nr. 1spa
dc.relation.referencesRomeo Aznar, Victoria ; Otero, Marcelo ; De Majo, María S. ; Fischer, Sylvia ; Solari, Hernán G.: Modeling the complex hatching and development of Aedes aegypti in temperate climates. En: Ecological Modelling 253 (2013), p. 44–55spa
dc.relation.referencesRossi G, Almirón W.: Clave ilustrada para la identificación de larvas de mosquitos de interés sanitario encontradas en criaderos artificiales en la Argentina. En: Fundación Mundo sano (2004)spa
dc.relation.referencesRúa Uribe, G. L. ; Suárez Acosta, C. ; Chauca, J. ; Ventosilla, P. ; Almanza, R.: Modelado del efecto de la variabilidad climática local sobre la transmisión de dengue en Medellín (Colombia) mediante análisis de series temporales. En: Biomédica 33 (2013), Nr. 1, p. 142–152spa
dc.relation.referencesRubinov, M ; Sporns, O: Complex network measures of brain connectivity: Uses and interpretations. En: NeuroImage 52 (2010), p. 1059–1069spa
dc.relation.referencesRuiz-López, F. ; González-Mazo, A. ; Vélez-Mira, A. ; Gómez, L. ; Uribe, S. ; Vélez-Bernal, I. D.: Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. En: Biomédica. (2016)spa
dc.relation.referencesRussell, R. C. ; Currie, B. J. ; Lindsay, M. D. ; Mackenzie, J. S. ; Ritchie, S. A. ; Whelan, P. I.: Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. En: Medical Journal of Australia 190 (2009), p. 265–268spa
dc.relation.referencesRyan, C. J.and Mordecai E. A.and Johnson L. R.: Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. En: PLoS Negl Trop Dis 13 (2019), Nr. 265-2683spa
dc.relation.referencesSalazar, Roberto ; Díaz, Yadira ; Pardo, Renata: índice de Pobreza Multidimen- sional para Colombia. En: Archivos de Economía 382 (2011), Noviembrespa
dc.relation.referencesSan Martin, Jose L. ; Brathwaite, Olivia ; Zambrano, Betzana ; Solorzano, Jose O. ; Bouckenooghe, Alain ; Dayan, Gustavo H. ; Guzman, Maria G.: The Epidemiology of Dengue in the Americas Over the Last Three Decades: A Worrisome Reality. En: The American Society of Tropical Medicine and Hygiene 82 (2010), Nr. 1, p. 128–135spa
dc.relation.referencesSánchez Steiner, L.M: Migración forzada y urbanización en Colombia. Perspectivas históricas y aproximaciones teóricas. En: Seminario Internacional Procesos Urbanos Informales, 2007spa
dc.relation.referencesSantos, C. A. G. ; Guerra-Gomes, I. C. ; Gois, R. F. ; Keesen, T. S. L. ; da Silva, R. M.: Correlation of dengue incidence and rainfall occurrence using wavelet transform for Jo ̃ao Pessoa city. En: Science of The Total Environment (2019)spa
dc.relation.referencesSardar, T. ; Rana, J.: A mathematical model of dengue transmission with memory. En: Communications in Nonlinear Science and Numerical Simulation 22 (2015), Nr. 511–525spa
dc.relation.referencesSarfraz, M.S ; Tripathi, N. K. ; Tipdecho, T. ; Thongbu, T. ; Kerdthong, P. ; Souris, M: Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. En: BMC Public Health 12 (2012), Nr. 853spa
dc.relation.referencesScott, Thomas W. ; Amerasinghe, Priyanie H. ; Morrison, Amy C. ; Lorenz, Leslie H. ; Clark, Daniel ; Kittayapong, Pattamaporn ; Edman, John D.: Lon- gitudinal Studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency. En: Journal of Medical Entomology 37 (2000), Nr. 1spa
dc.relation.referencesSepúlveda, L. S.: Manejo óptimo y viable en modelos epidemiológicos del dengue, Universidad Autónoma de Occidente, Tesis de Grado, 2015spa
dc.relation.referencesSepulveda Salcedo, L. S. ; Vasilieva, H. J.and Arias Castro J. H.: Ross Macdo- nald: Un modelo para la dinámica del dengue en Cali, Colombia. En: Revista de Salud Pública 17 (2016), Nr. 5, p. 749–761spa
dc.relation.referencesSethia, A. ; Eargleb, J. ; Blacka, A. A. ; Schultena, Z. L.: Dynamical networks in tRNA: protein complexes. En: PNAS 106 (2009), Nr. 6620-6625spa
dc.relation.referencesSeto, K. C. ; Guneralp, B ; Hutyra, L. R.: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. En: Proc. Natl Acad. Sci. USA 109 (2012), Nr. 40, p. 16083–8spa
dc.relation.referencesSide, Syafruddin ; Noorani, Mohd. Salmi M.: A SIR model for spread of dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia), 2013spa
dc.relation.referencesde Política Económica y Social, Consejo N. Políca para el suministro de agua potable y saneamiento básico en la zona rural. Julio 2014spa
dc.relation.referencesSolé, R ; Valverde, S: Spontaneous emergency of modularity in cellular networks. En: J. R.Soc. Interface 5 (2008), p. 129–133spa
dc.relation.referencesSoriano-Paños, D. ; Lotero, L. ; Arenas, A. ; Gómez-Gardeñes, J.: Spreading Processes in Multiplex Metapopulations Containing Different Mobility Networks. En: Phys. Rev. X 8 (2018), Aug, p. 031039spa
dc.relation.referencesSporns, O. ; Chialvo, D. R. ; Kaiser, M. ; Hilgetag, C. C.: Organization, deve- lopment and function of complex brain networks. En: TRENDS in Cognitive Sciences 8 (2004), Nr. 9spa
dc.relation.referencestoddard, S. ; Forsheycde, B. M. ; Morrisona, A. C. ; az Soldanf, V. A. ; Vazquez-Prokopecb, H. ; Reiner, S. ; Elderh, E. S. ; Kochelc, U. ; Scotˇt, T W.: House-to-house human movement drives dengue virus transmission. En: Pro- ceedings of the National Academy of Sciences. 110 (2013), Nr. 3, p. 994–999spa
dc.relation.referencesStoddard, S.T ; Morrison, A. C. ; Vazquez Prokopec, G. M. ; Soldan, V. P. ; Kochel, T. J. ; Kitron, U. ; Elder, J. P. ; Scott, T. W.: The role of human movement in the transmission of vector-borne pathogens. En: PLoS Negl Trop Dis 3 (2009), Nr. 7, p. e481spa
dc.relation.referencesStrogatz, S. H.: Exploring Complex Networks. En: Nature 410 (2001), p. 268–276spa
dc.relation.referencesSuárez, M. F. ; Nelson, M. J.: Registro de altitud del Aedes aegypt. En: Biomédica. 1 (1981), Nr. 1:225spa
dc.relation.referencesSudria, M ; Andreatta, M ; Defagó, M: Los efectos de la cuarentena por corona- virus (Covid-19) en los hábitos alimentarios en Argentina. En: Asociación Argentina de Dietistas y Nutricionistas Dietistas; Diaeta 38 (2020), Nr. 171, p. 10–19spa
dc.relation.referencesSulistyawati, S. ; Dwi Astuti, F. ; Rahmah Umniyati, S. ; Tunggul Satoto, T. ; Lazuardi, L. ; Nilsson, M. ; Holmner, ̊A.: Dengue Vector Control through Community Empowerment: Lessons Learned from a Community-Based Study in Yog- yakarta, Indonesia. En: International Journal of Environmental Research and Public Health. 16 (2019), Nr. 6spa
dc.relation.referencesSun, X ; Liu, Y ; Li, B ; Han, J ; Liu, X: Mathematical model for spreading dynamics of social network worms. En: J. Stat. Mech P04009 (2012)spa
dc.relation.referencesabachnick, W. J.: Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. En: The Journal of Experimental Biology 213 (2010), p. 946–954spa
dc.relation.referencesTao, H. ; Liu, Y. ; Wang, K. ; Zhuo, L.: Assessing Impacts of Traffic Flows on the Spatial Distribution of Early Dengue in Guangzhou Subdistricts. En: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, p. 3468–3470spa
dc.relation.referencesTapia Conyer, R ; Méndez Galván, J ; Burciaga Zúñiga, P: Community participation in the prevention and control of dengue: the patio limpio strategy in Mexico. En: Paediatrics and International Child Health 32 (2002), Nr. S1, p. 10–13spa
dc.relation.referencesThirion, J: El mosquito Aedes aegypti y el dengue en México. En: Bayer Environ- mentalScience (2003)spa
dc.relation.referencesThoméa, R. C. ; Yangb, H. M. ; Estevac, L.: Optimal control of Aedes aegypti mos- quitoes by the sterile insect technique and insecticide. En: Mathematical Biosciences 223 (2010)spa
dc.relation.referencesTsai, Ching-Tsan ; Sung, Fung-Chang ; Chen, Patrick S. ; Lin, Shu-Chiung: Ex- ploring the spatial and temporal relationships between mosquito population dynamics and dengue outbreaks based on climatic factors. En: Stoch Environ Res Risk Assess 26 (2012), p. 671–680spa
dc.relation.referencesValdez, L. D. ; Sibona, G. J. ; Condat, C. A.: RImpact of rainfall on Aedes aegypti populations. En: Ecological Modelling 385 (2018), p. 96–105spa
dc.relation.referencesVelásquez, L. C. ; Quintero, J. ; García Betancourt, T. ; González Uribe, C. ; Fuentes Vallejo, M.: Funcionamiento de las políticas gubernamentales para la prevención y el control del dengue: el caso de Arauca y Armenia en Colombia. En: Biomédica 35 (2015), p. 186–195spa
dc.relation.referencesVincenti-Gonzalez, M. F. ; Tami, A ; Lizarazo, E. F. ; Grillet, M. E.: ENSO- driven climate variability promotes periodic major outbreaks of dengue in Venezuela. En: Scientific Reports 8 (2018), Nr. 1spa
dc.relation.referencesVivescas, F: Urbanización y ciudad en Colombia. Una cultura para construir en Colombia. En: Bogotá: Foro Nacional por Colombia, 1989, p. 283spa
dc.relation.referencesWang, Tang S. ; Cheke, R. A.: A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. En: Journal of Theoretical Biology 411 (2016), p. 27–36spa
dc.relation.referencesWatts, D. J. ; Strogatz, S. H.: Collective dynamics of small-world networks. En: Nature 393 (1998), p. 440–442spa
dc.relation.referencesWHO, Switzerland: Global Strategy for Dengue Prevention and Control 2012-2020 / WHO Press. 2012. – Informe de Investigaciónspa
dc.relation.referencesWilder-Smith, A. ; Gubler, D. J.: Geographic Expansion of Dengue: The Impact of International Travel. En: Medical Clinics of North America 92 (2008), Nr. 6, p. 1377–1390spa
dc.relation.referencesXu, Hai-Yan ; Fu, Xiuju ; Lee, Lionel Kim H. ; Ma, Stefan ; Goh, Kee T. ; Wong, Jiancheng ; Habibullah, Mohamed S. ; Lee, Gary Kee K. ; Lim, Tian K. ; Tambyah, Paul A. ; Lim, Chin L. ; Ng, Lee C.: Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore. En: PLoS Negl Trop Dis (2014)spa
dc.relation.referencesYangh, M. L. G. ; Galvani, K. C. ; ANDRIGHETTI, D.M.V.: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. En: Epidemiol Infect 137 (2009), p. 1188–1202spa
dc.relation.referencesZea, D. ; Osorio, L.: Situación del sistema de vigilancia de casos de Dengue en un municipio de Colombia. En: Rev. salud pública. 13 (2011), Nr. 5, p. 785–795spa
dc.relation.referencesZhou, L. ; Wang, Y. ; Xiao, Y. ; Li, M. Y.: Global dynamics of a discrete age- structured SIR epidemic model with applications to measles vaccination strategies. En: Mathematical Biosciences 308 (2019), p. 27–37spa
dc.relation.referencesZhu, Dongmei ; Ren, Jianwei ; Zhu, Huaiping: Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model. Mathematical Methods in the Applied Sciences. En: Science of the Total Environment 41 (2018), Nr. 14, p. 5388–5403spa
dc.relation.referencesZhu, G ; Liu, T ; Xiao, J ; Zhang, B ; Song, T ; Zhang, Y ; Lin, L ; Peng, Z ; Deng, A ; Ma, W ; Hao, Y: Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. En: Science of the Total Environment 651 (2019), p. 969–978spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDenguespa
dc.subject.proposalRedes complejasspa
dc.subject.proposalMedidas de control vectorialspa
dc.subject.proposalEffect human mobility in dengueeng
dc.subject.proposalDengue Epidemic Outbreakseng
dc.subject.proposalBrotes Epidémicos de Denguespa
dc.subject.proposalModeling of Dengueeng
dc.subject.proposalModelado matemático del denguespa
dc.subject.proposalModelo matemáticospa
dc.subject.proposalControl vectorialspa
dc.titleModelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldasspa
dc.title.translatedModeling of dengue epidemic outbreaks for public health decision-making : Effect of mobility in the department of Caldaseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
24339139.pdf
Tamaño:
3.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: