Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano

dc.contributor.advisorCastellanos Hernández, Leonardo
dc.contributor.authorSepúlveda Sánchez, Lady Yohanna
dc.contributor.cvlacrh_0001620161spa
dc.contributor.orcidLady Yohanna Sepulveda Sanchez [0009-0006-9716-7609]spa
dc.contributor.researchgroupGrupo de Investigación: Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombiaspa
dc.coverage.countryColombia
dc.coverage.regionCaribe
dc.date.accessioned2023-08-31T21:28:49Z
dc.date.available2023-08-31T21:28:49Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa proliferación de las algas marinas en los arrecifes del Caribe colombiano ha causado una perdida en la biodiversidad de estos ecosistemas. Con el fin de darle un aprovechamiento a esta biomasa, en este documento se investigó su potencial en la producción de cosméticos despigmentantes y antienvejecimiento. Este estudio se compone de cinco capítulos que abarcan aspectos como la revisión bibliográfica, la extracción de compuestos químicos, el análisis mediante Resonancia Magnética Nuclear (RMN) y espectrometría de masas (EM), la evaluación de la actividad inhibitoria enzimática, así como un estudio químico detallado de una de las algas más prometedoras. La revisión bibliográfica se enfoca en los antecedentes de la industria cosmética en Colombia y los avances en formulaciones antienvejecimiento . Además, se profundiza en las características y el potencial de las algas marinas como ingredientes cosméticos. En el segundo capítulo, se exploran diferentes metodologías de extracción de algas pardas y rojas, y se llevó a cabo el perfilado químico de las muestras seleccionadas usando RMN. El tercer capítulo se centra en el análisis de los extractos utilizando espectrometría de masas (LC-MS/MS) con el fin de obtener una visión detallada de su diversidad química, empleando redes moleculares construidas en la plataforma GNPS Global Natural Products Social Molecular Networking. En el cuarto capítulo, se evaluó la actividad antioxidante (DPPH) e inhibitoria de los extractos previamente obtenidos frente a las enzimas tirosinasa, colagenasa y hialuronidasa. Para los extractos más promisorios se evaluó su actividad citotóxica frente a queratinocitos humanos inmortalizados HaCaT y se encontró que Dictyopteris justii, un alga colectada en Providencia, tiene un potencial prometedor para la industria cosmética debido a su actividad inhibidora de las enzimas de interés y su baja toxicidad. Además, se encontró que algunas especies de Sargassum también son candidatas para futuros estudios. Por consiguiente, en el quinto capítulo se realizó el estudio químico de los extractos butanólicos de muestras de D. justii en diferentes locaciones y en diferentes épocas del año en Providencia, encontrando que, sin importar la muestra, la actividad antioxidante y su capacidad de inhibir las enzimas de interés se mantiene, además los compuestos responsables de dicha actividad corresponden a los florotaninos. Como conclusión, se destaca el potencial de estas algas marinas como valiosas materias primas en la industria cosmética, subrayando la importancia de realizar pruebas de seguridad rigurosas antes de su aplicación comercial. Esta tesis integra herramientas de machine learning, metabolómica y análisis multivariado, con el propósito de explorar el potencial de las algas marinas del Caribe colombiano en la industria cosmética. Los resultados destacan el extracto de Dictyopteris justii como un candidato prometedor y resaltan la necesidad de realizar más investigaciones en este campo.(Texto tomado de la fuente)spa
dc.description.abstractThe proliferation of marine algae in the Colombian Caribbean reefs has led to biodiversity loss in these ecosystems. In order to find a use for this biomass, this document explores its potential in the production of depigmenting and anti-aging cosmetics. This study consists of five chapters covering aspects such as literature review, chemical compound extraction, analysis through Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), evaluation of enzymatic inhibitory activity, as well as a detailed chemical study of one of the most promising algae. The literature review focuses on Colombia's cosmetic industry background and advances in anti-aging formulations. Additionally, it delves into the characteristics and potential of marine algae as cosmetic ingredients. In the second chapter, various methodologies for extracting brown and red algae are explored, and the chemical profiling of selected samples was carried out using NMR. The third chapter analyzes the extracts using mass spectrometry (LC-MS/MS) to obtain a detailed view of their chemical diversity, employing molecular networks built on the GNPS platform Global Natural Products Social Molecular Networking. The fourth chapter evaluated the antioxidant (DPPH) and inhibitory activity of the previously obtained extracts against tyrosinase, collagenase, and hyaluronidase enzymes. For the most promising extracts, their cytotoxic activity against immortalized human keratinocytes (HaCaT) was evaluated, and it was found that Dictyopteris justii, algae collected in Providencia, holds promising potential for the cosmetic industry due to its inhibitory activity on the enzymes of interest and low toxicity. Furthermore, certain species of Sargassum were also identified as candidates for future studies. Consequently, the fifth chapter conducted a chemical study of butanol extracts from samples of D. justii in different locations and times of the year in Providencia. It was found that, regardless of the sample, the antioxidant activity and its ability to inhibit the enzymes of interest remained consistent. Additionally, the compounds responsible for this activity were identified as phlorotannins. In conclusion, the potential of these marine algae as valuable raw materials in the cosmetic industry is emphasized, underscoring the importance of conducting rigorous safety tests before commercial application. This thesis integrates machine learning, metabolomics, and multivariate analysis tools to explore the potential of marine algae from the Colombian Caribbean in the cosmetic industry. The results highlight the extract of Dictyopteris justii as a promising candidate and emphasize the need for further research.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Químicaspa
dc.description.researchareaProductos Naturalesspa
dc.format.extentxxxvi, 309 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84624
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesStatista. Cosmetics and personal care Market. https://www.statista.com/outlook/70000000/103/cosmetics-and-personal-care/latinamerica# (accessed 2018-04-02).spa
dc.relation.referencesStatista Research Department. Valor del mercado de cosméticos en Colombia de 2019 a 2021. https://es.statista.com/estadisticas/1320185/colombia-tamano-delmercado-de-cosmeticos/ (accessed 2022-07-10).spa
dc.relation.referencesAUNAP. Plan Nacional Para El Desarrollo de La Acuicultura Sostenible En Colombia - PlaNDAS; Bogotá, 2014. http://aunap.gov.co/wp-content/uploads/2016/04/PlanNacional-para-el-Desarrollo-de-la-Acuicultura-Sostenible-Colombia.pdf (accessed 2018-11-30).spa
dc.relation.referencesComisión de la Comunidad Andina. DECISIÓN 833 Modificación de la Decisión 516: “Armonización de legislaciones en materia de productos cosméticos.” http://www.sice.oas.org/trade/JUNAC/Decisiones/DEC833_s.pdf (accessed 2022- 07-13)spa
dc.relation.referencesCosmetics and Personal Care Products | TLC Exportador. http://ftaus.procolombia.co/offer-by-sector/manufacturing-and-supplies/cosmetics-andpersonal-care-products (accessed 2018-04-02).spa
dc.relation.referencesinexmoda. INFORME DEL SECTOR COSMÉTICO. http://www.saladeprensainexmoda.com/wp-content/uploads/2019/01/informegastometria-cosmeticos-enero-2019.pdf (accessed 2019-04-21)spa
dc.relation.referencesDecreto 476 de 2020. https://coronaviruscolombia.gov.co/Covid19/docs/decretos/minsalud/113_decreto_ 476.pdf (accessed 2022-01-03).spa
dc.relation.referencesIngredientes Naturales para Cosméticos-guia exportación. https://gqspcolombia.org/wp-content/uploads/2021/12/Guia_exportar-ingredientesnaturales_Suiza_UE.pdf (accessed 2022-01-09).spa
dc.relation.referencesGQSP Colombia - Programa de Calidad para la Cadena de Químicos. Requisitos de calidad y sostenibilidad para ingredientes naturales en Suiza y la Unión Europea. https://gqspcolombia.org/wp-content/uploads/2021/12/Requisitos-de-calidad-ysostenibilidad-IN.pdf (accessed 2021-01-09).spa
dc.relation.referencesGQSP Colombia – Programa de Calidad para la Cadena de Químicos. https://gqspcolombia.org/#laboratorios (accessed 2022-01-03)spa
dc.relation.referencesGupta, M. A.; Gilchrest, B. A. Psychosocial Aspects Of Aging Skin. Dermatol. Clin. 2005, 23 (4), 643–648. https://doi.org/10.1016/j.det.2005.05.012spa
dc.relation.referencesDayan, N. Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development (Personal Care and Cosmetic Technology), 1st Editio.; William Andrew: New York, 2008.spa
dc.relation.referencesCouteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.spa
dc.relation.referencesCouteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.spa
dc.relation.referencesFDA. Prohibited & Restricted Ingredients in Cosmetics | FDA. https://www.fda.gov/cosmetics/cosmetics-laws-regulations/prohibited-restrictedingredients-cosmetics (accessed 2019-07-02)spa
dc.relation.referencesDreno, B.; Araviiskaia, E.; Berardesca, E.; Bieber, T.; Hawk, J.; Sanchez-Viera, M.; Wolkenstein, P. The Science of Dermocosmetics and Its Role in Dermatology. J. Eur. Acad. Dermatology Venereol. 2014, 28 (11), 1409–1417. https://doi.org/10.1111/jdv.12497spa
dc.relation.referencesONUDI Colombia. Análisis de la competitividad del sector cosméticos e ingredientes naturales.spa
dc.relation.referencesVermeer, B. J. Cosmeceuticals. Arch. Dermatol. 1996, 132 (3), 337. https://doi.org/10.1001/archderm.1996.03890270113017spa
dc.relation.referencesAgrawal, S.; Adholeya, A.; Barrow, C. J.; Deshmukh, S. K. Marine Fungi: An Untapped Bioresource for Future Cosmeceuticals. Phytochem. Lett. 2018, 23 (October 2017), 15–20. https://doi.org/10.1016/j.phytol.2017.11.003spa
dc.relation.referencesKikuchi, K.; Tagami, H. Dermatological Benefits of Cosmetics; Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-12-802005-0.00007-0spa
dc.relation.referencesAmaied, E.; Vargiolu, R.; Bergheau, J. M.; Zahouani, H. Aging Effect on Tactile Perception: Experimental and Modelling Studies. Wear 2015, 332–333, 715–724. https://doi.org/10.1016/j.wear.2015.02.030spa
dc.relation.referencesThieulin, C.; Pailler-Mattei, C.; Abdouni, A.; Djaghloul, M.; Zahouani, H. Mechanical and Topographical Anisotropy for Human Skin: Ageing Effect. J. Mech. Behav. Biomed. Mater. 2020, 103 (October 2019), 103551. https://doi.org/10.1016/j.jmbbm.2019.103551spa
dc.relation.referencesOomens, C. W. J.; van Vijven, M.; Peters, G. W. M. Skin Mechanics. In Biomechanics of Living Organs; Elsevier, 2017; pp 347–357. https://doi.org/10.1016/B978-0-12- 804009-6.00016-Xspa
dc.relation.referencesGilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Anatomy and Function of the Skin. In Nanoscience in Dermatology; Elsevier, 2016; pp 1–14. https://doi.org/10.1016/B978-0-12-802926-8.00001-Xspa
dc.relation.referencesKim, H. M.; An, H. S.; Bae, J. S.; Kim, J. Y.; Choi, C. H.; Kim, J. Y.; Lim, J. H.; Choi, J. hun; Song, H.; Moon, S. H.; Park, Y. J.; Chang, S. J.; Choi, S. Y. Effects of Capítulo 1 39 Palmitoyl-KVK-L-Ascorbic Acid on Skin Wrinkles and Pigmentation. Arch. Dermatol. Res. 2017, 309 (5), 397–402. https://doi.org/10.1007/s00403-017-1731-6spa
dc.relation.referencesGanceviciene, R.; Liakou, A. I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C. C. Skin Anti-Aging Strategies. Dermatoendocrinol. 2012, 4 (3), 308–319. https://doi.org/10.4161/derm.22804spa
dc.relation.referencesTobin, D. J. Introduction to Skin Aging. J. Tissue Viability 2017, 26 (1), 37–46. https://doi.org/10.1016/j.jtv.2016.03.002spa
dc.relation.referencesJenkins, G. Molecular Mechanisms of Skin Ageing. Mech. Ageing Dev. 2002, 123 (7), 801–810. https://doi.org/10.1016/S0047-6374(01)00425-0spa
dc.relation.referencesHetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04spa
dc.relation.referencesFreitas-Rodríguez, S.; Folgueras, A. R.; López-Otín, C. The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim. Biophys. Acta - Mol. Cell Res. 2017, 1864 (11), 2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007spa
dc.relation.referencesAhmed, I. A.; Mikail, M. A.; Zamakshshari, N.; Abdullah, A.-S. H. Natural Anti-Aging Skincare: Role and Potential. Biogerontology 2020, 21 (3), 293–310. https://doi.org/10.1007/s10522-020-09865-zspa
dc.relation.referencesFisher, G. J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J. J. Mechanisms of Photoaging and Chronological Skin Aging. Arch. Dermatol. 2002, 138 (11), 1462–1470. https://doi.org/10.1001/archderm.138.11.1462spa
dc.relation.referencesHwang, K.-A.; Yi, B.-R.; Choi, K.-C. Molecular Mechanisms and In Vivo Mouse Models of Skin Aging Associated with Dermal Matrix Alterations. Lab. Anim. Res. 2011, 27 (1), 1–8. https://doi.org/10.5625/lar.2011.27.1.1.spa
dc.relation.referencesShah, H.; Rawal Mahajan, S. Photoaging: New Insights into Its Stimulators, Complications, Biochemical Changes and Therapeutic Interventions. Biomed. Aging Pathol. 2013, 3 (3), 161–169. https://doi.org/10.1016/j.biomag.2013.05.003spa
dc.relation.referencesMumtaz, S.; Ali, S.; Tahir, H. M.; Kazmi, S. A. R.; Shakir, H. A.; Mughal, T. A.; Mumtaz, S.; Summer, M.; Farooq, M. A. Aging and Its Treatment with Vitamin C: A Comprehensive Mechanistic Review. Mol. Biol. Rep. 2021, 48 (12), 8141–8153. https://doi.org/10.1007/S11033-021-06781-4.spa
dc.relation.referencesKeen, M. Hyaluronic Acid in Dermatology. Skinmed 2017, 15, 441–448. (38) Hendry Henderson, A.; Nyoman Ehrich Lister, I.; Girsang, E.; Fachrial, E. Antioxidant and Anticollagenase Activity of Tomato (Solanum Lycopersicum L.) and Lycopene. Technol. Sci. Am. Sci. Res. J. Eng. 2019, 52 (1), 57–66spa
dc.relation.referencesGarg, C.; Khurana, P.; Garg, M. Molecular Mechanisms of Skin Photoaging and Plant Inhibitors. Int. J. Green Pharm. 2017, 11 (2), 217–232spa
dc.relation.referencesFonseca, Y. M.; Catini, C. D.; Vicentini, F. T. M. C.; Nomizo, A.; Gerlach, R. F.; Fonseca, M. J. V. Protective Effect of Calendula Officinalis Extract against UVBInduced Oxidative Stress in Skin: Evaluation of Reduced Glutathione Levels and Matrix Metalloproteinase Secretion. J. Ethnopharmacol. 2010, 127 (3), 596–601. https://doi.org/10.1016/j.jep.2009.12.019spa
dc.relation.referencesBylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella Asiatica in Cosmetology. Adv. Dermatology Allergol. 2013, 1, 46–49. https://doi.org/10.5114/pdia.2013.33378spa
dc.relation.referencesSenol Deniz, F. S.; Orhan, I. E.; Duman, H. Profiling Cosmeceutical Effects of Various Herbal Extracts through Elastase, Collagenase, Tyrosinase Inhibitory and Antioxidant Assays. Phytochem. Lett. 2021, 45, 171–183.spa
dc.relation.referencesRoy, A.; Sahu, R.; Matlam, M.; Deshmukh, V.; Dwivedi, J.; Jha, A. In Vitro Techniques To Assess The Proficiency of Skin Care Cosmetic Formulations. Pharmacogn. Rev. 2013, 7 (14), 97–106. https://doi.org/10.4103/0973-7847.120507spa
dc.relation.referencesMoon, J. K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry. March 11, 2009, pp 1655–1666. https://doi.org/10.1021/jf803537kspa
dc.relation.referencesZappelli, C.; Barbulova, A.; Apone, F.; Colucci, G. Effective Active Ingredients Obtained through Biotechnology. Cosmetics 2016, 3 (4), 39. https://doi.org/10.3390/cosmetics3040039spa
dc.relation.referencesBriganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16 (2), 101–110. https://doi.org/10.1034/j.1600-0749.2003.00029.xspa
dc.relation.referencesVirador, V. M.; Kobayashi, N.; Matsunaga, J.; Hearing, V. J. A Standardized Protocol for Assessing Regulators of Pigmentation. Anal. Biochem. 1999, 270 (2), 207–219. https://doi.org/10.1006/abio.1999.4090spa
dc.relation.referencesGunia-Krzyżak, A.; Popiol, J.; Marona, H. Melanogenesis Inhibitors: Strategies for Searching for and Evaluation of Active Compounds. Curr. Med. Chem. 2016, 23 (31), 3548–3574. https://doi.org/10.2174/0929867323666160627094938spa
dc.relation.referencesThomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5spa
dc.relation.referencesGhersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018spa
dc.relation.referencesLiu, H.; Mander, L. Comprehensive Natural Products II - Chemistry and Biology - Volume_3, 1st editio.; Elsevier Science: Kidlington, 2010spa
dc.relation.referencesSYN®-COLL. https://www.dsm.com/personal-care/en_US/products/skinbioactives/syn-coll.html (accessed 2022-02-09)spa
dc.relation.referencesTRI-K Industries, I. DermaPep TM A440. Innovative Anti-Aging Tetrapeptide. https://www.ulprospector.com/documents/1185121.pdf?bs=1957&b=240140&st=20 &r=la&ind=personalcare (accessed 2022-02-18)spa
dc.relation.referencesInc., S.-C. I. SpecKare ® MBA (Maltobionic Acid). https://www.ulprospector.com/en/na/PersonalCare/Detail/5738/5492191/SpecKareMBA (accessed 2022-02-09)spa
dc.relation.referencesEspinosa-Leal, C.; Garcia-Lara, S. Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications. Planta Med. 2019, 85 (07), 535–551. https://doi.org/10.1055/a-0857-6633spa
dc.relation.referencesHarjo, B.; Wibowo, C.; Ng, K. M. Development of Natural Product Manufacturing Processes: Phytochemicals. Chem. Eng. Res. Des. 2004, 82 (8), 1010–1028. https://doi.org/10.1205/0263876041580695spa
dc.relation.referencesTracy, L. E.; Minasian, R. A.; Caterson, E. J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5 (3), 119–136. https://doi.org/10.1089/WOUND.2014.0561spa
dc.relation.referencesKim, S. W.; Kim, B.-H. A Web-Based Alternative Non-Animal Method Database for Safety Cosmetic Evaluations. Toxicol. Res. 2016, 32 (3), 259–267. https://doi.org/10.5487/TR.2016.32.3.259spa
dc.relation.referencesBurger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036spa
dc.relation.referencesSkoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103spa
dc.relation.referencesChang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440spa
dc.relation.referencesPillaiyar, T.; Namasivayam, V.; Manickam, M.; Jung, S.-H. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2018, 61 (17), 7395–7418. https://doi.org/10.1021/acs.jmedchem.7b00967spa
dc.relation.referencesPark, H. Y.; Kosmadaki, M.; Yaar, M.; Gilchrest, B. A. Cellular Mechanisms Regulating Human Melanogenesis. Cell. Mol. Life Sci. 2009, 66 (9), 1493–1506. https://doi.org/10.1007/s00018-009-8703-8spa
dc.relation.referencesCouteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027spa
dc.relation.referencesZhu, W.; Gao, J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J. Investig. Dermatology Symp. Proc. 2008, 13 (1), 20–24. https://doi.org/10.1038/jidsymp.2008.8spa
dc.relation.referencesEuropean Commission. ANNEX II. List of Substances Prohibited in Cosmetic Products. https://ec.europa.eu/growth/tools-databases/cosing/pdf/COSING_Annex II_v2.pdf (accessed 2020-04-16)spa
dc.relation.referencesCabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic Acid, a Cosmetic Skin Whitening Agent, Is a Slow-Binding Inhibitor of Catecholase Activity of Tyrosinase. J. Pharm. Pharmacol. 1994, 46 (12), 982–985. https://doi.org/10.1111/j.2042- 7158.1994.tb03253.xspa
dc.relation.referencesHakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G. G.; Bissett, D. L.; Boissy, R. E. The Effect of Niacinamide on Reducing Cutaneous Pigmentation and Suppression of Melanosome Transfer. Br. J. Dermatol. 2002, 147 (1), 20–31. https://doi.org/10.1046/j.1365- 2133.2002.04834.xspa
dc.relation.referencesMaeda, K.; Fukuda, M. Arbutin: Mechanism of Its Depigmenting Action in Human Melanocyte Culture. J. Pharmacol. Exp. Ther. 1996, 276 (2), 765–769spa
dc.relation.referencesBowes, L. The Science of Hydroxy Acids: Mechanisms of Action, Types and Cosmetic Applications. J. Aesthetic Nurs. 2013, 2 (2), 77–81. https://doi.org/10.12968/joan.2013.2.2.77spa
dc.relation.referencesLP, X.; QX, C.; H, H.; HZ, W.; RQ, Z. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochem. (Mosc). 2003, 68 (4), 487–491spa
dc.relation.referencesArct, J.; Pytkowska, K. Flavonoids as Components of Biologically Active Cosmeceuticals. Clin. Dermatol. 2008, 26 (4), 347–357. https://doi.org/10.1016/j.clindermatol.2008.01.004spa
dc.relation.referencesRos, J. R.; Rodríguez-López, J. N.; García-Cánovas, F. Effect of L-Ascorbic Acid on the Monophenolase Activity of Tyrosinase. Biochem. J. 1993, 295 (1), 309–312. https://doi.org/10.1042/bj2950309spa
dc.relation.referencesLai, K.-Y.; Hu, H.-C.; Chiang, H.-M.; Liu, Y.-J.; Yang, J.-C.; Lin, Y.-A.; Chen, C.-J.; Chang, Y.-S.; Lee, C.-L. New Diterpenes Leojaponins G–L from Leonurus Japonicus. Fitoterapia 2018, 130 (June), 125–133. https://doi.org/10.1016/j.fitote.2018.08.014spa
dc.relation.referencesLi, X.; Kim, M. K.; Lee, U.; Kim, S.-K.; Kang, J. S.; Choi, H. D.; Son, B. W. Myrothenones A and B, Cyclopentenone Derivatives with Tyrosinase Inhibitory Activity from the Marine-Derived Fungus Myrothecium Sp. Chem. Pharm. Bull. (Tokyo). 2005, 53 (4), 453–455. https://doi.org/10.1248/cpb.53.453spa
dc.relation.referencesDeering, R. W.; Chen, J.; Sun, J.; Ma, H.; Dubert, J.; Barja, J. L.; Seeram, N. P.; Wang, H.; Rowley, D. C. N -Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea Sp. PP2-459. J. Nat. Prod. 2016, 79 (2), 447–450. https://doi.org/10.1021/acs.jnatprod.5b00972spa
dc.relation.referencesRomero-González, R. R.; Ávila-Núñez, J. L.; Aubert, L.; Alonso-Amelot, M. E. Labdane Diterpenes from Leonurus Japonicus Leaves. Phytochemistry 2006, 67 (10), 965–970. https://doi.org/10.1016/j.phytochem.2006.03.015spa
dc.relation.referencesBiodiversidad en cifras. https://cifras.biodiversidad.co/ (accessed 2020-06-17)spa
dc.relation.referencesANDI. Informe de sostenibilidad de Industria de cosmética y aseo 2015. http://www.andi.com.co/cica/Documents/Cosmeticos/Informes/InformeSostenibilida d.pdf (accessed 2022-01-12)spa
dc.relation.referencesSistema de Información de la Investigación - HERMES. http://www.hermes.unal.edu.co/pages/Consultas/Proyecto.xhtml?idProyecto=3867 3&opcion=1 (accessed 2020-07-06).spa
dc.relation.referencesBogotá le apuesta a la innovación natural - Cluster de Cosméticos, Cámara de Comercio de Bogotá. https://www.ccb.org.co/Clusters/Cluster-deCosmeticos/Noticias/2018/Septiembre-2018/Bogota-le-apuesta-a-la-innovacionnatural (accessed 2020-07-06)spa
dc.relation.referencesBravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007spa
dc.relation.referencesEuropean Commission. CosIng - Cosmetics - GROWTH - European Commission. http://ec.europa.eu/growth/tools-databases/cosing/ (accessed 2018-12-04)spa
dc.relation.referencesBautista Rodríguez, C. A. Una Mirada Al Estado Actual de La Investigación En Productos Naturales Marinos de Colombia-Tesis de Maestría., Universidad Nacional de Colombia, 2017. https://repositorio.unal.edu.co/handle/unal/62225spa
dc.relation.referencesKim, S. K. Marine Cosmeceuticals. J. Cosmet. Dermatol. 2014, 13 (1), 56–67. https://doi.org/10.1111/jocd.12057spa
dc.relation.referencesViscasillas Clerch, A.; Pozo, A. El Uso de Las Algas En Cosmética. Offarm Farm. y Soc. 2005, 24 (2), 126–127spa
dc.relation.referencesLópez-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552spa
dc.relation.referencesKim, S. K. Handbook of Marine Biotecnology; Springer, 2015spa
dc.relation.referencesFood and Agriculture Organization. Seaweeds And Microalgae: An Overview For Unlocking Their Potential In Global Aquaculture Development. NFIA/C1229 (En); Rome, 2021; Vol. 1229spa
dc.relation.referencesBiotechnica | Extractos de algas, bioestimulantes y biofertilizantes. https://biotechnica.co.uk/ (accessed 2020-11-15).spa
dc.relation.referencesSeaweed Solutions. https://seaweedsolutions.com/ (accessed 2020-11-15)spa
dc.relation.referencesAn innovative approach to develop sustainable marine active ingredients from macroalgae | SEPPIC. https://www.seppic.com/en/scientificcommunications/innovative-approach-develop-sustainable-marine-activeingredients (accessed 2020-11-15)spa
dc.relation.referencesMekideche, N. Brown Algae Cell Lyophilisate, Method For The Obtention Thereof . 20080089851, April 17, 2018. https://patents.justia.com/patent/20080089851 (accessed 2020-11-15)spa
dc.relation.referencesCattuzzato, L.; Le Gelebart, E. Method for Culturing Cells of Acrochaetium moniliforme Red Algae, Method for Obtaining an Extract of the Biomass Thereof, and Use of Same in Cosmetics. https://patents.justia.com/patent/20180117106 (accessed 2020-11-15)spa
dc.relation.referencesYong, W. T. L.; Thien, V. Y.; Rupert, R.; Rodrigues, K. F. Seaweed: A Potential Climate Change Solution. Renew. Sustain. Energy Rev. 2022, 159 (September 2021), 112222. https://doi.org/10.1016/j.rser.2022.112222spa
dc.relation.referencesRincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqespa
dc.relation.referencesRincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)spa
dc.relation.referencesArias-Echeverri, J. P.; Zapata-Ramírez, P. A.; Ramírez-Carmona, M.; RendónCastrillón, L.; Ocampo-López, C. Present and Future of Seaweed Cultivation and Its Applications in Colombia. J. Mar. Sci. Eng. 2022, 10 (2), 243. https://doi.org/10.3390/jmse10020243spa
dc.relation.referencesUTadeo. Establecimiento y desarrollo de un proyecto piloto de cultivo de algas y desarrollo de productos basados en su derivados | Universidad de Bogotá Jorge Tadeo Lozano. https://www.utadeo.edu.co/es/evento/academicos/establecimientoy-desarrollo-de-un-proyecto-piloto-de-cultivo-de-algas-y?page=5 (accessed 2018- 09-16)spa
dc.relation.referencesMolina-Vargas, J. N. Resultados Preliminares Del Cultivo Experimental de Gracilaria Verrucosa (Hudson) Papenfuss (=G. Caudata J. Agardh) (Rhodophyta: Gracilariaceae) En La Costa Caribe de Colombia. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2014, 38 (146), 79. https://doi.org/10.18257/raccefyn.41spa
dc.relation.referencesCamacho, O.; Montaña-Fernández, J. Cultivo Experimental En El Mar Del Alga Roja Hypnea Musciformis En El Area de Santa Marta, Caribe Colombiano. Bol. Investig. Mar. y Costeras 2012, 41 (1), 29–46. https://doi.org/10.25268/bimc.invemar.2012.41.1.71spa
dc.relation.referencesAriede, M. B.; Candido, T. M.; Jacome, A. L. M.; Velasco, M. V. R.; de Carvalho, J. C. M.; Baby, A. R. Cosmetic Attributes of Algae - A Review. Algal Res. 2017, 25 (May), 483–487. https://doi.org/10.1016/j.algal.2017.05.019spa
dc.relation.referencesSalehi; Sharifi-Rad; Seca; Pinto; Michalak; Trincone; Mishra; Nigam; Zam; Martins. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24 (22), 4182. https://doi.org/10.3390/molecules24224182spa
dc.relation.referencesFaulkner, D. J. Marine Natural Products: Metabolites of Marine Invertebrates. Nat. Prod. Rep. 1984, 1 (6), 551–598. https://doi.org/10.1039/NP9840100551spa
dc.relation.referencesPereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018spa
dc.relation.referencesSudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100spa
dc.relation.referencesEl Gamal, A. A. Biological Importance of Marine Algae. Saudi Pharm. J. 2010, 18 (1), 1–25. https://doi.org/10.1016/j.jsps.2009.12.001spa
dc.relation.referencesMcHugh, D. J.; Food and Agriculture Organization of the United Nations. A Guide to the Seaweed Industry; Food and Agriculture Organization of the United Nations, 2003spa
dc.relation.referencesSanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027spa
dc.relation.referencesMorton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106spa
dc.relation.referencesHentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A. V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules. July 9, 2020, p 3152. https://doi.org/10.3390/molecules25143152spa
dc.relation.referencesPádua, D.; Rocha, E.; Gargiulo, D.; Ramos, A. A. Bioactive Compounds from Brown Seaweeds: Phloroglucinol, Fucoxanthin and Fucoidan as Promising Therapeutic Agents against Breast Cancer. Phytochem. Lett. 2015, 14, 91–98. https://doi.org/10.1016/j.phytol.2015.09.007spa
dc.relation.referencesPradhan, B.; Bhuyan, P. P.; Patra, S.; Nayak, R.; Behera, P. K.; Behera, C.; Behera, A. K.; Ki, J.-S.; Jena, M. Beneficial Effects of Seaweeds and Seaweed-Derived Bioactive Compounds: Current Evidence and Future Prospective. Biocatal. Agric. Biotechnol. 2022, 39 (November 2021), 102242. https://doi.org/10.1016/j.bcab.2021.102242spa
dc.relation.referencesYi, H.; Hong, J.; Xiangzhao, M. A. O.; Fangfang, C. I. Laminarin and Laminarin Oligosaccharides Originating from Brown Algae : Preparation, Biological Activities, and Potential Applications. 2021, 20 (3), 641–653. https://doi.org/10.1007/s11802- 021-4584-8spa
dc.relation.referencesKadam, S. U.; Tiwari, B. K.; O’Donnell, C. P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50 (1), 24– 31. https://doi.org/10.1111/ijfs.12692spa
dc.relation.referencesMarinova. What is Fucoidan? https://www.marinova.com.au/what-is-fucoidan/ (accessed 2022-02-16).spa
dc.relation.referencesLemesheva, V.; Tarakhovskaya, E. Physiological Functions of Phlorotannins. Biol. Commun. 2018, 63 (1), 70–76. https://doi.org/10.21638/spbu03.2018.108spa
dc.relation.referencesHalvorson, H. O.; Quezada, F. Handbook of Marine Biotechnology; 2009.spa
dc.relation.referencesRubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/spa
dc.relation.referencesPardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/spa
dc.relation.referencesTeixeira, V. L.; Kelecom, A. A Chemotaxonomic Study of Diterpenes from Marine Brown Algae of the Genus Dictyota. Sci. Total Environ. 1988, 75 (2–3), 271–283. https://doi.org/10.1016/0048-9697(88)90040-Xspa
dc.relation.referencesKo, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401spa
dc.relation.referencesde Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079spa
dc.relation.referencesHur, S.; Lee, H.; Kim, Y.; Lee, B. H.; Shin, J.; Kim, T. Y. Sargaquinoic Acid and Sargachromenol, Extracts of Sargassum Sagamianum, Induce Apoptosis in HaCaT Cells and Mice Skin: Its Potentiation of UVB-Induced Apoptosis. Eur. J. Pharmacol. 2008, 582 (1–3), 1–11. https://doi.org/10.1016/j.ejphar.2007.12.025spa
dc.relation.referencesPardo-Vargas, A.; de Barcelos Oliveira, I.; Stephens, P.; Cirne-Santos, C.; de Palmer Paixão, I.; Ramos, F.; Jiménez, C.; Rodríguez, J.; Resende, J.; Teixeira, V.; Castellanos, L. Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota Pfaffii. Mar. Drugs 2014, 12 (7), 4247–4259. https://doi.org/10.3390/md12074247spa
dc.relation.referencesSoares, D. C.; Calegari-Silva, T. C.; Lopes, U. G.; Teixeira, V. L.; de Palmer Paixão, I. C. N.; Cirne-Santos, C.; Bou-Habib, D. C.; Saraiva, E. M. Dolabelladienetriol, a Compound from Dictyota Pfaffii Algae, Inhibits the Infection by Leishmania Amazonensis. PLoS Negl. Trop. Dis. 2012, 6 (9), 1–12. https://doi.org/10.1371/journal.pntd.0001787spa
dc.relation.referencesRubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021.spa
dc.relation.referencesEchavarría, B. Z.; Franco, A. S.; Martínez, A. M. Evaluación de La Actividad Antioxidante y Determinación Del Contenido de Compuestos Fenólicos En Extractos de Macroalgas Del Caribe Colombiano. Vitae 2009, 16, 126–131spa
dc.relation.referencesYamthe, L. R. T.; Appiah-Opong, R.; Fokou, P. V. T.; Tsabang, N.; Boyom, F. F.; Nyarko, A. K.; Wilson, M. D. Marine Algae as Source of Novel Antileishmanial Drugs: A Review. Mar. Drugs 2017, 15 (11), 1–28. https://doi.org/10.3390/md15110323spa
dc.relation.referencesBalboa, E. M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In Vitro Antioxidant Properties of Crude Extracts and Compounds from Brown Algae. Food Chem. 2013, 138 (2–3), 1764–1785. https://doi.org/10.1016/j.foodchem.2012.11.026spa
dc.relation.referencesSanjeewa, K. K. A.; Lee, J. S.; Kim, W. S.; Jeon, Y. J. The Potential of Brown-Algae Polysaccharides for the Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydr. Polym. 2017, 177 (September), 451–459. https://doi.org/10.1016/j.carbpol.2017.09.005spa
dc.relation.referencesde Souza Barros, C.; Garrido, V.; Melchiades, V.; Gomes, R.; Gomes, M. W. L.; Teixeira, V. L.; de Palmer Paixão, I. C. N. Therapeutic Efficacy in BALB/C Mice of Extract from Marine Alga Canistrocarpus Cervicornis (Phaeophyceae) against Herpes Simplex Virus Type 1. J. Appl. Phycol. 2017, 29 (2), 769–773. https://doi.org/10.1007/s10811-016-0865-9spa
dc.relation.referencesKoishi, A. C.; Zanello, P. R.; Bianco, É. M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay. PLoS One 2012, 7 (12), 1–11. https://doi.org/10.1371/journal.pone.0051089spa
dc.relation.referencesKremb, S.; Helfer, M.; Kraus, B.; Wolff, H.; Wild, C.; Schneider, M.; Voolstra, C. R.; Brack-Werner, R. Aqueous Extracts of the Marine Brown Alga Lobophora Variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells. PLoS One 2014, 9 (8), 1–12. https://doi.org/10.1371/journal.pone.0103895spa
dc.relation.referencesBarbosa, J. P.; Pereira, R. C.; Abrantes, J. L.; Cirne Dos Santos, C. C.; Rebello, M. A.; De Palmer Paixão Frugulhetti, I. C.; Teixeira, V. L. In Vitro Antiviral Diterpenes from the Brazilian Brown Alga Dictyota Pfaffii. Planta Med. 2004, 70 (9), 856–860. https://doi.org/10.1055/s-2004-827235spa
dc.relation.referencesBianco, É. M.; Rogers, R.; Teixeira, V. L.; Pereira, R. C. Antifoulant Diterpenes Produced by the Brown Seaweed Canistrocarpus Cervicornis. J. Appl. Phycol. 2009, 21 (3), 341–346. https://doi.org/10.1007/s10811-008-9374-9spa
dc.relation.referencesBarbosa, J. P.; Fleury, B. G.; da Gama, B. A. P.; Teixeira, V. L.; Pereira, R. C. Natural Products as Antifoulants in the Brazilian Brown Alga Dictyota Pfaffii (Phaeophyta, Dictyotales). Biochem. Syst. Ecol. 2007, 35 (8), 549–553. https://doi.org/10.1016/j.bse.2007.01.010spa
dc.relation.referencesSchmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017spa
dc.relation.referencesSchmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017spa
dc.relation.referencesMorais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008spa
dc.relation.referencesTorres, M. D.; Flórez-Fernández, N.; Domínguez, H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs 2019, 17 (6), 314. https://doi.org/10.3390/md17060314spa
dc.relation.referencesQiu, Y.; Jiang, H.; Fu, L.; Ci, F.; Mao, X. Porphyran and Oligo-Porphyran Originating from Red Algae Porphyra: Preparation, Biological Activities, and Potential Applications. Food Chem. 2021, 349 (February), 129209. https://doi.org/10.1016/j.foodchem.2021.129209spa
dc.relation.referencesBhatia, S.; Sharma, A.; Sharma, K.; Kavale, M.; Chaugule, B.; Dhalwal, K.; Mahadik, K. Novel Algal Polysaccharides from Marine Source : Porphyran. Pharmacogn. Rev. 2008, 2 (4), 271–276spa
dc.relation.referencesBhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107spa
dc.relation.referencesmibellebiochemistry. HelioguardTM 365 A natural UV-screening active to protect against photo-aging. https://mibellebiochemistry.com/helioguardtm-365 (accessed 2022-02-23)spa
dc.relation.referencesSchmid, D.; Cornelia, S.; Fred, Z. UV-A Sunscreen from Red Algae for Protection against Premature Skin Aging. Cosmetics 2004, 139–143spa
dc.relation.referencesCardoso, S.; Carvalho, L.; Silva, P.; Rodrigues, M.; Pereira, O.; Pereira, L. Bioproducts from Seaweeds: A Review with Special Focus on the Iberian Peninsula. Curr. Org. Chem. 2014, 18 (7), 896–917. https://doi.org/10.2174/138527281807140515154116spa
dc.relation.referencesDong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411spa
dc.relation.referencesPierre, G.; Delattre, C.; Laroche, C.; Michaud, P. Galactans and Its Applications. Polysaccharides 2014, No. ii, 1–37. https://doi.org/10.1007/978-3-319-03751-6spa
dc.relation.referencesPangestuti, R.; Siahaan, E.; Kim, S.-K. Photoprotective Substances Derived from Marine Algae. Mar. Drugs 2018, 16 (11), 399. https://doi.org/10.3390/md16110399spa
dc.relation.referencesMonsalve-Bustamante, Y.; Rincón-Valencia, S.; Mejía-Giraldo, J.; Moreno-Tirado, D.; Puertas-Mejía, M. Screening of the UV Absorption Capacity, Proximal and Chemical Characterization of Extracts, and Polysaccharide Fractions of the Gracilariopsis Tenuifrons Cultivated in Colombia. J. Appl. Pharm. Sci. 2019, 9 (10), 103–109. https://doi.org/10.7324/JAPS.2019.91014spa
dc.relation.referencesRozo, G.; Rozo, C.; Puyana, M.; Ramos, F. A.; Almonacid, C.; Castro, H. Two Compounds of the Colombian Algae Hypnea Musciformis Prevent Oxidative Damage in Human Low Density Lipoproteins LDLs. J. Funct. Foods 2019, 60 (May), 103399. https://doi.org/10.1016/j.jff.2019.06.001.spa
dc.relation.referencesVargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296.spa
dc.relation.referencesRozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661.spa
dc.relation.referencesvan Santen, J. A.; Jacob, G.; Singh, A. L.; Aniebok, V.; Balunas, M. J.; Bunsko, D.; Neto, F. C.; Castaño-Espriu, L.; Chang, C.; Clark, T. N.; Cleary Little, J. L.; Delgadillo, D. A.; Dorrestein, P. C.; Duncan, K. R.; Egan, J. M.; Galey, M. M.; Haeckl, F. P. J.; Hua, A.; Hughes, A. H.; Iskakova, D.; Khadilkar, A.; Lee, J.-H.; Lee, S.; LeGrow, N.; Liu, D. Y.; Macho, J. M.; McCaughey, C. S.; Medema, M. H.; Neupane, R. P.; O’Donnell, T. J.; Paula, J. S.; Sanchez, L. M.; Shaikh, A. F.; Soldatou, S.; Terlouw, B. R.; Tran, T. A.; Valentine, M.; van der Hooft, J. J. J.; Vo, D. A.; Wang, M.; Wilson, D.; Zink, K. E.; Linington, R. G. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent. Sci. 2019, 5 (11), 1824–1833. https://doi.org/10.1021/acscentsci.9b00806spa
dc.relation.referencesThirumurugan, D.; Cholarajan, A.; Raja, S. S. S.; Vijayakumar, R. An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications; InTech, 2018; pp 3–22. https://doi.org/10.5772/intechopen.79766spa
dc.relation.referencesAhmed, E.; Arshad, M.; Khan, M.; Amjad, M.; Sadaf, H.; Riaz, I.; Sabir, S.; Ahmad, N.; Sabaoon; Correspondence Ejaz Ahmed, P.; Sabir, S. Secondary Metabolites and Their Multidimensional Prospective in Plant Life. J. Pharmacogn. Phytochem. 2017, 6 (2), 205–214spa
dc.relation.referencesAtanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20 (3), 200–216. https://doi.org/10.1038/s41573-020-00114-zspa
dc.relation.referencesReynolds, W. F. Natural Product Structure Elucidation by NMR Spectroscopy. In Pharmacognosy; Elsevier, 2017; pp 567–596. https://doi.org/10.1016/B978-0-12- 802104-0.00029-9spa
dc.relation.referencesManchester, M.; Anand, A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. In Advances in Virus Research; Elsevier Inc., 2017; Vol. 98, pp 57–81. https://doi.org/10.1016/bs.aivir.2017.02.001spa
dc.relation.referencesBraga, C. P.; Adamec, J. Metabolome Analysis. Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 2018, 1–3, 463–475. https://doi.org/10.1016/B978-0-12-809633- 8.20134-9spa
dc.relation.referencesWishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155– 161. https://doi.org/10.1016/j.jmr.2019.07.013spa
dc.relation.referencesKim, H. K.; Choi, Y. H.; Verpoorte, R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010, 5 (3), 536–549. https://doi.org/10.1038/nprot.2009.237spa
dc.relation.referencesPuchades-Carrasco, L.; Palomino-Schätzlein, M.; Pérez-Rambla, C.; PinedaLucena, A. Bioinformatics Tools for the Analysis of NMR Metabolomics Studies Focused on the Identification of Clinically Relevant Biomarkers. Brief. Bioinform. 2016, 17 (3), 541–552. https://doi.org/10.1093/bib/bbv077spa
dc.relation.referencesMandal, S.; Moudgil, M.; Mandal, S. K. Rational Drug Design. European Journal of Pharmacology. Elsevier December 2009, pp 90–100. https://doi.org/10.1016/j.ejphar.2009.06.065spa
dc.relation.referencesZuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147spa
dc.relation.referencesPardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/.spa
dc.relation.referencesRubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021spa
dc.relation.referencesOrfanoudaki, M.; Hartmann, A.; Karsten, U.; Ganzera, M. Chemical Profiling of Mycosporine‐like Amino Acids in Twenty‐three Red Algal Species. J. Phycol. 2019, 55 (2), 393–403. https://doi.org/10.1111/jpy.12827spa
dc.relation.referencesXia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356spa
dc.relation.referencesKo, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401spa
dc.relation.referencesGeneralić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187spa
dc.relation.referencesGeneralić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187spa
dc.relation.referencesArguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41spa
dc.relation.referencesVargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296spa
dc.relation.referencesDragan, A.-M.-L.; Sirbu, R.; Cadar, E. Valuable Bioactive Compounds Extracted from Ceramium Rubrum on the Romanian Seaside with Medical Interest. Eur. J. Med. Nat. Sci. 2022, 5 (1), 63. https://doi.org/10.26417/283lyu42spa
dc.relation.referencesMorton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106spa
dc.relation.referencesBuedenbender, L.; Astone, F. A.; Tasdemir, D. Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus Vesiculosus. Mar. Drugs 2020, 18 (6), 311. https://doi.org/10.3390/md18060311spa
dc.relation.referencesMorais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008spa
dc.relation.referencesBustamam, M. S. A.; Pantami, H. A.; Azizan, A.; Shaari, K.; Min, C. C.; Abas, F.; Nagao, N.; Maulidiani, M.; Banerjee, S.; Sulaiman, F.; Ismail, I. S. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis Galbana. Mar. Drugs 2021, 19 (3), 139. https://doi.org/10.3390/md19030139spa
dc.relation.referencesJayalakshmi, K.; Ghoshal, U. C.; Kumar, S.; Misra, A.; Roy, R.; Khetrapal, C. L. Assessment of Small Intestinal Permeability Using 1H-NMR Spectroscopy. J Gastrointest. Liver Dis. 2009, 18 (1), 27–32spa
dc.relation.referencesWilliams, R. B.; O’Neil-Johnson, M.; Williams, A. J.; Wheeler, P.; Pol, R.; Moser, A. Dereplication of Natural Products Using Minimal NMR Data Inputs. Org. Biomol. Chem. 2015, 13 (39), 9957–9962. https://doi.org/10.1039/C5OB01713Kspa
dc.relation.referencesCarpena, M.; Garcia-Perez, P.; Garcia-Oliveira, P.; Chamorro, F.; Otero, P.; Lourenço-Lopes, C.; Cao, H.; Simal-Gandara, J.; Prieto, M. A. Biological Properties and Potential of Compounds Extracted from Red Seaweeds. Phytochem. Rev. 2022, 1–32. https://doi.org/10.1007/s11101-022-09826-zspa
dc.relation.referencesGutbrod, P.; Yang, W.; Grujicic, G. V.; Peisker, H.; Gutbrod, K.; Du, L. F.; Dörmann, P. Phytol Derived from Chlorophyll Hydrolysis in Plants Is Metabolized via Phytenal. J. Biol. Chem. 2021, 296, 100530. https://doi.org/10.1016/j.jbc.2021.100530spa
dc.relation.referencesSohn, S.-I.; Rathinapriya, P.; Balaji, S.; Jaya Balan, D.; Swetha, T. K.; Durgadevi, R.; Alagulakshmi, S.; Singaraj, P.; Pandian, S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int. J. Mol. Sci. 2021, 22 (23), 12691. https://doi.org/10.3390/ijms222312691.spa
dc.relation.referencesHannan, M. A.; Sohag, A. A. M.; Dash, R.; Haque, M. N.; Mohibbullah, M.; Oktaviani, D. F.; Hossain, M. T.; Choi, H. J.; Moon, I. S. Phytosterols of Marine Algae: Insights into the Potential Health Benefits and Molecular Pharmacology. Phytomedicine 2020, 69 (February), 153201. https://doi.org/10.1016/j.phymed.2020.153201spa
dc.relation.referencesda Costa, E.; Melo, T.; Reis, M.; Domingues, P.; Calado, R.; Abreu, M. H.; Domingues, M. R. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia Turuturu. Mar. Drugs 2021, 19 (8), 414. https://doi.org/10.3390/md19080414spa
dc.relation.referencesPlouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.spa
dc.relation.referencesAlexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.; Tsiafoulis, C.; Gerothanassis, I. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22 (10), 1663. https://doi.org/10.3390/molecules22101663spa
dc.relation.referencesSuttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice. Nutrients 2015, 7 (3), 1672–1687. https://doi.org/10.3390/nu7031672spa
dc.relation.referencesMoriya, H.; Takita, Y.; Matsumoto, A.; Yamahata, Y.; Nishimukai, M.; Miyazaki, M.; Shimoi, H.; Kawai, S.-J.; Yamada, M. Cobetia Sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria Sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Front. Bioeng. Biotechnol. 2020, 8 (August). https://doi.org/10.3389/fbioe.2020.00974spa
dc.relation.referencesHuamán-Castilla, N. L.; Allcca-Alca, E. E.; Allcca-Alca, G. J.; Quispe-Pérez, M. L. Biopolymers Produced by Azotobacter: Synthesis and Production, PhysicoMechanical Properties, and Potential Industrial Applications. Sci. Agropecu. 2021, 12 (3), 369–377. https://doi.org/10.17268/sci.agropecu.2021.040.spa
dc.relation.referencesLi, R.; Jiang, Y.; Wang, X.; Yang, J.; Gao, Y.; Zi, X.; Zhang, X.; Gao, H.; Hu, N. Psychrotrophic Pseudomonas Mandelii CBS-1 Produces High Levels of Poly-βHydroxybutyrate. Springerplus 2013, 2 (1), 335. https://doi.org/10.1186/2193-1801- 2-335spa
dc.relation.referencesSabarinathan, D.; Chandrika, S. P.; Venkatraman, P.; Easwaran, M.; Sureka, C. S.; Preethi, K. Production of Polyhydroxybutyrate (PHB) from Pseudomonas Plecoglossicida and Its Application towards Cancer Detection. Informatics Med. Unlocked 2018, 11 (May), 61–67. https://doi.org/10.1016/j.imu.2018.04.009spa
dc.relation.referencesPereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018spa
dc.relation.referencesSudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100spa
dc.relation.referencesSilberfeld, T.; Rousseau, F.; Reviers, B. de. An Updated Classification of Brown Algae (Ochrophyta, Phaeophyceae). Cryptogam. Algol. 2014, 35 (2), 117–156. https://doi.org/10.7872/crya.v35.iss2.2014.117spa
dc.relation.referencesRincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)spa
dc.relation.referencesde Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079spa
dc.relation.referencesCikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Update on Monoterpenes from Red Macroalgae: Isolation, Analysis, and Bioactivity. Mar. Drugs 2019, 17 (9), 537. https://doi.org/10.3390/md17090537spa
dc.relation.referencesLiu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S. A. Towards a Better Understanding of Medicinal Uses of the Brown Seaweed Sargassum in Traditional Chinese Medicine: A Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2012, 142 (3), 591–619. https://doi.org/10.1016/j.jep.2012.05.046spa
dc.relation.referencesRushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Abdelmohsen, U. R. The Genus Turbinaria : Chemical and Pharmacological Diversity. Nat. Prod. Res. 2021, 35 (22), 4560–4578. https://doi.org/10.1080/14786419.2020.1731741spa
dc.relation.referencesCikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Gašo-Sokač, D.; Jokić, S.; Jerković, I. Update on Sesquiterpenes from Red Macroalgae of the Laurencia Genus and Their Biological Activities (2015–2020). Algal Res. 2021, 56 (February), 102330. https://doi.org/10.1016/j.algal.2021.102330spa
dc.relation.referencesChakraborty, K.; Joseph, D.; Joy, M.; Raola, V. K. Characterization of Substituted Aryl Meroterpenoids from Red Seaweed Hypnea Musciformis as Potential Antioxidants. Food Chem. 2016, 212, 778–788. https://doi.org/10.1016/j.foodchem.2016.06.039spa
dc.relation.referencesRubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/.spa
dc.relation.referencesNunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.spa
dc.relation.referencesNunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.spa
dc.relation.referencesAlarado, A. B.; Gerwick, W. H. Dictyol H, a New Tricyclic Diterpenoid from the Brown Seaweed Dictyota Dentata. J. Nat. Prod. 1985, 48 (1), 132–134. https://doi.org/10.1021/np50037a026.spa
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.spa
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.spa
dc.relation.referencesMikami, K.; Hosokawa, M. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds. Int. J. Mol. Sci. 2013, 14 (7), 13763–13781. https://doi.org/10.3390/ijms140713763.spa
dc.relation.referencesMiller, E. P.; Wu, Y.; Carrano, C. J. Boron Uptake, Localization, and Speciation in Marine Brown Algae. Metallomics 2016, 8 (2), 161–169. https://doi.org/10.1039/C5MT00238Aspa
dc.relation.referencesUsoltseva, R. V.; Anastyuk, S. D.; Shevchenko, N. M.; Surits, V. V.; Silchenko, A. S.; Isakov, V. V.; Zvyagintseva, T. N.; Thinh, P. D.; Ermakova, S. P. Polysaccharides from Brown Algae Sargassum Duplicatum: The Structure and Anticancer Activity in Vitro. Carbohydr. Polym. 2017, 175 (July), 547–556. https://doi.org/10.1016/j.carbpol.2017.08.044spa
dc.relation.referencesBadrinathan, S.; Shiju, T. M.; Suneeva Sharon Christa, A.; Arya, R.; Pragasam, V. Purification and Structural Characterization of Sulfated Polysaccharide from Sargassum Myriocystum and Its Efficacy in Scavenging Free Radicals. Indian J. Pharm. Sci. 2012, 74 (6), 549–555. https://doi.org/10.4103/0250-474X.110600.spa
dc.relation.referencesSheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y. New Cytotoxic Oxygenated Fucosterols from the Brown Alga Turbinaria Conoides. J. Nat. Prod. 1999, 62 (2), 224–227. https://doi.org/10.1021/np980233sspa
dc.relation.referencesPontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795spa
dc.relation.referencesPerinu, C.; Arstad, B.; Bouzga, A. M.; Svendsen, J. A.; Jens, K. J. NMR-Based Carbamate Decomposition Constants of Linear Primary Alkanolamines for CO2 Capture. Ind. Eng. Chem. Res. 2014, 53 (38), 14571–14578. https://doi.org/10.1021/ie5020603spa
dc.relation.referencesRozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661spa
dc.relation.referencesKim, S. K.; Ravichandran, Y. D.; Khan, S. B.; Kim, Y. T. Prospective of the Cosmeceuticals Derived from Marine Organisms. Biotechnol. Bioprocess Eng. 2008, 13 (5), 511–523. https://doi.org/10.1007/s12257-008-0113-5spa
dc.relation.referencesCosta, R.; Santos, L. Delivery Systems for Cosmetics - From Manufacturing to the Skin of Natural Antioxidants. Powder Technol. 2017, 322, 402–416. https://doi.org/10.1016/j.powtec.2017.07.086spa
dc.relation.referencesKim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187spa
dc.relation.referencesTeas, J.; Irhimeh, M. R. Melanoma and Brown Seaweed: An Integrative Hypothesis. J. Appl. Phycol. 2017, 29 (2), 941–948. https://doi.org/10.1007/s10811-016-0979-0spa
dc.relation.referencesGaudêncio, S. P.; Pereira, F. Dereplication: Racing to Speed up the Natural Products Discovery Process. Nat. Prod. Rep. 2015, 32 (6), 779–810. https://doi.org/10.1039/c4np00134f.spa
dc.relation.referencesWishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155–161. https://doi.org/10.1016/j.jmr.2019.07.013spa
dc.relation.referencesDavies, V.; Wandy, J.; Weidt, S.; van der Hooft, J. J. J.; Miller, A.; Daly, R.; Rogers, S. Rapid Development of Improved Data-Dependent Acquisition Strategies. Anal. Chem. 2021, 93 (14), 5676–5683. https://doi.org/10.1021/acs.analchem.0c03895spa
dc.relation.referencesNothias, L. F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A. A.; Alka, O.; Allard, P. M.; Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A. M.; Da Silva, R. R.; Dang, T.; Garg, N.; Gauglitz, J. M.; Gurevich, A.; Isaac, G.; Jarmusch, A. K.; Kameník, Z.; Kang, K. Bin; Kessler, N.; Koester, I.; Korf, A.; Le Gouellec, A.; Ludwig, M.; Martin H, C.; McCall, L. I.; McSayles, J.; Meyer, S. W.; Mohimani, H.; Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen, N. H.; NothiasEsposito, M.; Paolini, J.; Phelan, V. V.; Pluskal, T.; Quinn, R. A.; Rogers, S.; Shrestha, B.; Tripathi, A.; van der Hooft, J. J. J.; Vargas, F.; Weldon, K. C.; Witting, M.; Yang, H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Böcker, S.; Alexandrov, T.; Bandeira, N.; Wang, M.; Dorrestein, P. C. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17 (9), 905–908. https://doi.org/10.1038/s41592-020-0933-6spa
dc.relation.referencesSchmid, R.; Petras, D.; Nothias, L. F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.; Rainer, J.; Garcia-Aloy, M.; Dührkop, K.; Korf, A.; Pluskal, T.; Kameník, Z.; Jarmusch, A. K.; Caraballo-Rodríguez, A. M.; Weldon, K. C.; Nothias-Esposito, M.; Aksenov, A. A.; Bauermeister, A.; Albarracin Orio, A.; Grundmann, C. O.; Vargas, F.; Koester, I.; Gauglitz, J. M.; Gentry, E. C.; Hövelmann, Y.; Kalinina, S. A.; Pendergraft, M. A.; Panitchpakdi, M.; Tehan, R.; Le Gouellec, A.; Aleti, G.; Mannochio Russo, H.; Arndt, B.; Hübner, F.; Hayen, H.; Zhi, H.; Raffatellu, M.; Prather, K. A.; Aluwihare, L. I.; Böcker, S.; McPhail, K. L.; Humpf, H. U.; Karst, U.; Dorrestein, P. C. Ion Identity Molecular Networking for Mass Spectrometry-Based Metabolomics in the GNPS Environment. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-23953-9spa
dc.relation.referencesWang, M.; Carver, J. J.; Phelan, V. V; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V; Meehan, M. J.; Liu, W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828–837. https://doi.org/10.1038/nbt.3597.spa
dc.relation.referencesVan Der Hooft, J. J. J.; Wandy, J.; Barrett, M. P.; Burgess, K. E. V.; Rogers, S. Topic Modeling for Untargeted Substructure Exploration in Metabolomics. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (48), 13738–13743. https://doi.org/10.1073/pnas.1608041113spa
dc.relation.referencesDjoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8 (1), 1–20. https://doi.org/10.1186/s13321-016- 0174-y.spa
dc.relation.referencesda Silva, R. R.; Wang, M.; Nothias, L.-F.; van der Hooft, J. J. J.; CaraballoRodríguez, A. M.; Fox, E.; Balunas, M. J.; Klassen, J. L.; Lopes, N. P.; Dorrestein, P. C. Propagating Annotations of Molecular Networks Using in Silico Fragmentation. PLOS Comput. Biol. 2018, 14 (4), e1006089. https://doi.org/10.1371/journal.pcbi.1006089spa
dc.relation.referencesGurevich, A.; Mikheenko, A.; Shlemov, A.; Korobeynikov, A.; Mohimani, H.; Pevzner, P. A. Increased Diversity of Peptidic Natural Products Revealed by Modification-Tolerant Database Search of Mass Spectra. Nat. Microbiol. 2018, 3 (3), 319–327. https://doi.org/10.1038/s41564-017-0094-2.spa
dc.relation.referencesMohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.-F.; Dorrestein, P. C.; Pevzner, P. A. Dereplication of Microbial Metabolites through Database Search of Mass Spectra. Nat. Commun. 2018, 9 (1), 4035. https://doi.org/10.1038/s41467-018-06082-8.spa
dc.relation.referencesErnst, M.; Kang, K. Bin; Caraballo-Rodríguez, A. M.; Nothias, L.-F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M. H.; Dorrestein, P. C.; van der Hooft, J. J. J. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 2019, 9 (7), 144. https://doi.org/10.3390/metabo9070144.spa
dc.relation.referencesCao, L.; Guler, M.; Tagirdzhanov, A.; Lee, Y.-Y.; Gurevich, A.; Mohimani, H. MolDiscovery: Learning Mass Spectrometry Fragmentation of Small Molecules. Nat. Commun. 2021, 12 (1), 3718. https://doi.org/10.1038/s41467-021-23986-0.spa
dc.relation.referencesDührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16 (4), 299–302. https://doi.org/10.1038/s41592-019-0344-8spa
dc.relation.referencesSashidhara, K. V; Rosaiah, J. N. Various Dereplication Strategies Using LC-MS for Rapid Natural Product Lead Identification and Drug Discovery. Nat. Prod. Commun. 2007, 2 (2), 1934578X0700200. https://doi.org/10.1177/1934578X0700200218.spa
dc.relation.referencesGross, J. H. Mass Spectrometry; Springer International Publishing: Cham, 2017. https://doi.org/10.1007/978-3-319-54398-7.spa
dc.relation.referencesFord, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6),spa
dc.relation.referencesHubert, J.; Nuzillard, J. M.; Renault, J. H. Dereplication Strategies in Natural Product Research: How Many Tools and Methodologies behind the Same Concept? Phytochem. Rev. 2017, 16 (1), 55–95. https://doi.org/10.1007/s11101- 015-9448-7.spa
dc.relation.referencesSchripsema, J. Application of NMR in Plant Metabolomics: Techniques, Problems and Prospects. Phytochem. Anal. 2010, 21 (1), 14–21. https://doi.org/10.1002/pca.1185.spa
dc.relation.referencesLyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763spa
dc.relation.referencesMilenković, S. M.; Zvezdanović, J. B.; Andelković, T. D.; Marković, D. Z. The Identification of Chlorophyll and Its Derivatives in the Pigment Mixtures: HPLCChromatography, Visible and Mass Spectroscopy Studies. Adv. Technol. 2012, 1 (1), 16–24spa
dc.relation.referencesErpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589spa
dc.relation.referencesSeger, C.; Sturm, S.; Stuppner, H. Mass Spectrometry and NMR Spectroscopy: Modern High-End Detectors for High Resolution Separation Techniques – State of the Art in Natural Product HPLC-MS, HPLC-NMR, and CE-MS Hyphenations. Nat. Prod. Rep. 2013, 30 (7), 970. https://doi.org/10.1039/c3np70015a.spa
dc.relation.referencesGuido F. Pauli, Birgit U. Jaki, David C. Lankin, John A. Walter, I. W. B. Quantitative NMR of Bioactive Natural Products. In Bioactive Natural Products; CRC Press, 2007; pp 127–156. https://doi.org/10.1201/9781420006889-8spa
dc.relation.referencesKa-Wing Cheng, Feng Chen, M. W. Liquid Chromatography-Mass Spectrometry in Natural Product Research. In Bioactive Natural Products; CRC Press, 2007; pp 259–280. https://doi.org/10.1201/9781420006889-13spa
dc.relation.referencesKruve, A.; Kaupmees, K.; Liigand, J.; Leito, I. Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Anal. Chem. 2014, 86 (10), 4822–4830. https://doi.org/10.1021/ac404066v.spa
dc.relation.referencesBlunt, J.; Munro, M.; Upjohn, M. The Role of Databases in Marine Natural Products Research. In Handbook of Marine Natural Products; Springer Netherlands: Dordrecht, 2012; pp 389–421. https://doi.org/10.1007/978-90-481-3834-0_6spa
dc.relation.referencesGuo, Z.; Ma, S.; Khan, S.; Zhu, H.; Zhang, B.; Zhang, S.; Jiao, R. Zhaoshumycins A and B, Two Unprecedented Antimycin-Type Depsipeptides Produced by the Marine-Derived Streptomyces Sp. ITBB-ZKa6. Mar. Drugs 2021, 19 (11), 624. https://doi.org/10.3390/md19110624spa
dc.relation.referencesWinter, A.; Jarvis, B. B. Halipeptins A and B: Two Novel Potent Anti-Inflammatory Cyclic Depsipeptides from the Vanuatu Marine Sponge Haliclona Species. Chemtracts 2003, 16 (11), 688–691spa
dc.relation.referencesAndrianasolo, E. H.; Haramaty, L.; McPhail, K. L.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. Bathymodiolamides A and B, Ceramide Derivatives from a Deep-Sea Hydrothermal Vent Invertebrate Mussel, Bathymodiolus Thermophilus. J. Nat. Prod. 2011, 74 (4), 842–846. https://doi.org/10.1021/np100601wspa
dc.relation.referencesRangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130spa
dc.relation.referencesFu, M.; Deng, B.; Lü, H.; Yao, W.; Su, S.; Wang, D. The Bioaccumulation and Biodegradation of Testosterone by Chlorella Vulgaris. Int. J. Environ. Res. Public Health 2019, 16 (7), 1253. https://doi.org/10.3390/ijerph16071253spa
dc.relation.referencesLemoine, F.; Maupin, I.; Lemée, L.; Lavoie, J.-M.; Lemberton, J.-L.; Pouilloux, Y.; Pinard, L. Alternative Fuel Production by Catalytic Hydroliquefaction of Solid Municipal Wastes, Primary Sludges and Microalgae. Bioresour. Technol. 2013, 142, 1–8. https://doi.org/10.1016/j.biortech.2013.04.123spa
dc.relation.referencesPontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164– 7171. https://doi.org/10.1021/acs.analchem.0c04795spa
dc.relation.referencesWilliams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301spa
dc.relation.referencesMorton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106spa
dc.relation.referencesWhitehead, K.; Hedges, J. I. Electrospray Ionization Tandem Mass Spectrometric and Electron Impact Mass Spectrometric Characterization of Mycosporine-like Amino Acids. Rapid Commun. Mass Spectrom. 2003, 17 (18), 2133–2138. https://doi.org/10.1002/rcm.1162spa
dc.relation.referencesKalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954spa
dc.relation.referencesMorais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008spa
dc.relation.referencesMARTÍN, J. D.; DARIAS, J. Algal Sesquiterpenoids. In Marine Natural Products; Elsevier, 1978; pp 125–173. https://doi.org/10.1016/B978-0-12-624001-6.50008-4.spa
dc.relation.referencesNamikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768spa
dc.relation.referencesZhao, W.; Jiang, H.; Liu, X.-W.; Zhou, J.; Wu, B. Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar. Drugs 2022, 20 (6), 360. https://doi.org/10.3390/md20060360spa
dc.relation.referencesKumari, P. Seaweed Lipidomics in the Era of ‘Omics’ Biology: A Contemporary Perspective. In Systems Biology of Marine Ecosystems; Springer International Publishing: Cham, 2017; pp 49–97. https://doi.org/10.1007/978-3-319-62094-7_4spa
dc.relation.referencesLi, Y.-X.; Wijesekara, I.; Li, Y.; Kim, S.-K. Phlorotannins as Bioactive Agents from Brown Algae. Process Biochem. 2011, 46 (12), 2219–2224. https://doi.org/10.1016/j.procbio.2011.09.015spa
dc.relation.referencesMaciel, O. M. C.; Tavares, R. S. N.; Caluz, D. R. E.; Gaspar, L. R.; Debonsi, H. M. Photoprotective Potential of Metabolites Isolated from Algae-Associated Fungi Annulohypoxylon Stygium. J. Photochem. Photobiol. B Biol. 2018, 178 (November 2017), 316–322. https://doi.org/10.1016/j.jphotobiol.2017.11.018spa
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245spa
dc.relation.referencesKim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187.spa
dc.relation.referencesKadam, S. U.; Álvarez, C.; Tiwari, B. K.; O’Donnell, C. P. Extraction of Biomolecules from Seaweeds; Elsevier Inc., 2015. https://doi.org/10.1016/B978-0- 12-418697-2.00009-Xspa
dc.relation.referencesMateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.spa
dc.relation.referencesZheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742.spa
dc.relation.referencesGam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381.spa
dc.relation.referencesShibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.spa
dc.relation.referencesKalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313.spa
dc.relation.referencesPlouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.spa
dc.relation.referencesCouteau, C.; Coiffard, L. Seaweed Application in Cosmetics; 2016. https://doi.org/10.1016/B978-0-12-802772-1.00014-2.spa
dc.relation.referencesKalasariya, H. S.; Patel, N. B.; Yadav, A.; Perveen, K.; Yadav, V. K.; Munshi, F. M.; Yadav, K. K.; Alam, S.; Jung, Y. K.; Jeon, B. H. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha Crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules 2021, 26 (24). https://doi.org/10.3390/molecules26247515spa
dc.relation.referencesKim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605spa
dc.relation.referencesTamanna Ferdous, U.; Norhana Balia Yusof, Z. Algal Terpenoids: A Potential Source of Antioxidants for Cancer Therapy. In Terpenes and Terpenoids - Recent Advances; 2021. https://doi.org/10.5772/intechopen.94122spa
dc.relation.referencesTaglialatela-Scafati, O.; Craig, K. S.; Rebérioux, D.; Roberge, M.; Andersen, R. J. Briarane, Erythrane, and Aquariane Diterpenoids from the Caribbean Gorgonian Erythropodium Caribaeorum. European J. Org. Chem. 2003, No. 18, 3515–3523. https://doi.org/10.1002/ejoc.200300214.spa
dc.relation.referencesMendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63spa
dc.relation.referencesJanarthanan, M.; Senthil Kumar, M. The Properties of Bioactive Substances Obtained from Seaweeds and Their Applications in Textile Industries; 2018; Vol. 48. https://doi.org/10.1177/1528083717692596spa
dc.relation.referencesHahn, J. L.; Van Alstyne, K. L.; Gaydos, J. K.; Wallis, L. K.; West, J. E.; Hollenhorst, S. J.; Ylitalo, G. M.; Poppenga, R. H.; Bolton, J. L.; McBride, D. E.; Sofield, R. M. Chemical Contaminant Levels in Edible Seaweeds of the Salish Sea and Implications for Their Consumption; 2022; Vol. 17. https://doi.org/10.1371/journal.pone.0269269spa
dc.relation.referencesDong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411spa
dc.relation.referencesLópez-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552spa
dc.relation.referencesPangestuti, R.; Shin, K. H.; Kim, S. K. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar. Drugs 2021, 19 (3). https://doi.org/10.3390/MD19030172spa
dc.relation.referencesBedoux, G.; Hardouin, K.; Burlot, A. S.; Bourgougnon, N. Bioactive Components from Seaweeds: Cosmetic Applications and Future Development; Elsevier, 2014; Vol. 71. https://doi.org/10.1016/B978-0-12-408062-1.00012-3spa
dc.relation.referencesGrillo, G.; Tabasso, S.; Solarino, R.; Cravotto, G.; Toson, C.; Ghedini, E.; Menegazzo, F.; Signoretto, M. From Seaweeds to Cosmeceutics: A Multidisciplinar Approach. Sustain. 2021, 13 (23), 1–13. https://doi.org/10.3390/su132313443spa
dc.relation.referencesJimenez-Carvelo, A. M.; Cuadros-Rodríguez, L. Data Mining/Machine Learning Methods in Foodomics. Curr. Opin. Food Sci. 2021, 37, 76–82. https://doi.org/10.1016/j.cofs.2020.09.008spa
dc.relation.referencesKuddus, M. Chapter 1 - Introduction to Food Enzymes; Kuddus, M. B. T.-E. in F. B., Ed.; Academic Press, 2019; pp 1–18. https://doi.org/https://doi.org/10.1016/B978-0- 12-813280-7.00001-3spa
dc.relation.referencesBisswanger, H. Enzyme Assays. Perspect. Sci. 2014, 1 (1–6), 41–55. https://doi.org/10.1016/j.pisc.2014.02.005spa
dc.relation.referencesMesserschmidt, A. Copper Metalloenzymes. In Comprehensive Natural Products II; Liu, H.-W. (Ben), Mander, L., Eds.; Elsevier: Oxford, 2010; pp 489–545. https://doi.org/10.1016/B978-008045382-8.00180-5spa
dc.relation.referencesSkoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103.spa
dc.relation.referencesCouteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027.spa
dc.relation.referencesChang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440spa
dc.relation.referencesBurger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036.spa
dc.relation.referencesMarmion, C. J.; Parker, J. P.; Nolan, K. B. Hydroxamic Acids: An Important Class of Metalloenzyme Inhibitors. In Comprehensive Inorganic Chemistry II; Elsevier, 2013; Vol. 3, pp 683–708. https://doi.org/10.1016/B978-0-08-097774-4.00328-4.spa
dc.relation.referencesThomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5.spa
dc.relation.referencesGhersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018spa
dc.relation.referencesGirish, K.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B. Hyaluronidase Inhibitors: A Biological and Therapeutic Perspective. Curr. Med. Chem. 2009, 16 (18), 2261– 2288. https://doi.org/10.2174/092986709788453078spa
dc.relation.referencesHetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04spa
dc.relation.referencesBor, E.; Koca Caliskan, U.; Anlas, C.; Durbilmez, G. D.; Bakirel, T.; Ozdemir, N. Synthesis of Persea Americana Extract Based Hybrid Nanoflowers as a New Strategy to Enhance Hyaluronidase and Gelatinase Inhibitory Activity and the Evaluation of Their Toxicity Potential. Inorg. Nano-Metal Chem. 2022, 0 (0), 1–13. https://doi.org/10.1080/24701556.2022.2072342spa
dc.relation.referencesBravo, K.; Alzate, F.; Osorio, E. Fruits of Selected Wild and Cultivated Andean Plants as Sources of Potential Compounds with Antioxidant and Anti-Aging Activity. Ind. Crop. Prod. 2016, 85, 341–352. https://doi.org/10.1016/j.indcrop.2015.12.074spa
dc.relation.referencesBravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007spa
dc.relation.referencesPlazas, E. A.; Avila, M. C.; Delgado, W. A.; Patino, O. J.; Cuca, L. E. In Vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Res. J. Med. Plants 2018, 12 (1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18spa
dc.relation.referencesSun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104spa
dc.relation.referencesAnuar, N.; Sultan, S.; Ashraf, K. An Overview of Antimicrobial and Antioxidant Bioautography Method Analysis : C Osmos Caudatus and Orthosiphon Stamineus. 2022, 5 (March), 1–12spa
dc.relation.referencesManandhar, B.; Wagle, A.; Seong, S. H.; Paudel, P.; Kim, H. R.; Jung, H. A.; Choi, J. S. Phlorotannins with Potential Anti-Tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia Stolonifera. Antioxidants 2019, 8 (8). https://doi.org/10.3390/antiox8080240spa
dc.relation.referencesKim, M. M.; Ta, Q. Van; Mendis, E.; Rajapakse, N.; Jung, W. K.; Byun, H. G.; Jeon, Y. J.; Kim, S. K. Phlorotannins in Ecklonia Cava Extract Inhibit Matrix Metalloproteinase Activity. Life Sci. 2006, 79 (15), 1436–1443. https://doi.org/10.1016/j.lfs.2006.04.022spa
dc.relation.referencesMateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.spa
dc.relation.referencesBhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107spa
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245spa
dc.relation.referencesOspina, M.; Castro-Vargas, H. I.; Parada-Alfonso, F. Antioxidant Capacity of Colombian Seaweeds: 1. Extracts Obtained from Gracilaria Mammillaris by Means of Supercritical Fluid Extraction. J. Supercrit. Fluids 2017, 128, 314–322. https://doi.org/10.1016/j.supflu.2017.02.023spa
dc.relation.referencesBudhiyanti, S. A.; Raharjo, S.; Marseno, D. W.; Lelana, I. Y. B. Antioxidant Activity of Brown Algae Sargassum Species Extract from the Coastline of Java Island. Am. J. Agric. Biol. Sci. 2012, 7 (3), 337–346. https://doi.org/10.3844/ajabssp.2012.337.346.spa
dc.relation.referencesBomfeh, K. Report of the Expert Meeting on Food Safety for Seaweed – Current Status and Future Perspectives; Food and Agriculture Organization of the United Nations: Rome, 2021. https://doi.org/10.4060/cc0846en.spa
dc.relation.referencesWarneke, A. M.; Long, J. D. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness. PLoS One 2015, 10 (8), 1–14. https://doi.org/10.1371/journal.pone.0135395.spa
dc.relation.referencesLozano Muñoz, I.; Díaz, N. F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62 (6), 1592–1607. https://doi.org/10.1080/10408398.2020.1844637spa
dc.relation.referencesDate, R.; Date, P. M.; Report, T.; January, P. C. Safety Assessment of Brown AlgaeDerived Ingredients as Used in Cosmetics.; Washington (DC), 2019spa
dc.relation.referencesSanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027.spa
dc.relation.referencesKalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313spa
dc.relation.referencesArunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036spa
dc.relation.referencesLaguna, D. Análisis de Extractos Promisiorios de Productos Naturales Marinos Por Redes Moleculares., Universidad Nacional de Colombia, 2021spa
dc.relation.referencesPiza, A. Búsqueda de Compuestos Activos Provenientes de Algas Con Potencial Aplicación En Cosmética y Accidente Ofídico, Universidad Nacional de Colombia, 2022.spa
dc.relation.referencesKim, J. K.; Kang, S. M. Antioxidant and Whitening Effect of Dictyopteris Spp. Extract. J. Korean Soc. Cosmetol. 2021, 27 (3), 614–623. https://doi.org/10.52660/jksc.2021.27.3.614spa
dc.relation.referencesMendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63spa
dc.relation.referencesArguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41spa
dc.relation.referencesRushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Hassan, H. M.; Elmaidomy, A. H.; Abdelmohsen, U. R. Pharmacological and Natural Products Diversity of the Brown Algae Genus: Sargassum. RSC Adv. 2020, 10 (42), 24951–24972. https://doi.org/10.1039/d0ra03576aspa
dc.relation.referencesGeneralić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187spa
dc.relation.referencesKo, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401spa
dc.relation.referencesFarvin, K. H. S.; Surendraraj, A.; Al-Ghunaim, A.; Al-Yamani, F. Chemical Profile and Antioxidant Activities of 26 Selected Species of Seaweeds from Kuwait Coast. J. Appl. Phycol. 2019, 31 (4), 2653–2668. https://doi.org/10.1007/s10811-019-1739-8.spa
dc.relation.referencesRincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqe.spa
dc.relation.referencesOrfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356spa
dc.relation.referencesOrfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356spa
dc.relation.referencesColombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P. A.; Scaccabarozzi, D.; Calvieri, S.; Gismondi, A.; Taramelli, D.; Dell’Agli, M. HaCaT Cells as a Reliable in Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators Inflamm. 2017, 2017. https://doi.org/10.1155/2017/7435621spa
dc.relation.referencesVinken, M.; Rogiers, V. Protocols in In Vitro Hepatocyte Research; Vinken, M., Rogiers, V., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, 2015; Vol. 1250. https://doi.org/10.1007/978-1-4939-2074-7spa
dc.relation.referencesWalter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484spa
dc.relation.referencesDe Lara-Isassi, G.; Álvarez-Hernández, S.; Collado-Vides, L. Ichtyotoxic Activity of Extracts from Mexican Marine Macroalgae. J. Appl. Phycol. 2000, 12 (1), 45–52. https://doi.org/10.1023/A:1008103609841.spa
dc.relation.referencesWalter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484.spa
dc.relation.referencesGerwick, W. H.; Fenical, W. Ichthyotoxic and Cytotoxic Metabolites of the Tropical Brown Alga Stypopodium Zonale (Lamouroux) Papenfuss. J. Org. Chem. 1981, 46 (1), 22–27. https://doi.org/10.1021/jo00314a005spa
dc.relation.referencesWilliams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301.spa
dc.relation.referencesMendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63.spa
dc.relation.referencesLyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763.spa
dc.relation.referencesZatelli, G. A.; Philippus, A. C.; Falkenberg, M. An Overview of Odoriferous Marine Seaweeds of the Dictyopteris Genus: Insights into Their Chemical Diversity, Biological Potential and Ecological Roles. Rev. Bras. Farmacogn. 2018, 28 (2), 243– 260. https://doi.org/10.1016/j.bjp.2018.01.005.spa
dc.relation.referencesInstituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis.” Biodiversidad Del Mar de Los Siete Coloresspa
dc.relation.referencesZuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147.spa
dc.relation.referencesXia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356.spa
dc.relation.referencesMiyashita, K.; Mikami, N.; Hosokawa, M. Chemical and Nutritional Characteristics of Brown Seaweed Lipids: A Review. J. Funct. Foods 2013, 5 (4), 1507–1517. https://doi.org/10.1016/j.jff.2013.09.019.spa
dc.relation.referencesRangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130spa
dc.relation.referencesZhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. MarineDerived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Mar. Drugs 2021, 19 (4). https://doi.org/10.3390/MD19040180spa
dc.relation.referencesFord, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6), 587– 599. https://doi.org/10.1002/pca.2851.spa
dc.relation.referencesPontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795.spa
dc.relation.referencesNamikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768spa
dc.relation.referencesStengel, D. B.; Connan, S.; Popper, Z. A. Algal Chemodiversity and Bioactivity: Sources of Natural Variability and Implications for Commercial Application. Biotechnol. Adv. 2011, 29 (5), 483–501. https://doi.org/10.1016/j.biotechadv.2011.05.016.spa
dc.relation.referencesGisbert, M.; Sineiro, J.; Moreira, R. Influence of Oxidation and Dialysis of Phlorotannins on Bioactivity and Composition of Ultrasound-Assisted Extracts from Ascophyllum Nodosum. Mar. Drugs 2022, 20 (11), 706. https://doi.org/10.3390/md20110706spa
dc.relation.referencesW.; Saati, E. A. The Solvent Effectiveness on Extraction Process of Seaweed Pigment. MAKARA Technol. Ser. 2011, 15 (1), 5–8. https://doi.org/10.7454/mst.v15i1.850spa
dc.relation.referencesSun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104.spa
dc.relation.referencesAguilera-Sáez, L. M.; Abreu, A. C.; Camacho-Rodríguez, J.; González-López, C. V.; del Carmen Cerón-García, M.; Fernández, I. NMR Metabolomics as an Effective Tool To Unravel the Effect of Light Intensity and Temperature on the Composition of the Marine Microalgae Isochrysis Galbana. J. Agric. Food Chem. 2019, 67 (14), 3879–3889. https://doi.org/10.1021/acs.jafc.8b06840spa
dc.relation.referencesCérantola, S.; Breton, F.; Gall, E. A.; Deslandes, E. Co-Occurrence and Antioxidant Activities of Fucol and Fucophlorethol Classes of Polymeric Phenols in Fucus Spiralis. Bot. Mar. 2006, 49 (4), 347–351. https://doi.org/10.1515/BOT.2006.042.spa
dc.relation.referencesKazimierczuk, K.; Orekhov, V. Y. Accelerated NMR Spectroscopy by Using Compressed Sensing. Angew. Chemie - Int. Ed. 2011, 50 (24), 5556–5559. https://doi.org/10.1002/anie.201100370spa
dc.relation.referencesZhou, X.; Yi, M.; Ding, L.; He, S.; Yan, X. Isolation and Purification of a Neuroprotective Phlorotannin from the Marine Algae Ecklonia Maxima by Size Exclusion and High-Speed Counter-Current Chromatography. Mar. Drugs 2019, 17 (4), 212. https://doi.org/10.3390/md17040212.spa
dc.relation.referencesErpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589spa
dc.relation.referencesIsaza Martínez, J. H.; Torres Castañeda, H. G. Preparation and Chromatographic Analysis of Phlorotannins. J. Chromatogr. Sci. 2013, 51 (8), 825–838. https://doi.org/10.1093/chromsci/bmt045.spa
dc.relation.referencesKalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954.spa
dc.relation.referencesGowda, S. G. B.; Yifan, C.; Gowda, D.; Tsuboi, Y.; Chiba, H.; Hui, S.-P. Analysis of Antioxidant Lipids in Five Species of Dietary Seaweeds by Liquid Chromatography/Mass Spectrometry. Antioxidants 2022, 11 (8), 1538. https://doi.org/10.3390/antiox11081538spa
dc.relation.referencesZheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742spa
dc.relation.referencesFernando, I. P. S.; Lee, W. W.; Ahn, G. Marine Algal Flavonoids and Phlorotannins; an Intriguing Frontier of Biofunctional Secondary Metabolites. Crit. Rev. Biotechnol. 2022, 42 (1), 23–45. https://doi.org/10.1080/07388551.2021.1922351spa
dc.relation.referencesRushdi, M. I.; Abdel-Rahman, I. A. M.; Attia, E. Z.; Saber, H.; Saber, A. A.; Bringmann, G.; Abdelmohsen, U. R. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Molecules 2022, 27 (3), 1–30. https://doi.org/10.3390/molecules27030672spa
dc.relation.referencesShibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.spa
dc.relation.referencesGam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381spa
dc.relation.referencesKalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313spa
dc.relation.referencesKim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605spa
dc.relation.referencesArunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsAlgas marinasspa
dc.subject.decsSeaweedeng
dc.subject.lembIndustria de cosméticosspa
dc.subject.lembCosmetics industryeng
dc.subject.proposalProductos Naturales Marinosspa
dc.subject.proposalAlgas Pardasspa
dc.subject.proposalAlgas Rojasspa
dc.subject.proposaltirosinasaspa
dc.subject.proposalcolagenasaspa
dc.subject.proposalHialuronidasaspa
dc.subject.proposalPerfilado metabólicospa
dc.subject.proposalRedes moleculares
dc.titleBúsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombianospa
dc.title.translatedSearch for compounds with possible inhibitory activity of enzymes of cosmetic interest from seaweed from the Colombian Caribbean.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020796917.2022.pdf
Tamaño:
23.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: