Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación
dc.contributor.advisor | Zuluaga Domínguez, Carlos Mario | |
dc.contributor.author | Garcia Quiroga, Laura Camila | |
dc.contributor.cvlac | García Quiroga, Laura Camila | spa |
dc.contributor.googlescholar | García Quiroga, Laura Camila | spa |
dc.contributor.orcid | García Quiroga, Laura Camila | spa |
dc.contributor.researchgate | García Quiroga, Laura Camila | spa |
dc.contributor.scopus | García Quiroga, Laura Camila | spa |
dc.date.accessioned | 2023-08-11T20:17:54Z | |
dc.date.available | 2023-08-11T20:17:54Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas, fotografías a color | spa |
dc.description.abstract | La compactación es uno de los mayores y más comunes problemas en el manejo de alimentos en polvo durante su almacenamiento y vida útil; en el mejor conocimiento del autor, a la fecha, no se conocen modelos matemáticos que permitan predecir la estabilidad de un alimento de acuerdo con su grado de compactación. Por ello, en el presente trabajo, se evaluaron tres técnicas para medir compactación en un alimento en polvo con incorporación de panela sometido a ciclos de alta temperatura y congelación. El método del diámetro medio de partícula calculado a partir de tamizaje, mostró una mejor tendencia y menor variabilidad que el método visual y el método de compresión uniaxial, por lo que fue seleccionado para medir el fenómeno de compactación. Posteriormente, el alimento se sometió a tres temperaturas (20°C, 37°C y 50°C) durante seis semanas, con evaluaciones semanales del nivel de compactación por el método de diámetro medio de partícula. Los resultados mostraron que a 37°C y 50°C el alimento sufre cambios significativos en cuanto a su nivel de compactación, mientras que a 20°C el producto se mantiene estable durante el tiempo de evaluación, y se comprobó que estadísticamente el tiempo no tiene un impacto en la compactación. Con los datos obtenidos, se determinó el orden del modelo para cada temperatura, encontrando que el modelo de orden cero representa los datos adecuadamente con un R2 superior a 90% para las temperaturas de 37°C y 50°C. Finalmente, se modeló la dependencia de la constante de aglomeración como función de la temperatura utilizando la ecuación de Arrhenius. Sin embargo, se encontró que este modelo no representa adecuadamente los datos experimentales obtenidos, posiblemente por los cambios de fase que pueden ocurrir alrededor de la temperatura de transición vítrea de la panela. Estos resultados demuestran que es viable modelar el comportamiento de la compactación de un alimento en polvo en función del tiempo, aunque se requiere realizar ajustes en las temperaturas y frecuencias de medición para obtener un ajuste adecuado de los datos experimentales. Los hallazgos de este estudio resultan útiles para simplificar los estudios de estabilidad de alimentos en polvo no perecederos. (Texto tomado de la fuente) | spa |
dc.description.abstract | Caking is one of the most common and biggest problems in the handling of food powders during their storage and shelf life; to the best of the author’s knowledge, to date, there are not known mathematical models that allow to predict the stability of food powders based on their caking degree. Therefore, in the present work, three techniques were evaluated to measure the caking degree in a powdered food with panela, which was subjected to high temperature and freezing cycles. The mean particle diameter method calculated from sieving test showed a better trend and less variability than the visual method and the uniaxial compression test, so it was selected to measure the caking phenomena. Subsequently, the food was subjected to three different temperatures (20°C, 37°C and 50°C) for six weeks with weekly evaluations of the caking degree by the mean particle diameter method. Results showed that the food undergoes significant changes in terms of caking at 37°C and 50°C, while the product remains stable during the evaluation period at 20°C, and it was verified that statically the times does not have an impact on the caking behavior. With the data obtained, the order of the model was determined for each temperature, finding that zero order model adequately represents the data with an R2 higher than 90% at 37°C and 50°C. Finally, the dependency of the agglomeration constant k as a function of the temperature was modeled using the Arrhenius equation. However, it was found that this model does not represent properly the experimental data, possibly due to the phase changes that might occur around the glass transition temperature of the panela. These results show that modelling the caking behavior of a food powder as a function of time is feasible, even when adjustments on the temperatures and measuring frequencies must be done to get a better fit on the experimental data. The results of this work are useful to simplify the stability studies of non-perishable food powders. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | spa |
dc.format.extent | 131 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84539 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.references | Addo, K. A., Bi, J., Chen, Q., Wu, X., Zhou, M., Lyu, J., & Song, J. (2019). Understanding the caking behavior of amorphous jujube powder by powder rheometer. Lwt, 101(June 2018), 483–490. https://doi.org/10.1016/j.lwt.2018.11.059 | spa |
dc.relation.references | Aguilera, J. M., Valle, J. M., & Ka, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149–155. | spa |
dc.relation.references | Alarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020). https://doi.org/10.1016/j.foodchem.2020.128183 | spa |
dc.relation.references | Asikin, Y., Kamiya, A., Mizu, M., Takara, K., Tamaki, H., & Wada, K. (2014). Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage. Food Chemistry, 149, 170–177. https://doi.org/10.1016/j.foodchem.2013.10.089 | spa |
dc.relation.references | Carpin, M., Bertelsen, H., Dalberg, A., Bech, J. K., Risbo, J., Schuck, P., & Jeantet, R. (2017). How does particle size influence caking in lactose powder? Journal of Food Engineering, 209, 61–67. https://doi.org/10.1016/j.jfoodeng.2017.04.006 | spa |
dc.relation.references | Cookson, M. D., & Stirk, P. M. R. (2019). Handbook of food powders. | spa |
dc.relation.references | Doğan, M., Aslan, D., Gürmeriç, V., Özgür, A., & Göksel Saraç, M. (2019). Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. Powder Technology, 344, 222–232. https://doi.org/10.1016/j.powtec.2018.12.030 | spa |
dc.relation.references | Ermiş, E. (2015). Food Powders: Properties and Characterization. In Gida / the Journal of Food. https://doi.org/10.15237/gida.gd14072 | spa |
dc.relation.references | Fitzpatrick, J. J., Descamps, N., O’Meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131–137. https://doi.org/10.1016/j.powtec.2010.07.029 | spa |
dc.relation.references | Fitzpatrick, J. J., O’Callaghan, E., & O’Flynn, J. (2008). Application of a novel cake strength tester for investigating caking of skim milk powder. Food and Bioproducts Processing, 86(3), 198–203. https://doi.org/10.1016/j.fbp.2007.10.009 | spa |
dc.relation.references | Gooch, J. W. (2015). Sieve Analysis. In Retsch GmbH Haan. https://doi.org/10.1007/978-1-4419-6247-8_10621 | spa |
dc.relation.references | Hartmann, M., & Palzer, S. (2011). Caking of amorphous powders - Material aspects, modelling and applications. Powder Technology, 206(1–2), 112–121. https://doi.org/10.1016/j.powtec.2010.04.014 | spa |
dc.relation.references | Jena, S., & Das, H. (2012). Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering, 108(1), 135–142. https://doi.org/10.1016/j.jfoodeng.2011.06.036 | spa |
dc.relation.references | Jiang, Y., Yang, X., Jin, H., Feng, X., Tian, F., Song, Y., Ren, Y., Man, C., & Zhang, W. (2021). Shelf-life prediction and chemical characteristics analysis of milk formula during storage. Lwt, 144(March). https://doi.org/10.1016/j.lwt.2021.111268 | spa |
dc.relation.references | Kouhestani, S., & Honarvar, M. (2021). An Overview on Panela. Journal of Food Biosciences and Technology, 11(1), 35–42. https://jfbt.srbiau.ac.ir/article_16846.html | spa |
dc.relation.references | Manzocco, L., Calligaris, S., & Nicoli, M. C. (2010). Methods for food shelf life determination and prediction. Oxidation in Foods and Beverages and Antioxidant Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, 196–222. https://doi.org/10.1533/9780857090447.1.196 | spa |
dc.relation.references | Marsh, K., & Bugusu, B. (2007). Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, 72(3). https://doi.org/10.1111/j.1750-3841.2007.00301 | spa |
dc.relation.references | Mendoza-Rivera, H. (2021). Diseño Experimental. Universidad Nacional de Colombia. http://red.unal.edu.co/cursos/ciencias/2000352/html/un3/cont_315-58.html | spa |
dc.relation.references | Resolución 779, (2006) | spa |
dc.relation.references | Minitab. (2021). Soporte de Minitab(R) 20. https://support.minitab.com/es-mx/minitab/20/ | spa |
dc.relation.references | Mizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life. https://doi.org/10.1016/B978-1-84569-701-3.50015-3 | spa |
dc.relation.references | Mosquera, L., Arias, S., Jimenez, D., Lopez, D., & Osorio, A. (2015). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9(2014), 24. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdf | spa |
dc.relation.references | Paterson, A. H. J., & Bröckel, U. (2015). Caking development in lemon juice powder. Procedia Engineering, 102, 142–149. https://doi.org/10.1016/j.proeng.2015.01.117 | spa |
dc.relation.references | Rasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-x | spa |
dc.relation.references | Retsch. (2022). Retsch. https://www.retsch.com/ | spa |
dc.relation.references | Ruiz-Cabrera, M. A., & Schmidt, S. J. (2015). Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering, 146, 36–43. https://doi.org/10.1016/j.jfoodeng.2014.08.023 | spa |
dc.relation.references | Salehi, H., Berry, R., Deng, T., Larsson, S. H., Farnish, R., & Bradley, M. (2019). Development and application of a novel cake strength tester. Powder Technology, 350, 36–42. https://doi.org/10.1016/j.powtec.2019.03.024 | spa |
dc.relation.references | Salish, K., & Ambrose, R. P. K. (2021). Predicting powder caking using cohesion energy density. Powder Technology, 393, 312–322. https://doi.org/10.1016/j.powtec.2021.07.079 | spa |
dc.relation.references | Velásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(March), 32–40. https://doi.org/10.1016/j.jfoodeng.2019.03.009 | spa |
dc.relation.references | Verma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. Lwt, 110(December 2018), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093 | spa |
dc.relation.references | Zafar, U., Vivacqua, V., Calvert, G., Ghadiri, M., & Cleaver, J. A. S. (2017). A review of bulk powder caking. Powder Technology, 313, 389–401. https://doi.org/10.1016/j.powtec.2017.02.024 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.lemb | Industria de la panela | spa |
dc.subject.lemb | Panela - Industry | eng |
dc.subject.lemb | Industrias alimenticias | spa |
dc.subject.lemb | Food industry and trade | eng |
dc.subject.proposal | Compactación | spa |
dc.subject.proposal | Estabilidad | spa |
dc.subject.proposal | Temperatura | spa |
dc.subject.proposal | Tamaño de partícula | spa |
dc.subject.proposal | Modelo Predictivo | spa |
dc.subject.proposal | Caking | eng |
dc.subject.proposal | Predictive Model | eng |
dc.subject.proposal | Particle size | eng |
dc.subject.proposal | Temperature | eng |
dc.subject.proposal | Stability | eng |
dc.title | Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación | spa |
dc.title.translated | Evaluation of the stability of a powdered food made with panela from its caking degree | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1072659060.2023.pdf
- Tamaño:
- 2.44 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: