Evaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactación

dc.contributor.advisorZuluaga Domínguez, Carlos Mario
dc.contributor.authorGarcia Quiroga, Laura Camila
dc.contributor.cvlacGarcía Quiroga, Laura Camilaspa
dc.contributor.googlescholarGarcía Quiroga, Laura Camilaspa
dc.contributor.orcidGarcía Quiroga, Laura Camilaspa
dc.contributor.researchgateGarcía Quiroga, Laura Camilaspa
dc.contributor.scopusGarcía Quiroga, Laura Camilaspa
dc.date.accessioned2023-08-11T20:17:54Z
dc.date.available2023-08-11T20:17:54Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractLa compactación es uno de los mayores y más comunes problemas en el manejo de alimentos en polvo durante su almacenamiento y vida útil; en el mejor conocimiento del autor, a la fecha, no se conocen modelos matemáticos que permitan predecir la estabilidad de un alimento de acuerdo con su grado de compactación. Por ello, en el presente trabajo, se evaluaron tres técnicas para medir compactación en un alimento en polvo con incorporación de panela sometido a ciclos de alta temperatura y congelación. El método del diámetro medio de partícula calculado a partir de tamizaje, mostró una mejor tendencia y menor variabilidad que el método visual y el método de compresión uniaxial, por lo que fue seleccionado para medir el fenómeno de compactación. Posteriormente, el alimento se sometió a tres temperaturas (20°C, 37°C y 50°C) durante seis semanas, con evaluaciones semanales del nivel de compactación por el método de diámetro medio de partícula. Los resultados mostraron que a 37°C y 50°C el alimento sufre cambios significativos en cuanto a su nivel de compactación, mientras que a 20°C el producto se mantiene estable durante el tiempo de evaluación, y se comprobó que estadísticamente el tiempo no tiene un impacto en la compactación. Con los datos obtenidos, se determinó el orden del modelo para cada temperatura, encontrando que el modelo de orden cero representa los datos adecuadamente con un R2 superior a 90% para las temperaturas de 37°C y 50°C. Finalmente, se modeló la dependencia de la constante de aglomeración como función de la temperatura utilizando la ecuación de Arrhenius. Sin embargo, se encontró que este modelo no representa adecuadamente los datos experimentales obtenidos, posiblemente por los cambios de fase que pueden ocurrir alrededor de la temperatura de transición vítrea de la panela. Estos resultados demuestran que es viable modelar el comportamiento de la compactación de un alimento en polvo en función del tiempo, aunque se requiere realizar ajustes en las temperaturas y frecuencias de medición para obtener un ajuste adecuado de los datos experimentales. Los hallazgos de este estudio resultan útiles para simplificar los estudios de estabilidad de alimentos en polvo no perecederos. (Texto tomado de la fuente)spa
dc.description.abstractCaking is one of the most common and biggest problems in the handling of food powders during their storage and shelf life; to the best of the author’s knowledge, to date, there are not known mathematical models that allow to predict the stability of food powders based on their caking degree. Therefore, in the present work, three techniques were evaluated to measure the caking degree in a powdered food with panela, which was subjected to high temperature and freezing cycles. The mean particle diameter method calculated from sieving test showed a better trend and less variability than the visual method and the uniaxial compression test, so it was selected to measure the caking phenomena. Subsequently, the food was subjected to three different temperatures (20°C, 37°C and 50°C) for six weeks with weekly evaluations of the caking degree by the mean particle diameter method. Results showed that the food undergoes significant changes in terms of caking at 37°C and 50°C, while the product remains stable during the evaluation period at 20°C, and it was verified that statically the times does not have an impact on the caking behavior. With the data obtained, the order of the model was determined for each temperature, finding that zero order model adequately represents the data with an R2 higher than 90% at 37°C and 50°C. Finally, the dependency of the agglomeration constant k as a function of the temperature was modeled using the Arrhenius equation. However, it was found that this model does not represent properly the experimental data, possibly due to the phase changes that might occur around the glass transition temperature of the panela. These results show that modelling the caking behavior of a food powder as a function of time is feasible, even when adjustments on the temperatures and measuring frequencies must be done to get a better fit on the experimental data. The results of this work are useful to simplify the stability studies of non-perishable food powders.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.format.extent131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84539
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAddo, K. A., Bi, J., Chen, Q., Wu, X., Zhou, M., Lyu, J., & Song, J. (2019). Understanding the caking behavior of amorphous jujube powder by powder rheometer. Lwt, 101(June 2018), 483–490. https://doi.org/10.1016/j.lwt.2018.11.059spa
dc.relation.referencesAguilera, J. M., Valle, J. M., & Ka, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149–155.spa
dc.relation.referencesAlarcón, A. L., Palacios, L. M., Osorio, C., César Narváez, P., Heredia, F. J., Orjuela, A., & Hernanz, D. (2021). Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (“panela”) obtained via different processing technologies. Food Chemistry, 340(August 2020). https://doi.org/10.1016/j.foodchem.2020.128183spa
dc.relation.referencesAsikin, Y., Kamiya, A., Mizu, M., Takara, K., Tamaki, H., & Wada, K. (2014). Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage. Food Chemistry, 149, 170–177. https://doi.org/10.1016/j.foodchem.2013.10.089spa
dc.relation.referencesCarpin, M., Bertelsen, H., Dalberg, A., Bech, J. K., Risbo, J., Schuck, P., & Jeantet, R. (2017). How does particle size influence caking in lactose powder? Journal of Food Engineering, 209, 61–67. https://doi.org/10.1016/j.jfoodeng.2017.04.006spa
dc.relation.referencesCookson, M. D., & Stirk, P. M. R. (2019). Handbook of food powders.spa
dc.relation.referencesDoğan, M., Aslan, D., Gürmeriç, V., Özgür, A., & Göksel Saraç, M. (2019). Powder caking and cohesion behaviours of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. Powder Technology, 344, 222–232. https://doi.org/10.1016/j.powtec.2018.12.030spa
dc.relation.referencesErmiş, E. (2015). Food Powders: Properties and Characterization. In Gida / the Journal of Food. https://doi.org/10.15237/gida.gd14072spa
dc.relation.referencesFitzpatrick, J. J., Descamps, N., O’Meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131–137. https://doi.org/10.1016/j.powtec.2010.07.029spa
dc.relation.referencesFitzpatrick, J. J., O’Callaghan, E., & O’Flynn, J. (2008). Application of a novel cake strength tester for investigating caking of skim milk powder. Food and Bioproducts Processing, 86(3), 198–203. https://doi.org/10.1016/j.fbp.2007.10.009spa
dc.relation.referencesGooch, J. W. (2015). Sieve Analysis. In Retsch GmbH Haan. https://doi.org/10.1007/978-1-4419-6247-8_10621spa
dc.relation.referencesHartmann, M., & Palzer, S. (2011). Caking of amorphous powders - Material aspects, modelling and applications. Powder Technology, 206(1–2), 112–121. https://doi.org/10.1016/j.powtec.2010.04.014spa
dc.relation.referencesJena, S., & Das, H. (2012). Shelf life prediction of aluminum foil laminated polyethylene packed vacuum dried coconut milk powder. Journal of Food Engineering, 108(1), 135–142. https://doi.org/10.1016/j.jfoodeng.2011.06.036spa
dc.relation.referencesJiang, Y., Yang, X., Jin, H., Feng, X., Tian, F., Song, Y., Ren, Y., Man, C., & Zhang, W. (2021). Shelf-life prediction and chemical characteristics analysis of milk formula during storage. Lwt, 144(March). https://doi.org/10.1016/j.lwt.2021.111268spa
dc.relation.referencesKouhestani, S., & Honarvar, M. (2021). An Overview on Panela. Journal of Food Biosciences and Technology, 11(1), 35–42. https://jfbt.srbiau.ac.ir/article_16846.htmlspa
dc.relation.referencesManzocco, L., Calligaris, S., & Nicoli, M. C. (2010). Methods for food shelf life determination and prediction. Oxidation in Foods and Beverages and Antioxidant Applications: Understanding Mechanisms of Oxidation and Antioxidant Activity, 196–222. https://doi.org/10.1533/9780857090447.1.196spa
dc.relation.referencesMarsh, K., & Bugusu, B. (2007). Food packaging - Roles, materials, and environmental issues: Scientific status summary. Journal of Food Science, 72(3). https://doi.org/10.1111/j.1750-3841.2007.00301spa
dc.relation.referencesMendoza-Rivera, H. (2021). Diseño Experimental. Universidad Nacional de Colombia. http://red.unal.edu.co/cursos/ciencias/2000352/html/un3/cont_315-58.htmlspa
dc.relation.referencesResolución 779, (2006)spa
dc.relation.referencesMinitab. (2021). Soporte de Minitab(R) 20. https://support.minitab.com/es-mx/minitab/20/spa
dc.relation.referencesMizrahi, S. (2011). Accelerated shelf life testing of foods. In Food and Beverage Stability and Shelf Life. https://doi.org/10.1016/B978-1-84569-701-3.50015-3spa
dc.relation.referencesMosquera, L., Arias, S., Jimenez, D., Lopez, D., & Osorio, A. (2015). Transición vítrea en alimentos: sistemas binarios agua-carbohidratos. Revista Vector, 9(2014), 24. http://vector.ucaldas.edu.co/downloads/Vector9_4.pdfspa
dc.relation.referencesPaterson, A. H. J., & Bröckel, U. (2015). Caking development in lemon juice powder. Procedia Engineering, 102, 142–149. https://doi.org/10.1016/j.proeng.2015.01.117spa
dc.relation.referencesRasane, P., Jha, A., & Sharma, N. (2015). Predictive modelling for shelf life determination of nutricereal based fermented baby food. Journal of Food Science and Technology, 52(8), 5003–5011. https://doi.org/10.1007/s13197-014-1545-xspa
dc.relation.referencesRetsch. (2022). Retsch. https://www.retsch.com/spa
dc.relation.referencesRuiz-Cabrera, M. A., & Schmidt, S. J. (2015). Determination of glass transition temperatures during cooling and heating of low-moisture amorphous sugar mixtures. Journal of Food Engineering, 146, 36–43. https://doi.org/10.1016/j.jfoodeng.2014.08.023spa
dc.relation.referencesSalehi, H., Berry, R., Deng, T., Larsson, S. H., Farnish, R., & Bradley, M. (2019). Development and application of a novel cake strength tester. Powder Technology, 350, 36–42. https://doi.org/10.1016/j.powtec.2019.03.024spa
dc.relation.referencesSalish, K., & Ambrose, R. P. K. (2021). Predicting powder caking using cohesion energy density. Powder Technology, 393, 312–322. https://doi.org/10.1016/j.powtec.2021.07.079spa
dc.relation.referencesVelásquez, F., Espitia, J., Mendieta, O., Escobar, S., & Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255(March), 32–40. https://doi.org/10.1016/j.jfoodeng.2019.03.009spa
dc.relation.referencesVerma, P., Shah, N. G., & Mahajani, S. M. (2019). Why jaggery powder is more stable than solid jaggery blocks. Lwt, 110(December 2018), 299–306. https://doi.org/10.1016/j.lwt.2019.04.093spa
dc.relation.referencesZafar, U., Vivacqua, V., Calvert, G., Ghadiri, M., & Cleaver, J. A. S. (2017). A review of bulk powder caking. Powder Technology, 313, 389–401. https://doi.org/10.1016/j.powtec.2017.02.024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembIndustria de la panelaspa
dc.subject.lembPanela - Industryeng
dc.subject.lembIndustrias alimenticiasspa
dc.subject.lembFood industry and tradeeng
dc.subject.proposalCompactaciónspa
dc.subject.proposalEstabilidadspa
dc.subject.proposalTemperaturaspa
dc.subject.proposalTamaño de partículaspa
dc.subject.proposalModelo Predictivospa
dc.subject.proposalCakingeng
dc.subject.proposalPredictive Modeleng
dc.subject.proposalParticle sizeeng
dc.subject.proposalTemperatureeng
dc.subject.proposalStabilityeng
dc.titleEvaluación de la estabilidad de un alimento en polvo con incorporación de panela a partir de su grado de compactaciónspa
dc.title.translatedEvaluation of the stability of a powdered food made with panela from its caking degreeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1072659060.2023.pdf
Tamaño:
2.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: