Evaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitro

dc.contributor.advisorTorres Osorio, Viviana
dc.contributor.advisorCampos Gaona, Rómulo
dc.contributor.authorEscobar Escobar, Juan Camilo
dc.contributor.educationalvalidatorMaturana Mena, Diana Milena
dc.contributor.researchgroupConservación, mejoramiento y utilización del ganado criollo Hartón del Valle y otros recursos genéticos animales en el suroccidente colombianospa
dc.coverage.regionValle del Cauca , Colombia
dc.date.accessioned2021-10-05T03:48:29Z
dc.date.available2021-10-05T03:48:29Z
dc.date.issued2021-07-07
dc.descriptionIlustraciones, fotografías, tablasspa
dc.description.abstractLa raza Hartón del Valle pertenece al conjunto de razas bovinas criollas colombianas adaptadas a las condiciones del trópico, la cual, ha sido sometida a constantes cruzamientos con razas introducidas, reduciendo la población pura y ubicándola en la categoría de “vulnerable”, es decir, que se está enfrentando a un riesgo de extinción alto. En consecuencia, se buscan alternativas para conservar el material genético de la raza. La criopreservación de embriones se ha convertido en un método altamente utilizado en embriones comerciales, debido a la similitud de supervivencia entre los embriones es frescos y los criopreservados (Shaw et al., 2000). La cualidad más relevante de la criopreservación de embriones, es lograr el almacenamiento en condiciones de bajas temperaturas (-196ºC), tratando de mantener la integridad general del embrión (Rodríguez & Jiménez, 2011). Para lograr esto, es necesario eliminar las dos causas principales de muerte celular asociada con la criopreservación, esto es, la formación de cristales de hielo y las concentraciones letales de solutos, mientras se mantiene la integridad de los orgánulos intracelulares (Edgar & Gook, 2012). La vitrificación es un método ideal para criopreservar oocitos y embriones de mamíferos, debido a las altas tasas de enfriamiento y, el corto tiempo de exposición de las células embrionarias a temperaturas críticas y a los crioprotectores, factores que minimizan los efectos tóxicos y el daño a la membrana de las células embrionarias. Lo anterior, perfila la técnica de vitrificación como una alternativa para criopreservar la variabilidad del material genético bovino, sin embargo, se conoce que tiene algunos efectos nocivos sobre la calidad de los embriones. El objetivo de este estudio fue evaluar el efecto de la suplementación del Resveratrol en los medios de cultivo in vitro (CIV) y de atemperado, sobre el desarrollo embrionario, criotolerancia y estado oxidativo de embriones producidos in vitro. Se realizó un primer estudio utilizando oocitos obtenidos de una planta de faenado, se maduraron y fertilizaron in vitro mediante un proceso estandarizado. Los presuntos cigotos se cultivaron en medio SOF suplementado con 0.5 μM de Resveratrol (CR) y sin Resveratrol (C-). El día 7 post fertilización, se evaluaron las tasas de blastocistos y se vitrificaron usando el método de mínimo volumen. Posteriormente, ambos grupos fueron atemperados con Resveratrol 0.5 μM. (C-VR,CRVR) y sin Resveratrol (C-V-: control, CRV-) y fueron cultivados 48 horas para evaluarlas tasas de reexpansión y eclosión. Finalmente, los embriones se sometieron a una doble tinción para medir los niveles de ROS y contenido de GSH intracelular utilizando la sonda 2,7- Diclorodihidrofluoresceina diacetato (H2DCFDA; Invitrogen®) y la sonda 4-clorometil-6,8-difluoro-7-hidroxicumarina (Cell Tracker Blue; CMF2HC; Invitrogen®) respectivamente. El contenido de GSH fue significativamente más alto (p <0.05) en el grupo CRVR en comparación con el grupo control (129.28 ± 8.46% y 100 ± 5.28%, respectivamente). Basados en estos resultados, se realizó un segundo estudio con oocitos obtenidos de aspiración folicular transvaginal guiada por ultrasonografía en hembras Hartón del Valle. Los oocitos se maduraron y fertilizaron in vitro mediante un proceso estandarizado. Los presuntos cigotos se cultivaron en medio SOF suplementado con 0.5 μM de Resveratrol (CR) y sin Resveratrol (C-). El día 7 post fertilización, se evaluaron las tasas de blastocistos y se vitrificaron usando el método de mínimo volumen. Consecutivamente, el grupo cultivado sin Resveratrol se atempero sin Resveratrol (C-V-: control) y el grupo cultivado con Resveratrol se atempero con Resveratrol (CRVR) y fueron cultivados 48 horas para evaluarlas tasas de reexpansión, eclosión, niveles de ROS y contenido de GSH intracelular. Los resultados mostraron un efecto significativo (p <0,05) del Resveratrol sobre las tasas de reexpansión y eclosión embrionaria comparado al grupo control (reexpansión: CRVR= 96.43  3.57% y C-V-= 60.91  4.18%; eclosión CRVR= 37.50  12.84% y C-V-= 17.05  8.51%). Además de una reducción significativa de los niveles de ROS (p <0,05) con respecto al control (CRVR= 73.15 ± 6.01% y C-V-= 100 ± 10.55%). En conclusión, la suplementación simultánea de 0.5 μM Resveratrol en el medio de cultivo in vitro y de atemperado de embriones Hartón del Valle, mejora la supervivencia, criotolerancia y el estado oxidativo de los embriones es producidos in vitro (Texto tomado de la fuente).spa
dc.description.abstractThe Hartón del Valle breed belongs to the set of Colombian Creole bovine breeds adapted to tropical conditions, which has been subjected to constant crossbreeding with introduced breeds, reducing the pure population and placing it in the category of "vulnerable", or facinga high risk of extinction. Consequently, alternatives are being sought to conserve the genetic material of the breed. Embryo cryopreservation has become a highly used method in commercial embryos, due to the survival similarity between fresh and cryopreserved embryos (Shaw et al., 2000). The most relevant attribute on embryo cryopreservation is to achieve storage in low temperature conditions (-196ºC), trying to maintain the general integrity of the embryo (Rodríguez & Jiménez, 2011). To achieve this, it is necessary to eliminate the two main causes of cell death associated with cryopreservation, that is, the formation of ice crystals and lethal concentrations of solutes, while maintaining the integrity of the intracellular organelles (Edgar & Gook, 2012). Vitrification is an ideal method to cryopreserve oocytes and mammalian embryos, due to the high cooling rates and the short time of exposure of embryonic cells to critical temperatures and to cryoprotectants, factors that minimize toxic effects and damage to the embryonic cell membrane. The foregoing outlines the vitrification technique as an alternative to cryopreserve the variability of the bovine genetic material, however, it is known to have some harmful effects on the quality of the embryos. The objective of this study was to evaluate the effect of resveratrol supplementation in in vitro culture (IVC) and tempering media on embryonic development, cryotolerance and oxidative state of in vitro produced embryos. A first study was carried out using oocytes obtained from a slaughter plant, they were matured and fertilized in vitro using a standardized process. The presumed zygotes were cultured in SOF medium supplemented with 0.5 μM of Resveratrol (CR) and without Resveratrol (C-). On day 7 post fertilization, blastocyst rates were evaluated and vitrified using the minimum volume method. Later, both groups were warmed with Resveratrol 0.5 μM. (C-VR, CRVR) and without Resveratrol (C-V-: control, CRV-) and were cultured for 48 hours to evaluate the re-expansion and hatching rates. Finally, the embryos were subjected to double staining to measure ROS levels and intracellular GSH content using the 2,7- Dichlorodihydrofluorescein diacetate probe (H2DCFDA; Invitrogen®) and the 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin probe (Cell Tracker Blue; CMF2HC; Invitrogen®), respectively. The GSH content was significantly higher (p <0.05) in the CRVR group compared to the control group (129.28 ± 8.46% and 100 ± 5.28%, respectively). Based on these results, a second study was carried out with oocytes obtained from transvaginal follicular aspiration guided by ultrasound in Hartón del Valle females. The oocytes were matured and fertilized in vitro using a standardized process. The presumed zygotes were cultured in SOF medium supplemented with 0.5 μM of Resveratrol (CR) and without Resveratrol (C-). On day 7 post fertilization, blastocyst rates were evaluated and vitrified using the minimum volume method. Consecutively, the group cultured without Resveratrol was warmed without Resveratrol (C-V-: control) and the group cultured with Resveratrol was warmed with Resveratrol (CRVR) and were cultured for 48 hours to evaluate the re-expansion rates, hatching rates, ROS levels and GSH content. The results showed a significant effect (p <0.05) of Resveratrol on re-expansion and embryo hatching rates compared to the control group (re-expansion: CRVR= 96.43 ± 3.57% y C-V-= 60.91± 4.18%; hatching = CRVR= 37.50 ± 12.84% y C-V-= 17.05 ± 8.51%). In addition to a significant reduction in ROS levels (p <0.05) with respect to the control (CRVR = 73.15 ±6.01% and C-V- = 100 ± 10.55%). In conclusion, the simultaneous supplementation of 0.5 μM Resveratrol in the in vitro culture medium and the warming medium of Hartón del Valle embryos improves survival, cryotolerance and the oxidative state of embryos produced in vitro.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.methodsSe realizó un primer estudio utilizando oocitos obtenidos de una planta de faenado, se maduraron y fertilizaron in vitro mediante un proceso estandarizado. Los presuntos cigotos se cultivaron en medio SOF suplementado con 0.5 μM de Resveratrol (CR) y sin Resveratrol (C-). El día 7 post fertilización, se evaluaron las tasas de blastocistos y se vitrificaron usando el método de mínimo volumen. Posteriormente, ambos grupos fueron atemperados con Resveratrol 0.5 μM. (C-VR, CRVR) y sin Resveratrol (C-V-: control, CRV-) y fueron cultivados 48 horas para evaluarlas tasas de reexpansión y eclosión. Finalmente, los embriones se sometieron a una doble tinción para medir los niveles de ROS y contenido de GSH intracelular utilizando la sonda 2,7- Diclorodihidrofluoresceina diacetato (H2DCFDA; Invitrogen®) y la sonda 4-clorometil6,8-difluoro-7-hidroxicumarina (Cell Tracker Blue; CMF2HC; Invitrogen®) respectivamente.spa
dc.description.researchareaProducción animal tropicalspa
dc.format.extentxiv, 141 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80380
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbdelatty, A.M., Iwaniuk, M.E., Potts, S.B., Gad, A., 2018. Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. Int. J. Vet. Sci. Med. 6, S1–S5. https://doi.org/https://doi.org/10.1016/j.ijvsm.2018.01.005spa
dc.relation.referencesAbe, T., Kawahara-Miki, R., Hara, T., Noguchi, T., Hayashi, T., Shirasuna, K., Kuwayama, T., Iwata, H., 2017. Modification of mitochondrial function, cytoplasmic lipid content and cryosensitivity of bovine embryos by Resveratrol. J. Reprod. Dev. 63, 455–461.spa
dc.relation.referencesAbeydeera LR, Wang WH, Cantley TC, Rieke A, Prather RS, Day BN., 1998. Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol Reprod Dev.; 51: 395-401.spa
dc.relation.referencesAgarwal, A., Durairajanayagam, D., du Plessis, S.S., 2014a. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol. 12, 1–19. https://doi.org/10.1186/1477-7827-12-112spa
dc.relation.referencesAgarwal, A., Virk, G., Ong, C., du Plessis, S.S., 2014b. Effect of oxidative stress on male reproduction. World J Men’s Heal. 32, 1–17.spa
dc.relation.referencesAgarwal, A., Aponte-mellado, A., Premkumar, B.J., Shaman, A., Gupta, S., 2012. The effects of oxidative stress on female reproduction : a review 1–31.spa
dc.relation.referencesAgarwal, A., Gupta, S., Sharma, R.K., 2005. No Title. Reprod Biol Endocrinol 3, 28.spa
dc.relation.referencesAgarwal, A., 2004. Oxidants and antioxidants in human fertility. Middle East Soc Fertil J 9, 187–197.spa
dc.relation.referencesAgarwal, A., Allamaneni, S.S., 2004. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 9, 338–347.spa
dc.relation.referencesAgarwal, A., Saleh, R.A., Bedaiwy, M.A., 2003. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79, 829–843.spa
dc.relation.referencesAgarwal, A., Saleh, R.A., 2002. Role of oxidants in male infertility: rationale, significance, and treatment. Urol. Clin. North Am. Philadelphia 29, 817–827.spa
dc.relation.referencesAl Gubory, K.H., Fowler, P.A., Garrel, C., 2010. The role of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol 42, 1634–1650.spa
dc.relation.referencesAlmiñana, C., Cuello, C., 2015. What is new in the cryopreservation of embryos? Anim. Reprod. Brazilian Coll. Anim. Reprod. 12, 418–427.spa
dc.relation.referencesAlvarenga, M.A., Fernandes, C.B., Landim-Alvarenga, F.C., 2007. Criopreservation of equine embryos._Acta_Scientiae_Veterinariae._ 35(Supl_3):_799-809. Acta Sci. Vet. 35, 799–809.spa
dc.relation.referencesAlvarez, A., 1999. Potencial Genetico Y Productivo Del Ganado Criollo Harton Del Valle 94–103.spa
dc.relation.referencesÁlvarez, L., Vera, V., Cárdena, H., Barreto, G., Muñoz, J., 2011. Assessing the genetic diversity and ancestry of Hartón del Valle cattle using mitochondrial DNA. Rev. Colomb. Ciencias Pecu. 25, 14–26.spa
dc.relation.referencesAmbrogi, M., Dall’Acqua, P.C., Rocha- Frigoni, N., Leao, B., Mingoti, G.Z., 2017. Transporting bovine oocytes in a medium supplemented with different macromolecules and antioxidants: effects on nuclear and cytoplasmic maturation and embryonic development in vitro. Reprod. Domest. Anim. Linköping 52, 409–421.spa
dc.relation.referencesAnzola, H.J., 2005. Criollas Y Colombianas Para El Desarrollo Rural. Arch. Zootec. 54, 141–144.spa
dc.relation.referencesArav, A., Natan, Y., Kalo, D., Komsky-Elbaz, A., Roth, Z., Levi-Setti, P.E., Leong, M., Patrizio, P., 2018. A new, simple, automatic vitrification device: preliminary results with murine and bovine oocytes and embryos. J. Assist. Reprod. Genet. 35, 1161–1168. https://doi.org/10.1007/s10815-018-1210-9spa
dc.relation.referencesAsamblea de Valle del Cauca, 2017. ORDENANZA No. 451 del 4 de mayo de 2017. Proyecto de Ordenanza No. 013 de abril 18 de 2017, "POR MEDIO DE LA CUAL SE DECLARA PATRIMONIO GENÉTICO, SOCIAL Y ECONÓMICO DEL DEPARTAMENTO DEL VALLE DEL CAUCA LA RAZA CRIOLLA DE GANADO BOVINO “HARTÓN DEL VALLE.”spa
dc.relation.referencesAsocriollo, 2003. Razas Criollas Colombianas Puras. Convenio 135-01.spa
dc.relation.referencesAstray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., 2009. A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631–1640. https://doi.org/https://doi.org/10.1016/j.foodhyd.2009.01.001spa
dc.relation.referencesÁvila-Portillo, M.U., Madero, J.I., López, C., Fernanda León, M., Acosta, L., Gómez, Claudia, Gabriela Delgado, L., Gómez, Claudio, Manuel Lozano, J., Reguero, M.T., 2006. Revisión de tema FUNDAMENTOS DE CRIOPRESERVACIÓN Basic points in cryopreservation. Rev. Colomb. Obstet. Ginecol. 57, 291–300.spa
dc.relation.referencesAye, M., Di Giorgio, C., De Mo, M., Botta, A., Perrin, J., Courbiere, B., 2010. Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: Dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem. Toxicol. 48, 1905–1912. https://doi.org/10.1016/j.fct.2010.04.032spa
dc.relation.referencesBajagai, Y.S., 2013. Multiple Ovulation and Non-Surgical Embryo Transfer in Cattle by Using Intravaginal Controlled Internal Drug Release (CIDR) Progesterone Inserts. Nepal J. Sci. Technol. 14, 15–22. https://doi.org/10.3126/njst.v14i1.8872spa
dc.relation.referencesBajo, A., Coroleu, L., 2009. Fundamentos de la reproducción. panamericana,España 270–272.spa
dc.relation.referencesBaldoceda, L., Gilbert, I., Gagné, D., Vigneault, C., Blondin, P., Ferreira, C.R., Robert, C., 2016. Breed-specific factors influence embryonic lipid composition: comparison between Jersey and Holstein. Reprod. Fertil. Dev. 28, 1185–1196.spa
dc.relation.referencesBaldoceda, L., Vigneault, C., Gilbert, I., Gagné, D., Blondin, P., Robert, C., 2014. Influence of cattle breed on gene expression and phenotype of Holstein and Jersey embryos. Anim. Reprod. Sci. 149, 100–101. https://doi.org/10.1016/j.anireprosci.2014.06.016spa
dc.relation.referencesBattin, E.E., Brumaghim, J.L., 2009. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55, 1–23.spa
dc.relation.referencesBeckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 87(4):1620-1624. doi: 10.1073/pnas.87.4.1620. PMID: 2154753spa
dc.relation.referencesBehrman, H.R., Kodaman, P.H., Preston, S.L., Gao, S., 2001. Oxidative stress and the ovary. J Soc Gynecol Investig 8, 40–42.spa
dc.relation.referencesBhattacharya, S., 2018. Cryoprotectants and Their Usage in Cryopreservation Process, in: Biomedical and Biological Sciences. Intechopen, p. 19.spa
dc.relation.referencesBolaños, I., Hernández, D., Álvarez, L., 2017. Asociación de los alelos del gen BoLA-DRB3 con la infección natural de Babesia spp en el ganado criollo Hartón del Valle. Arch. Zootec. 53, 113–120.spa
dc.relation.referencesBoni, R., 2012. Origins and Effects of Oocyte Quality in Cattle. Anim. Reprod. 9, 333–340.spa
dc.relation.referencesBrunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Al., E., 2004. Stress- dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (80-. ). 303, 2011–2015.spa
dc.relation.referencesCalabrese, E.J., Mattson, M.P., Calabrese, V., 2010. Resveratrol commonly displays hormesis: occurrence and biomedical significance,. Hum. Exp. Toxicol. 29, 980–1015.spa
dc.relation.referencesCampos, R., Vélez, M., Hernández, E., García, K., Molina, R., Sánchez, H., Durán, C., Gitaldo, L., 2015. El mejoramiento genético y la producción de leche. La esencia de una realidad de producción animal. Acta Agronómica 64, 372–382.spa
dc.relation.referencesCampos, R., Giraldo, L., 2008. Efecto de la raza y la edad sobre las concentraciones de hormonas tiroideas T3 y T4 de bovinos en condiciones tropicales. Acta Agronómica 57, 137–141.spa
dc.relation.referencesCampos, R., González, F.H., Rodas, A., Cruz, C., 2004. Thyroid hormones in native colombian bovine breeds. Rev Bras Ci Vet 11, 174–177.spa
dc.relation.referencesCarrocera, S., CAAMAÑO, J.N., TRIGAL, B., MARTÍN, D., DÍEZ, C., 2016. Developmental kinetics of in vitro-produced bovine embryos: an aid for making decisions. Theriogenology, New York 85, 822–827.spa
dc.relation.referencesCasas, A., Casas, I., 1982. Métodos propuestos para medir la eficiencia reproductiva de los hatos lecheros con base en las variables numero de servicios por concepción e intervalo de parto a concepción. Acta Agronómica 32, 85–107.spa
dc.relation.referencesCasas, I., Valderrama, M., 1998. El Bovino Criollo “HARTÓN DEL VALLE.” Rev. Despertar Leche. 15, 37–62.spa
dc.relation.referencesCastedo M, Ferri K, Roumier T, M_etivier D, Zamzami N, Kroemer G., 2002. Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods. 265:39e47. https://doi.org/10.1016/S0022-1759(02)00069-8.spa
dc.relation.referencesCastillo-Martín, M., Bonet, S., Morato, R., Yeste, M., 2014a. Comparative effects of adding b -mercaptoethanol or L -ascorbic acid to culture or vitrification-warming media on IVF porcine embryos. Reprod. Fertil. Dev. 26, 875–882. https://doi.org/http://dx.doi.org/10.1071/RD13116spa
dc.relation.referencesCastillo-Martín, M., Bonet, S., Morató, R., Yeste, M., 2014b. Supplementing culture and vitrification-warming media with L -ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression q. Cryobiology 68, 451–458. https://doi.org/10.1016/j.cryobiol.2014.03.001spa
dc.relation.referencesChaube, S.K., Prasad, P. V, Thakur, S.C., Shrivastav, T.G., 2005. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis 10, 863–874. https://doi.org/10.1007/s10495-005-0367-8spa
dc.relation.referencesChen, H., Zhang, L., Wang, Z., Chang, H., Xie, X., Fu, L., Zhang, Y., Quan, F., 2019. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol Reprod Dev. 1–9. https://doi.org/10.1002/mrd.23161spa
dc.relation.referencesChi, H.J., Kim, J.H., Ryu, C.S., Al, E., 2008. Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum. Reprod. 23, 1023–1028.spa
dc.relation.referencesChinen, S., Yamanaka, T., Hirabayashi, M., Hochi, S., 2020. Rescue of vitrified-warmed bovine mature oocytes by short-term recovery culture with Resveratrol. Cryobiology. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.03.004spa
dc.relation.referencesChoe, C., Shin, Y., Kim, E., Cho, S., Kim, H., Choi, S., Al, E., 2010. Synergistic effects of glutathione and B-mercaptoethanol traetment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J Reprod Dev 56, 575–582.spa
dc.relation.referencesChung, I.M., Park, M.R., Chun, J.C., Yun, S.J., 2003. Resveratrol accumulation and Resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci. 164, 103–109.spa
dc.relation.referencesClark JH, Markaverich BM. Actions of ovarian steroid hormones. In: Knobil E, Neil JD, Ewing LL, Greenwald GS, Markert CL, Pfaff DW (eds.), The Physiology of Reproduction. New York: Raven Press; 1988: 675-724.spa
dc.relation.referencesCoello, A., Campos, P., Remohí, J., Meseguer, M., Cobo, A., 2016. A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study. J. Assist. Reprod. Genet. 33, 413–421. https://doi.org/10.1007/s10815-015-0633-9spa
dc.relation.referencesColica, C., Aiello, V., Lorenzo, A. De, Abenavoli, L., 2018. A Systematic Review on Natural Antioxidant Properties of Resveratrol. Nat. Prod. Commun. 13, 1195–1203. https://doi.org/10.1177/1934578X1801300923spa
dc.relation.referencesCovarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E., Castro-Obregón, S., 2008. Function of reactive oxygen species during animal development: Passive or active? . Dev Biol 320, 1–11.spa
dc.relation.referencesCryotech®, 2019. El método Crytech Manual de uso “Para Oocitos y Embriones.” Cutaia, L.E., Bó, G.A., 2007. Cattle embryo production and trade in Argentina. Acta Sci. Vet 35, 931–944.spa
dc.relation.referencesD’Occhio, M.J., Baruselli, P.S., Campanile, G., 2019. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 125, 277–284. https://doi.org/https://doi.org/10.1016/j.theriogenology.2018.11.010spa
dc.relation.referencesDangles, O., 2012. Antioxidant Activity of Plant Phenols: Chemical Mechanisms and Biologica Significance. Curr. Org. Chem. 16, 697–714. https://doi.org/1875-5348/12 $58.00+.00spa
dc.relation.referencesDe Alba, J., 1985. El criollo lechero en Turrialba. Costa Rica.spa
dc.relation.referencesDe Matos, D. G., Gasparrini, B., Pasqualini, S. R., & Thompson, J. G. 2002. Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology, 57(5), 1443–1451. https://doi.org/10.1016/S0093-691X(02)00643-Xspa
dc.relation.referencesde Matos, D.G., Furnus, C.C., Moses, D.F., 1997. Glutathione Synthesis During in Vitro Maturation of Bovine Oocytes: Role of Cumulus Cells1. Biol. Reprod. 57, 1420–1425. https://doi.org/10.1095/biolreprod57.6.1420spa
dc.relation.referencesDevine, P.J., Perreault, S.D., Luderer, U., 2012. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod 86, 27.spa
dc.relation.referencesDi Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., 2020. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba. Argentina. URL http://www.infostat.com.ar.spa
dc.relation.referencesDickinson, B.C., Chang, C.J., 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Bio. 7, 504–511.spa
dc.relation.referencesDinnyes, A., Nedambale, T.L., 2009. Cryopreservation of manipulated embryos: tackling the double jeopardy. Reprod. Fertil. Dev. 21, 45–59.spa
dc.relation.referencesdu Plessis, S.S., Makker, K., Desai, N.R., Agarwal, A., 2008. Impact of oxidative stress on IVF. Expet Rev Obs. Gynecol 3, 539–554.spa
dc.relation.referencesEdgar, D.H., Gook, D.A., 2012. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum. Reprod. Update 18, 536–554. https://doi.org/10.1093/humupd/dms016spa
dc.relation.referencesEl-Shahat, K.H., Hammam, A.M., 2014. Effect of different types of cryoprotectants on developmental capacity of vitrified-thawed immature buffalo oocytes. Anim. Reprod. 11, 543–548.spa
dc.relation.referencesEl-Shalofy, A.S., Moawad, A.R., Darwish, G.M., Ismail, S.T., Badawy, A.B.A., Badr, M.R., 2017. Effect of different vitrification solutions and cryodevices on viability and subsequent development of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cryobiology 74, 86–92. https://doi.org/10.1016/j.cryobiol.2016.11.010spa
dc.relation.referencesEl Mouatassim, S., Guérin, P., Ménézo, Y., 1999. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod. 5, 720–725. https://doi.org/10.1093/molehr/5.8.720spa
dc.relation.referencesFahy, G.M., Wowk, B., Wu, J., Paynter, S., 2004. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48, 22–35.spa
dc.relation.referencesFahy, G.M., Macfarlane, D.R., Angell, C.A., Meryman, H.T., 1984. Vitrification as an approach to cryopreservation. Cryobiology 21, 407–426.spa
dc.relation.referencesFan, Z., Yang, M., Regouski, M., Polejaeva, I.A., 2017. Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Rumin. Resveratrol. 147, 106–114. https://doi.org/https://doi.org/10.1016/j.smallrumres.2016.12.041spa
dc.relation.referencesFang, C., Wei, X., Zhang, Z., Li, X., Zhang, X., 2017. Effects of Vitrified Cryopreservation on GSH Content and Mitochondrial ATPase Activity in Oocytes of Zebrafish. Fish. Sci. 36, 773–777.spa
dc.relation.referencesFAO, 2012. Cryconservation of animal genetic resources. Food Agric. Organ. United Nations Section 7, 85–94.spa
dc.relation.referencesFerre, L., Cattaneo, L., 2013. Biotecnologías reproductivas: producción in vitro de embriones y semen sexado. (¿La pareja perfecta?). Rev. Med. Vet. 94, 28–36.spa
dc.relation.referencesFinkel, T., Deng, C.-X., Mostoslavsky, R., 2009. Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591. https://doi.org/10.1038/nature08197spa
dc.relation.referencesFormigari, A., Irato, P., Santon, A., 2007. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146, 443–459.spa
dc.relation.referencesFranklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. 2009. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med. 2009 Feb-Apr;30(1-2):86-98. doi: 10.1016/j.mam.2008.08.009.spa
dc.relation.referencesFujii, J., Iuchi, Y., Okada, F., 2005. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 3, 43.spa
dc.relation.referencesFujikawa, T., Gen, Y., Hyon, S.-H., Kubota, C., 2018. 22 Vitrification of bovine embryo using antifreeze polyamino acid. Reprod. Fertil. Dev. 31, 137–137.spa
dc.relation.referencesFukai, T., Ushio Fukai, M., 2011. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal 15, 1583–1606.spa
dc.relation.referencesGambini, J., Inglés, M., Olaso, G., Lopez-Grueso, R., Bonet-Costa, V., Gimeno-Mallench, L., Mas-Bargues, C., Abdelaziz, K.M., Gomez-Cabrera, M.C., Vina, J., Borras, C., 2015. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 837042. https://doi.org/10.1155/2015/837042spa
dc.relation.referencesGambini, J., López, R., Gonzáles, G., Inglés, M., Abdelazid, K., Alami, M., Costa, V., Borrás, C., Viña, J., 2013. Resveratrol: distribución, propiedades y perspectivas. Rev. Esp. Geriatr. Gerontol. 48, 79–88.spa
dc.relation.referencesGao, C., Han, H.-B., Tian, X.-Z., Tan, D.-X., Wang, L., Zhou, G.-B., Zhu, S.-E., Liu1, G.-S., 2012. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Resveratrol. 52, 305–311. https://doi.org/10.1111/j.1600-079X.2011.00944.xspa
dc.relation.referencesGehm, B.D., McAndrews, J.M., Chien, P.Y., Jameson, J.L., 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist forthe estrogen receptor. Proc. Natl. Acad. Sci. U.S.A. 94, 14138–14143.spa
dc.relation.referencesGiraldo, J.J.G., Oquendo, J.G., Araque, N.V., 2012. Efecto de la Dimetilformamida sobre la viabilidad posvitrificación de embriones bovinos producidos in vitro. Rev. Lasallista Investig. 9, 13–20.spa
dc.relation.referencesGomes, A., Fernandes, E., Lima, J. L. F. C, 2006. Use of fluorescence probes for detection of reactive oxygen species: a review. J. Fluoresc. 16, 119–139. doi:10.1007/S10895-005-0030-3spa
dc.relation.referencesGonçalves, P.B.D., Visitin, J.A., Oliveira, M.A.L., 2008. Produção in vitro de embriões. Biotécnicas Apl. à reprodução Anim. São Paulo:, 261–301.spa
dc.relation.referencesGonçalves, P.B.D., Visintin, J.A., Oliveira, M.A.., Montagner, M.M., Costa, L.F.S., 2001. Produção in vitro de Embriões. Biotecnias Apl. á Reprod. Anim. En: Gonça, 195–226.spa
dc.relation.referencesGonzalez, N., Reichenbach, M., Zerbe, H., Scherzer, J., 2019. Comparison of survival rates of vitrified biopsied in vitro-produced bovine blastocysts using the VitTrans- or the Cryotop device..spa
dc.relation.referencesGonzález, M., Arango, H., 1974. Estudio del ganado criollo &quot;harton&quot; del Valle del Cauca. Acta Agronómica 24, 1–15.spa
dc.relation.referencesGospodaryov, L.L.E.-V.I.L.E.-D. V, 2012. The Role of Oxidative Stress in Female Reproduction and Pregnancy. IntechOpen, Rijeka, p. Ch. 14. https://doi.org/10.5772/32515spa
dc.relation.referencesGoud, A.P., Goud, P.T., Diamond, M.P., Gonik, B., Abu-Soud, H.M., 2008. Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med. 44, 1295–1304. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2007.11.014spa
dc.relation.referencesGriffith, O.W. 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic.Biol. Med. 27(9–10):922–935. [PubMed: 10569625]spa
dc.relation.referencesGriffith, O.W., Mulcahy, R.T. 1999. The enzymes of glutathione synthesis: γ-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 73:209–267. [PubMed: 10218110]spa
dc.relation.references[PubMed: 10218110] Guemra, S., Monzani, P.S., Santos, E.S., Zanin, R., Ohashi, O.M., Miranda, M.S., Adona, P.R., 2013. In vitro maturation of bovine oocytes in medium supplemented with quercetin, and its effect on embryonic development. Arq. Bras. Med. Veterinária e Zootec. Belo Horiz. 65, 1616–1624.spa
dc.relation.referencesGuerin, P., El Mouatassim, S., Menezo, Y., 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Updat. 7, 175–189.spa
dc.relation.referencesGupta, M.K., Uhm, S.J., Lee, H.T., 2010. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 93, 2602–2607. https://doi.org/10.1016/j.fertnstert.2010.01.043spa
dc.relation.referencesGupta, S., Malhotra, N., Sharma, D., Chandra, A., Agarwal, A., 2009. Oxidative stress and its role in female infertility and assisted reproduction: clinical implications. Int J Fertil Steril 2, 147–164.spa
dc.relation.referencesGutnisky, C., Morado, S., Gadze, T., Donato, A., Alvarez, G., Dalvit, G., Cetica, P., 2020. Morphological , biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology 143, 18–26. https://doi.org/10.1016/j.theriogenology.2019.11.037spa
dc.relation.referencesGutnisky, C., Alvarez, G.M., Cetica, P.D., Dalvit, G.C., 2013. Cryobiology Evaluation of the Cryotech Vitrification Kit for bovine embryos. Cryobiology 67, 391–393. https://doi.org/10.1016/j.cryobiol.2013.08.006spa
dc.relation.referencesHa, A.N., Lee, S.R., Jeon, J.S., Park, H.S., Lee, S.H., Jin, J.I., Sessions, B.R., Wang, Z., White, K.L., Kong, I.K., 2014a. Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology 68, 57–64. https://doi.org/10.1016/j.cryobiol.2013.11.007spa
dc.relation.referencesHa, A.N., Park, H.S., Jin, J.I., Lee, S.H., Ko, D.H., Lee, D.S., White, K.L., Kong, I.K., 2014b. Postthaw survival of invitro-produced bovine blastocysts loaded onto the inner surface of a plastic vitrification straw. Theriogenology 81, 467–473. https://doi.org/10.1016/j.theriogenology.2013.10.024spa
dc.relation.referencesHabibi, A., Farrokhi, N., Moreira da Silva, F., Bettencourt, B.F., Bruges-Armas, J., Amidi, F., Hosseini, A., 2010. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J Assist Reprod Genet 27, 599–604.spa
dc.relation.referencesHaley, R. M., Zuckerman, S. T., Dakhlallah, H., Capadona, J. R., von Recum, H. A., Ereifej, E. S., 2020. Resveratrol Delivery from Implanted Cyclodextrin Polymers Provides Sustained Antioxidant Effect on Implanted Neural Probes. International journal of molecular sciences, 21(10), 3579. https://doi.org/10.3390/ijms21103579spa
dc.relation.referencesHara, T., Kin, A., Aoki, S., Nakamura, S., Shirasuna, K., Kuwayama, T., Iwata, H., 2018. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrifiedwarmed bovine embryos. PLoS One 13, 1–17. https://doi.org/10.1371/journal.pone.0204571spa
dc.relation.referencesHara H, Yamane I, Noto I, Kagawa N, Kuwayama M, Hirabayashi M & Hochi S. 2014. Microtubule assembly and in vitro development of bovine oocytes with intracellular glutathione level prior to vitrification and in vitro fertilization. Zygote 22 476–482. (doi:10.1017/ S0967199413000105)spa
dc.relation.referencesHayashi, T., Kansaku, K., Abe, T., Ueda, S., Iwata, H., 2019. Effects of Resveratrol treatment on mitochondria and subsequent embryonic development of bovine blastocysts cryopreserved by slow freezing. Anim. Sci. J. 90, 849–856. https://doi.org/10.1111/asj.13219spa
dc.relation.referencesHayashi, T., Ueda, S., Mori, M., Baba, T., Abe, T., Iwata, H., 2018. Influence of Resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number. Theriogenology 106, 271–278. https://doi.org/10.1016/j.theriogenology.2017.10.022spa
dc.relation.referencesHe, X., Park, E.Y.H., Fowler, A., Yarmush, M.L., Toner, M., 2008. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: A study using murine embryonic stem cells. Cryobiology 56, 223–232.spa
dc.relation.referencesHernandez, D., Muñoz, J., Álvarez, L., 2016. Dynamics of Bovine leukosis in creole cattle Hartón del Valle in natural infection. Arch. Zootec. 65, 365–373.spa
dc.relation.referencesHernández, D.Y., Muñoz, J.E., Álvarez, L.A., 2015. Diversidad genética del gen BoLA-DRB3 en el ganado criollo colombiano Hartón del Valle. Rev CES Med Zootec 10, 18–30.spa
dc.relation.referencesHernández, E.A., Campos, R., Giraldo, L., 2011. Comportamiento metabólico en el periparto de vacas Hartón del Valle, bajo condiciones de trópico bajo. ACTA AGRONÓMICA 60, 13–26.spa
dc.relation.referencesHernández, G., 1996. Razas bovinas criollas y colombianas, 4th ed. Unidad de divulgación y prensa Banco Ganadero, Bogotá, Colombia.spa
dc.relation.referencesHlavicová, J., Lopatářová, M., Čech, S., 2010. Vliv dvoustupňové vitrifikace na vývojovou kompetenci bovinních embryí získaných in vitro a in vivo. Acta Vet. Brno 79, 55–61. https://doi.org/10.2754/avb201079S9S055spa
dc.relation.referencesHolm, P., Booth, P.J., Scsmidt, M.H., Greve, T., Callesen, H., 1999. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.spa
dc.relation.referencesHong, H., Lee, E., Lee, I.H., Lee, S.-R., 2019. Effects of transport stress on physiological responses and milk production in lactating dairy cows. Asian-Australasian J. Anim. Sci. 32, 442–451. https://doi.org/10.5713/ajas.18.0108spa
dc.relation.referencesHowitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA., 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature.; 425: 191-196.spa
dc.relation.referencesHussein, M.A., 2011. A convenient mechanism for the free radical scavenging activity of Resveratrol. Int. J. Phytomed 3, 459–469.spa
dc.relation.referencesInoue, F., 2014. Efficiency of a Closed Vitrification System with Oocytes and Blastocysts. Low Temp. Med. 40, 53–59.spa
dc.relation.referencesIto, J., Shirasuna, K., Kuwayama, T., Iwata, H., 2020. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology 93, 37–43. https://doi.org/10.1016/j.cryobiol.2020.02.014spa
dc.relation.referencesIwasaki, S., Yoshiba, N., Ushijima, H., Watanabe, S., & Nakahara, T. (1990). Morphology and proportion of inner cell mass of bovine blastocysts fertilized in vitro and in vivo. Journal of Reproduction and Fertility, 90, 279-284.spa
dc.relation.referencesIzaguirre, E., 2012. Adaptación de un método de vitrificación-Calentamiento en fibreplug para la transferencia directa de blastocistos bovinos producidos in vitro.spa
dc.relation.referencesIzquierdo, A., Eulogio, J., Liera, G., Mancera, A.V., Olivares Pérez, J., Arroyo, G.C., De Lourdes, M., Mosaqueda, J., Félix, J., Gutiérrez, P., 2015. Congelación De Embriones Bovinos. Rev. Complut. Ciencias Vet. 9, 22–40. https://doi.org/10.5209/rev_RCCV.2015.v9.n2.51041spa
dc.relation.referencesJana, S.K., K, N.B., Chattopadhyay, R., Chakravarty, B., Chaudhury, K., 2010. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod. Toxicol. 29, 447–451. https://doi.org/https://doi.org/10.1016/j.reprotox.2010.04.002spa
dc.relation.referencesJang, T.H., Park, S.C., Yang, J.H., Kim, J.Y., Seok, J.H., Park, U.S., Choi, C.W., Lee, S.R., Han, J., 2017. Cryopreservation and its clinical applications. Integr. Med. Resveratrol. 6, 12–18. https://doi.org/10.1016/j.imr.2016.12.001spa
dc.relation.referencesJaramillo, N., Arzuaga, J.M., Giraldo, J.J., Vásquez, N.A., 2019. Parámetros metabólicos, antioxidantes y competencia para el desarrollo embrionario de ovocitos bovinos madurados in vitro con L-Carnitina. Rev. Investig. Vet. del Perú 30, 265–275. https://doi.org/10.15381/rivep.v30i1.15703spa
dc.relation.referencesJeandet, P., Delaunois, B., Aziz, A., Donnez, D., Vasserot, Y., Cordelier, S., Courot, E., 2012. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, Resveratrol. J Biomed Biotechnol 2012: 579089.spa
dc.relation.referencesJiang, W., Li, Y., Zhao, Y., Gao, Q., Jin, Q., Yan, C., Xu, Y., 2020. l-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes. Theriogenology 143, 64–73. https://doi.org/10.1016/j.theriogenology.2019.11.036spa
dc.relation.referencesJin, B., Mazur, P., 2015. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci Rep 5, 9271. https://doi.org/10.1038/srep09271spa
dc.relation.referencesJuliarena, M.A., Poli, M., Ceriani, C., Sala, L., Rodriguez, E., Gutierrez, E., Dolcini, G. et al., 2009. Antibody response against three widespread bovine viruses is not impaired in Holstein cattle carrying bovine leukocyte antigen DRB3.2 alleles associated with bovine leukemia virus resistance. J Dairy Sci. 92(1): 375-381.spa
dc.relation.referencesKhazaei, M., Ph, D., Aghaz, F., Sc, M., 2017. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes 11, 63–70. https://doi.org/10.22074/ijfs.2017.4995.Introductionspa
dc.relation.referencesKhosla, K., Zhan, L., Bhati, A., Carley-Clopton, A., Hagedorn, M., & Bischof, J., 2019. Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale Cryopreservation. Langmuir : the ACS journal of surfaces and colloids, 35(23), 7364–7375. https://doi.org/10.1021/acs.langmuir.8b03011spa
dc.relation.referencesKim, Y.M., Uhm, S.J., Gupta, M.K., Yang, J.S., Lim, J.G., Das, Z.C., Heo, Y.T., Chung, H.J., Kong, I.K., Kim, N.H., Lee, H.T., Ko, D.H., 2012. Successful vitrification of bovine blastocysts on paper container. Theriogenology 78, 1085–1093. https://doi.org/10.1016/j.theriogenology.2012.05.004spa
dc.relation.referencesKing, N., Korolchuk, S., McGivan, J.D., Suleiman, M.-S., 2004. A new method of quantifying glutathione levels in freshly isolated single superfused rat cardiomyocytes. J. Pharmacol. Toxicol. Methods 50, 215–222. https://doi.org/https://doi.org/10.1016/j.vascn.2004.05.003spa
dc.relation.referencesKitazato®, 2020. Vitrification Cryotop®. Kitazato Corp.spa
dc.relation.referencesKobayashi, T., Miyazaki, T., Natori, M., Nozawa, S., 1991. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod 6, 987–991.spa
dc.relation.referencesKondo, S., Imai, K., Dochi, O., 2014. 44 The effect of sucrose concentration for single-step dilution on the viability of cryotop-vitrified in vitro-produced bovine embryos. Reprod. Fertil. Dev. 27, 115–115.spa
dc.relation.referencesKordowitzki, P., Bernal, S.M., Herrmann, D., Aldag, P., Niemann, H., 2017. 198 Resveratrol supplementation during in vitro maturation and fertilisation enhances developmental competence of bovine oocytes. Reprod. Fertil. Dev. 28, 230–230. https://doi.org/https://doi.org/10.1071/RDv28n2Ab198spa
dc.relation.referencesKrisher, R.L., Prather, R.S., 2012. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.spa
dc.relation.referencesKumar, R., Kaur, K., Uppal, S., Mehta, S.K., 2017. Ultrasound processed nanoemulsion: A comparative approach between Resveratrol and Resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrason. Sonochem. 37, 478–489. https://doi.org/https://doi.org/10.1016/j.ultsonch.2017.02.004spa
dc.relation.referencesKundu JK, Surh YJ. 2008. Cancer chemopreventive and therapeutic potential of Resveratrol: mechanistic perspectives. Cancer Lett. 269: 243-261.spa
dc.relation.referencesKuwajerwala, N., Cifuentes, E., Gautam, S., Menon, M., Barrack, E.R., Reddy,G.P., 2002. Resveratrol induces prostate cancer cell entry into s phaseand inhibits DNA synthesis. Cancer Res. 62 (9), 2488–2492.spa
dc.relation.referencesKwak, S., Cheong, S., Jeon, Y., Lee, E., Choi, K., 2012. The effectsof Resveratrol on porcine oocyte in vitro maturation and subsequentembryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology 78, 86–101.spa
dc.relation.referencesLafleur, M. V, Hoorweg, J. J., Joenje, H., Westmijze, E. J., & Retèl, J., 1994. The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Free Radical Research, 21(1), 9–17. http://www.ncbi.nlm.nih.gov/pubmed/7951911spa
dc.relation.referencesLampiao, F., 2012. Free radicals generation in an in vitro fertilization setting and how to minimize them. World J Obs. Gynecol 1, 29–34.spa
dc.relation.referencesLawson, A., Ahmad, H., Sambanis, A., 2011. Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions. Cryobiology 62.spa
dc.relation.referencesLedda, S., Kelly, J.M., Nieddu, S., Bebbere, D., Ariu, F., Bogliolo, L., Natan, D., Arav, A., 2019. High in vitro survival rate of sheep in vitro produced blastocysts vitrified with a new method and device. J. Anim. Sci. Biotechnol. 10, 90. https://doi.org/10.1186/s40104-019-0390-1spa
dc.relation.referencesLedda, S., Kelly, J.M., Walker, S.K., Natan, Y., Arav, A., 2018. 47 A New Device and Method for Successful Vitrification of In Vitro-Produced Ovine Embryos. Reprod. Fertil. Dev. 30, 163.spa
dc.relation.referencesLee, S., Jung, E., Ho, J., Jin, S., Song, K., Chun, B., 2015. Sequential treatment with Resveratrol-trolox improves development of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer. Theriogenology xxx, 1–10. https://doi.org/10.1016/j.theriogenology.2015.02.021spa
dc.relation.referencesLee, M.H., Thomas, J., Wang, H.Y., Chang, C.C., Lin, C.C., Lin, H.Y., 2012. Extraction of Resveratrol from polygonum cuspidatum with magnetic orcinol-imprinted poly(ethylene-co-vinyl alcohol) composite particles and their in vitro suppression of human osteogenic sarcoma (HOS) cell line. J Mater Chem 22, 24644–24651.spa
dc.relation.referencesLee, K., Wang, C., Chaille, J.M., Machaty, Z., 2010. Effect of Resveratrol onthe development of porcine embryos produced in vitro. J. Reprod. Dev.56 (3), 330–335.spa
dc.relation.referencesLee, I., Cao, L., Mostoslavsky, R., Lombard, D., Liu, J., Bruns, N., Al., E., 2008. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105, 3374–3379. https://doi.org/https://doi. org/10.1073/pnas.0712145105spa
dc.relation.referencesLee, J.A., Parrett, B.M., Conejero, J.A., Laser, J., Chen, J., Kogon, A.J., Al., E., 2003. Biological alchemy: engineering bone and fat from fat derived stem cells. Ann Plast Surg 50, 610–7.spa
dc.relation.referencesLen, J.S., Koh, W.S.D., Tan, S.X., 2019. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. 39. https://doi.org/10.1042/BSR20191601spa
dc.relation.referencesLeopoldini, M., Marino, T., Russo, N., Marirosa, T., 2004. Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism. J. Phys. Chem. A 108, 4916–4922. https://doi.org/10.1021/jp037247d CCC: $27.50spa
dc.relation.referencesLestari, S.W., Ilato, K.F., Pratama, M.I.A., Fitriyah, N.N., Pangestu, M., Pratama, G., Margiana, R., 2018. Sucrose ‘Versus’ Trehalose Cryoprotectant Modification in Oocyte Vitrification : A Study of Embryo Development. Biomed. Pharmacol. J. 11, 97–104. https://doi.org/10.13005/bpj/1351spa
dc.relation.referencesLi, B., He, X., Zhuang, M., Niu, B., Wu, C., Mu, H., Al., E., 2018. Melatonin ameliorates busulfan- induced spermatogonial stem cell oxidative apoptosis in mouse testes. Antioxid. Redox Signal 28, 385–400.spa
dc.relation.referencesLi, D., Liu, Q., Gong, Y., Huang, Y., Han, X., 2009. Cytotoxicity and oxidative stress study in cultured rat Sertoli cells with methyl tert-butyl ether (MTBE) exposure. Reprod. Toxicol. 27, 170–176. https://doi.org/10.1016/j.reprotox.2008.12.004spa
dc.relation.referencesLi, D., Yin, D., Han, X., 2007. Methyl tert-butyl ether (MTBE)-induced cytotoxicity and oxidative stress in isolated rat spermatogenic cells. J. Appl. Toxicol. 27, 10–17. https://doi.org/10.1002/jat.1178spa
dc.relation.referencesLiang, S., Yuan, B., Jin, Y.-X., Zhang, J.-B., Bang, J.K., Kim, N.-H., 2017. Effects of antifreeze glycoprotein 8 (AFGP8) supplementation during vitrification on the in vitro developmental capacity of expanded bovine blastocysts. Reprod. Fertil. Dev. 29, 2140–2148.spa
dc.relation.referencesLiebermann, J., Dietl, J., Vanderzwalmen, P., Tucker, M., 2003. Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7, 623–633.spa
dc.relation.referencesLiu, F., Lai, S., Tong, H., Lakey, P.S.J., Shiraiwa, M., Weller, M.G., Al., E., 2017. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal. Bioanal. Chem. 409, 2411–2420.spa
dc.relation.referencesLiu, M., Yin, Y., Ye, X., Zeng, M., Zhao, Q., Keefe, D.L., Liu, L., 2013. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 28, 707–717. https://doi.org/10.1093/humrep/des437spa
dc.relation.referencesLobo, R.A., 1995. Benefits and risks of estrogen replacement therapy. Am.J. Obstet. Gynecol. 173, 982–989.spa
dc.relation.referencesLongobardi, V., Zullo, G., Salzano, A., De Canditiis, C., Cammarano, A., De Luise, L., Puzio, M.V., Neglia, G., Gasparrini, B., 2017. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 88, 1–8. https://doi.org/10.1016/j.theriogenology.2016.09.046spa
dc.relation.referencesLoren, P., Sánchez, R., Arias, M.E., Felmer, R., Risopatrón, J., Cheuquemán, C., 2017. Melatonin scavenger properties against oxidative and nitrosative stress: Impact on gamete handling and in vitro embryo production in humans and other mammals. int J Mol Sci 18, 1–17.spa
dc.relation.referencesLuster, S.M., 2004. Cryopreservation of bovine and caprine oocytes by vitrificaction. Interdepartamental Progr. Anim. Sci.spa
dc.relation.referencesLykkesfeldt, J., Svendsen, O., 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. Journal, London 173, 502–511.spa
dc.relation.referencesMaddipati, K.R., Marnett, L.J., 1987. Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J. Biol. Chem. 262, 17398–17403. https://doi.org/https://doi.org/10.1016/S0021-9258(18)45392-6spa
dc.relation.referencesMadeira, E.M., Mion, B., Silva, J.F., Pegoraro, L.M.C., Vieira, A.D., Lucia Jr, T., 2015. Use of ethyleneglycol monomethyl ether as cryoprotectant in vitrification of IVP bovine embryos. Anim. Reprod. 12, 847–847.spa
dc.relation.referencesMadrid, S., López, A., Restrepo, G., Urrego, R., Julián, J., Zuluaga, E., 2019a. Supplementation with Resveratrol during culture improves the quality of in vitro produced bovine embryos. Livest. Sci. 221, 139–143. https://doi.org/10.1016/j.livsci.2019.01.025spa
dc.relation.referencesMadrid, S., López, A.H., Urrego, R., Restrepo, G.B., Echeverri, J.J., 2019b. Effect of Resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology 89, 42–50.spa
dc.relation.referencesMadrid, S.G., A.B., M., López, A.H., Restrepo, G.B., Urrego, R.Á., Echeverri, J.Z., Cética, P., 2018. Resveratrol supplementation promotes recovery of lower oxidative metabolism after vitrification and warming of in vitro-produced bovine embryos. Reprod. Fertil. Dev. 31, 521–528.spa
dc.relation.referencesMaleki, E.M., Eimani, H., Bigdeli, M.R., Ebrahimi, B., Shahverdi, A.H., Narenji, A.G., Abedi, R., 2014. A comparative study of saffron aqueous extract and its active ingredient, crocin on the in vitro maturation, in vitro fertilization, and in vitro culture of mouse oocytes. Taiwan. J. Obstet. Gynecol. 53, 21–25.spa
dc.relation.referencesManjunatha, B.M., Gupta, P.S.P., Ravindra, J.P., Devaraj, M., Nandi, S., 2008. In vitro embryo development and blastocyst hatching rates following vitrification of river buffalo embryos produced from oocytes recovered from slaughterhouse ovaries or live animals by ovum pick-up. Anim. Reprod. Sci. 104, 419–426. https://doi.org/https://doi.org/10.1016/j.anireprosci.2007.06.030spa
dc.relation.referencesMarco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., Vicente, J.S., 2016. Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method 11, e0148661. https://doi.org/https://doi.org/10.1371/journal.pone.0148661spa
dc.relation.referencesMariaca, C.J., Zapata, M., Uribe, P., 2016. Oxidación y antioxidantes: hechos y controversias. Rev. la Asoc. Colomb. Dermatología y Cirugía Dermatológica 24, 162–173. https://doi.org/10.29176/2590843x.292spa
dc.relation.referencesMarques, C.C., Santos-Silva, C., Rodrigues, C., Matos, J.E., Moura, T., Baptista, M.C., Horta, A.E.M., Bessa, R.J.B., Alves, S.P., Soveral, G., Pereira, R.M.L.N., 2018. Bovine oocyte membrane permeability and cryosurvival: Effects of different cryoprotectants and calcium in the vitrification media. Cryobiology 81, 4–11. https://doi.org/10.1016/j.cryobiol.2018.03.003spa
dc.relation.referencesMarsico, T., de Camargo, J., Valente, R., & Sudano, M., 2019. Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction. 16. 423-439. 10.21451/1984-3143-AR2019-0072.spa
dc.relation.referencesMartín-Romero, F.J., Miguel-Lasobras, E.M., Domínguez-Arroyo, J.A., González-Carrera, E., Álvarez, I.S., 2008. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online 17, 652–661. https://doi.org/https://doi.org/10.1016/S1472-6483(10)60312-4spa
dc.relation.referencesMartínez, R., Ávila, O., Pérez, J., Gallego, J., Onofre, H., 2005a. Estructura y función del banco de germoplasma in vitro en Colombia. Arch. Zootec. 54, 545–550.spa
dc.relation.referencesMartínez, R., Toro, T., Montoya, F., Burbano, M., Tobón, J., Ariza, F. 2005b. Caracterización del locus BoLA-DRB3 en ganado criollo colombiano y asociación con resistencia a enfermedades. Arch Zootec. 54(206-207): 349-356.spa
dc.relation.referencesMartínez, G., 2004a. Poblaciones actuales y estrategicas para la conservación de los bovinos criollos colombianos. II Foro Nac. las razas Bov. criollas y Colomb. 2, 112–127.spa
dc.relation.referencesMartínez, G., 2004b. Razas bovinas criollas y colombianas, primera ed. ed. Corpoica C.I. La libertad, Villavicencio.spa
dc.relation.referencesMartínez, G.C., 1999. Censo y caracterización de los sistemas de producción del ganado criollo y colombia.spa
dc.relation.referencesMatos, L., Stevenson, D., Gomes, F., Silva-Carvalho, J.L., Almeida, H., 2009. Superoxide dismutase expression in human cumulus oophorus cells. Mol. Hum. Reprod. 15, 411–419. https://doi.org/10.1093/molehr/gap034spa
dc.relation.referencesMcCormack, D., McFadden, D., 2013. A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longe 2013, 575482.spa
dc.relation.referencesMehaisen, G.M.K., Saeed, A.M., Gad, A., Abass, A.O., Arafa, M., El-Sayed, A., 2015. Antioxidant Capacity of melatonin on preimplantation development of fresh and vitrified rabbit embryos: Morphological and molecular aspects. Fraidenraich D, Ed. PLoS One 10, e0139814.spa
dc.relation.referencesMendes, T.B., Paccola, C.C., De Oliveira Neves, F.M., Simas, J.N., Da Costa Vaz, A., Cabral, R.E.L., Vendramini, V., Miraglia, S.M., 2016. Resveratrol improves reproductive parameters of adult rats varicocelized in peripuberty. Reproduction 152, 23–35. https://doi.org/10.1530/REP-16-0025spa
dc.relation.referencesMenéndez-Blanco, I., Soto-Heras, S., Catalá, M.G., Piras, A.-R., Izquierdo, D., Paramio, M.-T., 2020. Effect of vitrification of in vitro matured prepubertal goat oocytes on embryo development after parthenogenic activation and intracytoplasmic sperm injection. Cryobiology 93, 56–61. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.02.011spa
dc.relation.referencesMerton, J.S., Knijn, H.M., Flapper, H., Dotinga, F., Roelen, B.A.J., Vos, P.L.A.M., Mullaart, E., 2013. Cysteamine supplementation during in vitro maturation of slaughterhouse- and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics. Theriogenology 80, 365–371. https://doi.org/https://doi.org/10.1016/j.theriogenology.2013.04.025spa
dc.relation.referencesMichan, S., Sinclair, D., 2007. Sirtuins in mammals: insights into their biological function. Biochem J 404, 1–13.spa
dc.relation.referencesMiddleton Jr, E., Kandaswami, C., Theoharides, T.C., 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation. Hear. Dis. cancer, Pharmacol. Rev. 52, 673–839.spa
dc.relation.referencesMohana Kumar B, Song HJ, Cho SK, Balasubramanian S, Choe SY, Rho GJ., 2007. Effect of histone acetylation modification with sodium butyrate, a histone deacetylase inhibitor, on cell cycle, apoptosis, ploidy and gene expression in porcine fetal fibroblasts. J Reprod Dev.; 53: 903-913.spa
dc.relation.referencesMomozawa, K., Matsuzawa, A., Tokunaga, Y., Ohi, N., Harada, M., 2019. A new vitrification device that absorbs excess vitrification solution adaptable to a closed system for the cryopreservation of mouse embryos. Cryobiology 88, 9–14. https://doi.org/10.1016/j.cryobiol.2019.04.008spa
dc.relation.referencesMorado, S., Cetica, P., Beconi, M., Thompson, J.G., Dalvit, G., 2013. Reactive oxygen species production and redox state in parthenogenetic and spem-mediated bovine oocyte activation. Reproduction 145, 471–478.spa
dc.relation.referencesMorado, S.A., Cetica, P.D., Beconi, M.T., Dalvit, G.C., 2009. Reactive oxygen species in bovine oocyte maturation in vitro. Reprod. Fert. Dev. 21, 608–614.spa
dc.relation.referencesMoreno, F., Derr, J.N., Bermúdez G., N., Ossa L., J., Estrada L, L., Scott, D., Bedoya B., G., Carvajal, L.G., Zuluaga, F.N., Berdugo, J., Barrera, J., Ruíz Linares, A., 2001. Diversidad genética y relaciones filogenéticas del ganado criollo colombiano. Corpoica Cienc. y Tecnol. Agropecu. 3, 17. https://doi.org/10.21930/rcta.vol3_num2_art:183spa
dc.relation.referencesMori, C., Yabuuchi, A., Ezoe, K., Murata, N., Takayama, Y., Okimura, T., Uchiyama, K., Takakura, K., Abe, H., Wada, K., Okuno, T., Kobayashi, T., Kato, K., 2015. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies. Reprod. Biomed. Online 30, 613–621. https://doi.org/10.1016/j.rbmo.2015.02.004spa
dc.relation.referencesMoulavi, F., Soto-Rodriguez, S., Kuwayama, M., Asadi-Moghaddam, B., Hosseini, S.M., 2019. Survival, re-expansion, and pregnancy outcome following vitrification of dromedary camel cloned blastocysts: A possible role of vitrification in improving clone pregnancy rate by weeding out poor competent embryos. Cryobiology. 2019 Oct;90:75-82. doi: 10.1016/j.cryobiol.2019.08.002spa
dc.relation.referencesMoussa, M., Shu, J., Zhang, X.H., Zeng, F., 2015. Maternal control of oocyte quality in cattle “a review.” Anim. Reprod. Sci. 155, 11–27. https://doi.org/10.1016/j.anireprosci.2015.01.011spa
dc.relation.referencesMukherjee, A., Malik, H., Saha, A.P., Dubey, A., Singhal, D.K., Boateng, S., Saugandhika, S., Kumar, S., De, S., Guha, S.K., Malakar, D., 2014. Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. J. Assist. Reprod. Genet. 31, 229–239. https://doi.org/10.1007/s10815-013-0116-9spa
dc.relation.referencesMullaart, E., Verbrugge, A., Aerts, B., Merton, J.S., 1999. Optimization of OPU procedure, in: Proceedings of the 15th Scientific Meeting of European Embryo Transfer Association. pp. 10–11.spa
dc.relation.referencesMumbengegwi, D.R., Li, Q., Li, C., Bear, C.E., Engelhardt, J.F., 2008. Evidence for a superoxide permeability pathway in endosomal membranes. Mol. Cell Biol. 28, 3700–3712.spa
dc.relation.referencesNakamura, B., Fielder, T., Hoang, Y., Lim, J., Al, E., 2011. Lack of maternal glutamate cysteine ligase modifer subunit (Gclm) decreases oocyte glutathione concentrationes and disrupts preimplantation development in mice. Endocrinology 152, 2806–2815.spa
dc.relation.referencesNohalez, A., Martinez, C.A., Parrilla, I., Roca, J., Gil, M.A., Rodriguez-, H., Martinez, E.A., Cuello, C., 2018. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology 113, 113–119.spa
dc.relation.referencesNúñez, R., Ramírez, R., Saavedra, L.A., García, J.G., 2016. La adaptabilidad de los recursos zoogenéticos Criollos, base para enfrentar los desafíos de la producción animal. Arch. Zootec. 65, 461–468.spa
dc.relation.referencesOnofre, G., Parra, J., Martínez, R., Cassalett, E., Velásquez, H., 2015. Productive Potential and Milk Quality of Native Cattle Breeds - Blanco Orejinegro, Hartón Del Valle and Sanmartinero in the Piedmont Plains of Colombia. Actas Iberoam. Conserv. Anim. 5, 15–17.spa
dc.relation.referencesOssa, G.S., 2004. Influencia de factores genéticos y ambientales en caracteres productivos de la raza criolla Romosinuana. Universidad Agraria de la Habana-Cuba.spa
dc.relation.referencesOurique, G.M., Finamor, I.A., Saccol, E.M.H., Riffel, A.P.K., Pês, T.S., Al., E., 2013. Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. reprod toxicol 37, 31–39.spa
dc.relation.referencesPanei, C., Suzuki, K., Echeverria, M., Serena, M., Metz, G., Gonzales, E., 2009. Association of BoLA-DRB3.2 alleles with resistance and susceptibility to persistent lymphocytosis in BLV infected Cattle Argentina. Int J Dairy Sci. 4(3): 123-128.spa
dc.relation.referencesPangeni, R., Sahni, J.K., Ali, J., Sharma, S., Baboota, S., 2014. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11.spa
dc.relation.referencesPapuc, C., Goran, G.V., Predescu, C.N., Nicorescu, V., Stefan, G., 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16, 1243–1268.spa
dc.relation.referencesPark, S.P., Kim, E.Y., Kim, D.I., Park, N.H., Won, Y.S., Yoon, S.H., Chung, K.S., Lim, J.H., 1999. Simple, efficient and successful vitrification of bovine blastocysts using electron microscope grids. Hum. Reprod. 14, 2838–2843. https://doi.org/10.1093/humrep/14.11.2838spa
dc.relation.referencesParris, J., 2014. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81, 67–73.spa
dc.relation.referencesPastore, A.G., Federici, E., Bertini, F., Piemonte, 2003. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta 333, 19–39.spa
dc.relation.referencesPereira, B.A., Zangeronimo, M.G., Castillo-Martín, M., Gadani, B., Chaves, B.R., Rodríguez-Gil, J.E., Bonet, S., Yeste, M., 2019. Supplementing Maturation Medium With Insulin Growth Factor I and Vitrification-Warming Solutions With Reduced Glutathione Enhances Survival Rates and Development Ability of in vitro Matured Vitrified-Warmed Pig Oocytes. Front. Physiol. 9, 1–13. https://doi.org/10.3389/fphys.2018.01894spa
dc.relation.referencesPervaiz, S., Holme, A.L., 2009. Resveratrol: Its biologic targets and functional activity. Antioxidants & Redox Signaling 11, 2851–2897.spa
dc.relation.referencesPhillips, P., Jahnke, M., 2016. Embryo Transfer (Techniques, donors, and recipients). Vet. Clin. North Am. Food Anim. Pract. 32, 365–385.spa
dc.relation.referencesPinzón, M.E., 1984. Historia de la ganadería bovina en Colombia. Supl. Ganad. Banco Ganad. 4, 208.spa
dc.relation.referencesPinzón, M.E., 1991. Historia de Colombia. Supl. Ganad. 8, 1.spa
dc.relation.referencesPiras, A.R., Ariu, F., Falchi, L., Zedda, M.T., Pau, S., Schianchi, E., Paramio, M.T., Bogliolo, L., 2020. Resveratrol treatment during maturation enhances developmental competence of oocytes after prolonged ovary storage at 4 °C in the domestic cat model. Theriogenology 144, 152–157. https://doi.org/10.1016/j.theriogenology.2020.01.009spa
dc.relation.referencesPiras, A.R., 2019. Resveratrol Supplementation During In Vitro Maturation: Effect On The Quality Of Oocytes In Species Of Veterinary Interest. UNIVERSITAT AUTÒNOMA DE BARCELONA FACULTAT DE VETERINÀRIA.spa
dc.relation.referencesPiras, A.R., Menéndez, I., Soto-Heras, S., Catalá, M.G., Izquierdo, D., Bogliolo, L., Paramio, M.T., 2019. Resveratrol supplementation during in vitro maturation improves embryo development of prepubertal goat oocytes selected by brilliant cresyl blue staining. J. Reprod. Dev. 65, 113–120. https://doi.org/10.1262/jrd.2018-077spa
dc.relation.referencesPirola, L., Fröjdö, S., 2008. Resveratrol: one molecule, many targets. IUBMB Life 60, 323–332.spa
dc.relation.referencesPontes, J.H.F., Melo Sterza, F.A., Basso, A.C., Ferreira, C.R., Sanches, B. V., Rubin, K.C.P., Seneda, M.M., 2011. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors. Theriogenology 75, 1640–1646. https://doi.org/10.1016/j.theriogenology.2010.12.026spa
dc.relation.referencesPrasad, S., Tiwari, M., Pandey, A.N., Shrivastav, T.G., Chaube, S.K., 2016. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 23, 19–23. https://doi.org/10.1186/s12929-016-0253-4spa
dc.relation.referencesPresicce, G.A., Neglia, G., Salzano, A., Padalino, B., Longobardi, V., Vecchio, D., De Carlo, E., Gasparrini, B., 2020. Efficacy of repeated ovum pick-up in Podolic cattle for preservation strategies: a pilot study. Ital. J. Anim. Sci. 19, 31–40. https://doi.org/10.1080/1828051X.2019.1684213spa
dc.relation.referencesPrice, N.L., Gomes, A.P., Ling, A.J.Y., Duarte, F.V., Martin-Montalvo, A., North, B.J., Al., E., 2012. SIRT1 is required for AMPK activation and the beneficial effects of Resveratrol on mitochondrial function. Cell Metab 15, 675–690.spa
dc.relation.referencesPunyawai, K., Anakkul, N., Srirattana, K., Aikawa, Y., Sangsritavong, S., Nagai, T., Imai, K., Parnpai, R., 2015. Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts. J. Reprod. Dev. 61, 431–437. https://doi.org/10.1262/jrd.2014-163spa
dc.relation.referencesQuintero, D., Ospina, S., 2017. Avances en la caracterización de la producción láctea y el crecimiento antes del destete en el banco de germoplasma de la raza criolla Hartón del Valle en el C.I Palmira (CORPOICA). Rev. Colomb. Zootec. RCZ 3, 38–44.spa
dc.relation.referencesQuispe, C., G., E.A., A., J.S., P., I.U., S., E.M., 2018. Capacidad de desarrollo embrionario de ovocitos de bovino recuperados vía ultrasonografía y de ovarios de matadero. Rev. Investig. Vet. del Perú 29. https://doi.org/10.15381/rivep.v29i4.14418spa
dc.relation.referencesRakhit, M., Gokul, S.R., Agarwal, A., Plessis, S.S., 2013. Antioxidant Strategies to Overcome OS in IVF-Embryo Transfer 237–262. https://doi.org/10.1007/978-1-62703-041-0spa
dc.relation.referencesRall, W.F., Fahy, G.M., 1985. Ice-free cryopreservation of mouse embryos at K196 8C by vitrification. Nature 313, 573–575.spa
dc.relation.referencesRastislav, M., Mangesh, B., 2012. BoLA-DRB3 exon 2 mutations associated with paratuberculosis in cattle. Vet J. 192(3): 517-519.spa
dc.relation.referencesRestrepo, G., Gómez, J., Vasquez, N., 2011. Evaluación de la superestimulación ovárica y la calidad morfológica de occitos bovinos obtenidos por aspiración folicular. Rev. Politécnica 7, 16–21. https://doi.org/10.22507/jals.v6n1a2spa
dc.relation.referencesRichter C., 1987. Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids. 44:175e89. https://doi.org/10.1016/0009-3084(87) 90049-1.spa
dc.relation.referencesRimando, A., Kalt, W., Magee, J., Dewey, J., Ballington, J., 2004. Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem 52, 4713–4719.spa
dc.relation.referencesRios, G.L., Mucci, N.C., Kaiser, G.G., Alberio, R.H., 2010. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos. Anim. Reprod. Sci. 118, 19–24. https://doi.org/10.1016/j.anireprosci.2009.06.015spa
dc.relation.referencesRodrigues-Cunha, M., Mesquita, L., Bressan, F., Collado, M., Balierio, J., Schwarz, K., Al, E., 2016. Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress and subsequent embryo development. Theriogenology 86, 1685–1694.spa
dc.relation.referencesRodrigues, J.P., Paraguassú-Braga, F.H., Carvalho, L., Abdelhay, E., Bouzas, L.F., Porto, L.C., 2008. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56, 144–151. https://doi.org/10.1016/j.cryobiol.2008.01.003spa
dc.relation.referencesRodriguez-Martinez, H., 2012. Assisted Reproductive Techniques for Cattle Breeding in Developing Coun- tries: A Critical Appraisal of Their Value and Limitations. Reprod. Domest. Anim. 47, 21–26.spa
dc.relation.referencesRodríguez, P., Jiménez, C., 2011. Criopreservación de embriones bovinos producidos 58, 107–119.spa
dc.relation.referencesRosero, J.A., Álvarez, L.A., Muñoz, J.E., Durán, C. V., Rodas, A.G., 2012. Allelic frequency of the Kap- pa–Casein gene in Colombian breeds. Rev Colomb Cienc Pecu 25, 173–182.spa
dc.relation.referencesRosero, J.A., Álvarez, L.A., Muñoz, J.E. (2011). Polimorfismo genético de beta-lactoglobulina y alphalactoalbúmina en el ganado criollo colombiano, mediante PCR-SSCP. Acta Agronómica, 60 (4), 339-346.spa
dc.relation.referencesRoth, Z., 2017. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu. Rev. Anim. Biosci. 5, 151–170. https://doi.org/10.1146/annurev-animal-022516-022849spa
dc.relation.referencesRubiolo, J.A., Mithieux, G., Vega, F.V., Rubiolo, J.A., Mithieux, G., Vega, F.V., 2008. Resveratrol protects primary rat hepatocytes against oxidative stress damage:. Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes,. Eur. J. Pharmacol 591, 66–72. https://doi.org/https://doi.org/10.1016/j.ejphar.spa
dc.relation.referencesRuiz, L., 2010. Determinación de la variabilidad genética en subpoblaciones comerciales de ganado criollo colombiano de raza romosinuano mediante marcadores moleculares tipo microsatélite. Pontificia Universidad Javeriana.spa
dc.relation.referencesSaavedra, G.D., 2018. Conservación seminal en toros Cebú. Efecto de la retirada del plasma seminal y su posterior incorporación sobre la calidad espermática en los protocolos de criopreservación. UNIVERSIDAD DE ZARAGOZA.spa
dc.relation.referencesSalazar, J.J., Cardozo, A., 1977. Conservación, mejoramiento y utilización de los recursos genéticos del bovino criollo. TOA 129.spa
dc.relation.referencesSales, J.N.S., Iguma, L.T., Batista, R.I.T.P., Quintão, C.C.R., Gama, M.A.S., Freitas, C., Pereira, M.M., Camargo, L.S.A., Viana, J.H.M., Souza, J.C., Baruselli, P.S., 2015. Effects of a high-energy diet on oocyte quality and in vitro embryo production in Bos indicus and Bos taurus cows. J. Dairy Sci. 98, 3086–3099. https://doi.org/10.3168/jds.2014-8858spa
dc.relation.referencesSalzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., Zicarelli, L., Gasparrini, B., 2014. Effect of Resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Anim. Reprod. Sci. 151, 91–96. https://doi.org/10.1016/j.anireprosci.2014.09.018spa
dc.relation.referencesSanchéz, C., 2005. Estudio Citogenético en Bovinos Criollos Colombianos. [tesis Maest. Universidad Nacional de Colombia.spa
dc.relation.referencesSantos, M.V. de O., Borges, A.A., De, L.B., Neta, Q., Bertini, L.M., Pereira, A.F., 2018. Use of natural antioxidants in in vitro mammalian embryo production. Ciências Agrárias, Londrina 39, 431–444. https://doi.org/10.5433/1679-0359.2018v39n1p431spa
dc.relation.referencesSaraiva, H.F.R.A., Batista, R.I.T.P., Alfradique, V.A.P., Pinto, P.H.N., Ribeiro, L.S., Oliveira, C.S., Souza-fabjan, J.M.G., Camargo, L.S.A., Fonseca, J.F., Brand, F.Z., 2018. L-carnitine supplementation during vitrification or warming of in vivo - produced ovine embryos does not affect embryonic survival rates , but alters CrAT and PRDX1 expression. Theriogenology 105, 150–157. https://doi.org/10.1016/j.theriogenology.2017.09.022spa
dc.relation.referencesSaraswat, S., Kindal, S.K., Kharche, S.D., 2016. Antioxidant and spermatozoa: a complex story. Indian J. Anim. Sci. 86, 495–501.spa
dc.relation.referencesSayin O, Arslan N, Guner G., 2012. The protective effects of Resveratrol on human coronary artery endothelial cell damage induced by hydrogen peroxide in vitro. Acta Clin Croat. Jun;51(2):227-35. PMID: 23115947.spa
dc.relation.referencesSeidel, G.E., 2010. Methods and comparative aspects of embryo cryopreservation in domestic animals. Equine Vet. J. 21, 77–79.spa
dc.relation.referencesSeki, S., Mazur, P., 2012. Ultra-rapid warming yields high survival of mouse oocytes cooled to -196°c in dilutions of a standard vitrification solution. PLoS One. 7(4): e36058. doi: 10.1371/journal.pone.0036058.spa
dc.relation.referencesSeki, S., Mazur, P., 2009. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology. 59 (1), 75-82.spa
dc.relation.referencesSelivanov, V.A., Votyakova, T. V., Pivtoraiko, V.N., Zeak, J., Sukhomlin, T., Trucco, M., Al., E., 2011. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. Beard DA, Ed. PLoS Comput Biol 31, e1001115.spa
dc.relation.referencesShang, L., Zhou, H., Xia, Y., Wang, H., Gao, G., Chen, B., Al., E., 2009. Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner. J Cell Mol Med 13, 4176–4184.spa
dc.relation.referencesShaw, J.M., Oranratnachai, A., Trounson, A.O., 2000. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53, 59–72.spa
dc.relation.referencesShi, L.Y., Jin, H., Kim, J., Mohana, K.B., Balasubramanian, S., Choe, S., Rho, G., 2007. Ultra-structural changes and developmental potential of porcine oocytes following vitrification. Anim Reprod Sci 100, 128–140.spa
dc.relation.referencesShkolnik, K., Tadmor, A., Ben-Dor, S., Nevo, N., Galiani, D., Dekel, N., 2011. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A 108, 1462–1467.spa
dc.relation.referencesSikka, S.C., 2004. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl 25, 5–18.spa
dc.relation.referencesSoliman, G.A., 2013. The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 5, 2231–2257. https://doi.org/https://doi.org/10.3390/nu5062231spa
dc.relation.referencesSolís, A., Guerra, R., Sandoya, G., De Armas, R., 2012. Efecto de sincronización de la onda folicular y de la frecuencia de aspiración de folículos en novillas de la raza Brahman. Rev. Electron. Vet. 13, 1–16.spa
dc.relation.referencesSomfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N.W., Farhudin, M., Dinnye ́s, A., Nagai, T., Kikuchi, K., 2007. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.spa
dc.relation.referencesSomoskoi, B., Martino, N.A., Cardone, R.A., Lacalandra, G.M., Aquila, M.E.D., Cseh, S., 2015. Different chromatin and energy / redox responses of mouse morulae and blastocysts to slow freezing and vitrification. Reprod. Biol. Endocrinol. 13, 1–16. https://doi.org/10.1186/s12958-015-0018-zspa
dc.relation.referencesSoobrattee, M.A., Neergheen, V.S., Luximon-ramma, A., 2005. Phenolics as potential antioxidant therapeutic agents : Mechanism and actions. Mutat. Resveratrol. 579, 200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023spa
dc.relation.referencesSouza, J., Oliveira, C., Lienou, L., Cavalcante, T., Alexandrino, E., Santos, R., Dias, F., 2018. Vitrification of bovine embryos followed by in vitro hatching and expansion. Zygote 26, 99–103.spa
dc.relation.referencesSouza, J.F., Lienou, L.L., Rodrigues, A.P.R., Alexandrino, E., Cavalcante, T. V., Santos, R.R., Figueiredo, J.R., Dias, F.E.F., 2018. Cryosurvival after exposure of IVF-derived Nellore embryos to different cryoprotectants and exposure times during vitrification. Cryobiology 84, 95–97. https://doi.org/10.1016/j.cryobiol.2018.08.009spa
dc.relation.referencesSovernigo, T.C., Adona, P.R., Lopes, F.G., Leal, C.L. V, 2017. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod. Domest. Anim. 52, 561–569. https://doi.org/10.1111/rda.12946spa
dc.relation.referencesStroud, B., 2011. The year 2010 worldwide statistics of embryo transfer in domestic farm animals. Embryo Transf. Newsl. 29, 14–24.spa
dc.relation.referencesSuccu, S., Gadau, S.D., Serra, E., Zinellu, A., Carru, C., Porcu, C., Al., E., 2018. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology 2018;. Theriogenolgy 110, 18–26.spa
dc.relation.referencesSudano, M.J., Caixeta, E.S., Paschoal, D.M., Martins, A., Machado, R., Buratini, J., Landim-Alvarenga, F.D.C., 2014. Cryotolerance and global gene-expression patterns of Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Reprod. Fertil. Dev. 26, 1129–1141.spa
dc.relation.referencesSzende, B., Tyihák, E., Király-Véghely, Z., 2000. Dose-dependent effect of Resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures. Exp. Mol. Med. 32 (2), 88–92.spa
dc.relation.referencesTajimi, H., Yamazaki, T., Oike, S., Yoshida, T., Okada, K., Kuwayama, M., Ushijima, H., 2018. Vitrification for bovine embryos with low‐quality grade. Anim Sci J. 89, 1194– 1200. https://doi.org/10.1111/asj.13024spa
dc.relation.referencesTakahashi, M., 2012. Oxidative Stress and Redox Regulation on In Vitro Development of. J. Reprod. Dev. 58, 1–9.spa
dc.relation.referencesTakahashi, N., Harada, M., Oi, N., Izumi, G., Momozawa, K., Matsuzawa, A., Tokunaga, Y., Hirata, T., Fujii, T., Osuga, Y., 2020. Preclinical validation of the new vitrification device possessing a feature of absorbing excess vitrification solution for the cryopreservation of human embryos. J. Obstet. Gynaecol. Resveratrol. 46, 302–309. https://doi.org/10.1111/jog.14176spa
dc.relation.referencesTakaoka, M., 1940. Phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). II. Synthesis of Resveratrol and its derivatives. Proc. Imp. Acad. 16, 405–407.spa
dc.relation.referencesTakaya, Y., Yan, K.-X., Terashima, K., He, Y.-H., Niwa, M., 2002. Biogenic reactions on stilbene tetramers from Vitaceaeous plants. Tetrahedron 58, 9265–9271.spa
dc.relation.referencesTakeo, S., Kimura, K., Shirasuna, K., Kuwayama, T., Iwata, H., 2017. Age-associated deterioration in follicular fluid induces a decline in bovine oocyte quality. Reprod. Fertil. Dev. 29, 759–767.spa
dc.relation.referencesTakeo, S., Sato, D., Kimura, K., Monji, Y., Kuwayama, T., 2014. Resveratrol Improves the Mitochondrial Function and Fertilization Outcome of Bovine Oocytes 60.spa
dc.relation.referencesTatone, C., Di Emidio, G., Vitt, i M., Di Carlo, M., Santini, S.J., D’Alessandro, A.M., Falone, S., Amicarelli, F., 2015. Sirtuin functions in female fertility: possible role in oxidative stress and aging. Oxid Med Cell Longev 2015, 659687.spa
dc.relation.referencesTatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG., 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol. ;26:563e7. https://doi.org/10.3109/09513591003686395.spa
dc.relation.referencesThomas, C., Mackey, M.M., Diaz, A.A., Cox, D.P., 2009. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 14, 102–108.spa
dc.relation.referencesThompson, J.G., McNaughton, C., Gasparrini, B., McGowan, L.T., Tervit, H.R., 2000. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil 118, 47–55.spa
dc.relation.referencesTiwari, M., Prasad, S., Tripathi, A., Pandey, A.N., Singh, A.K., Shrivastav, T.G., Chaube, S.K., 2016. Involvement of Reactive Oxygen Species in Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. React. Oxyg. Species 1, 110–116.spa
dc.relation.referencesTobar, C., Varela, G., 1989. Estudio de las curvas de crecimeinto y lactancia, fertilidad y rentabilidad en la raza Hartón del Valle. Universidad Nacional de Colombia, Sede Palmira.spa
dc.relation.referencesTorres-Osorio, V., Urrego, R., Echeverri-Zuluaga, J.J., López-Herrera, A., 2019. Oxidative stress and antioxidant use during in vitro mammal embryo production. Review. Rev. mex. cienc. Pecu. 10, 433–459.spa
dc.relation.referencesTorres, V., Hamdi, V., Millán de la Blanca, M., Urrego, J., Echeverri, J., Sánchez-calabuig, A., López-herrera, D., Rizos, A., Gutiérrez-adán, M.J., 2018. Resveratrol – cyclodextrin complex affects the expression of genes associated with lipid metabolism in bovine in vitro produced embryos. Reprod Dom Anim. 1–9. https://doi.org/10.1111/rda.13175spa
dc.relation.referencesTorres, V., Muñoz, L., Urrego, R., Echeverry, J., Lopez, A., 2016. 181 Resveratrol during in vitro maturation improves the quality of bovine oocyte and enhances embryonic. Reprod. Fertil. Dev. 29, 199–209.spa
dc.relation.referencesTrapphoff T, Heiligentag M, Simon J, Staubach N, Seidel T, Otte K, Fröhlich T, Arnold GJ, Eichenlaub-Ritter U., 2016. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol Hum Reprod., Dec;22(12):867-881. doi: 10.1093/molehr/gaw059.spa
dc.relation.referencesTripathi, A., Premkumar, K.V., Pandey, A.N., Khatun, S., Mishra, S.K., Shrivastav, T.G., Al., E., 2011. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs. eur j pharmacol 667, 419–424.spa
dc.relation.referencesTripathi, A., Khatun, S., Pandey, A.N., Mishra, S.K., Chaube, R., Shrivastav, T.G., Chaube, S.K., 2009. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic. Resveratrol. 43, 287–294. https://doi.org/10.1080/10715760802695985spa
dc.relation.referencesTrujillo, B.E., Valderrama, L.Y., 2006. Genotipificación de la región 3 ´ UTR del gen Nramp1 , en ganado Holstein y en criollo Harton del Valle. Rev. Colomb. Ciencias Pecu. 19, 401–406.spa
dc.relation.referencesTruong, V.L., Jun, M., Jeong, W.S., 2018. Role of Resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44, 36–49.spa
dc.relation.referencesValderrama, L.Y., 2006. Genotipificación de la región 3 ´ UTR del gen Nramp1 , en ganado Holstein y en criollo Harton del Valle. Rev. Colomb. Ciencias Pecu. 19, 401–406.spa
dc.relation.referencesTsantarliotou, M.P., Sapanidou, V.G., 2018. The importance of antioxidants in sperm quality and in vitro embryo production. J. Vet. Androl. 3, 1–12.spa
dc.relation.referencesVajta, G., Holm, P., Kuwayama, M., Booth, P.J., Jacobsen, H., Greve, T., 1998. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51, 53–58.spa
dc.relation.referencesValderrama, R.M., 2003. Ganado Hartón del Valle. Razas Criollas y Colombianas Puras. Mem. . Conv. 135. 01 109–118.spa
dc.relation.referencesVan Houten, B., Woshner, V., Santos, J.H., 2006. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair 5, 145–152.spa
dc.relation.referencesVanderzwalmen, P., Zech, N., Ectors, F., Panagiotidis, Y., Papatheodorou, A., Yannis, P., Al., E., 2015. Vitrification of oocytes and embryos: Finally a recognized technique, but still a source of concern and debate. Vitr. Assist. Reprod. Tucker y L, 23–34.spa
dc.relation.referencesVermerris, W., Nicholson, R., 2006. Families of phenolic compounds and means of classification, in: In: Vermerris W, Nicholson R, E. (Ed.), Phenolic Compound Biochemistry. The Netherlands: Springer, pp. 1–34. https://doi.org/DOI: 10.1007/978-1-4020-5164-7_4spa
dc.relation.referencesVersari, A., Parpinello, G.P., Tornielli, G.B., Ferrarini, R., Giulivo, C., 2001. Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J. Agric. Food Chem. 49, 5531–5536.spa
dc.relation.referencesViana, J., 2019. 2018 Statistics of embryo production and transfer in domestic farm animals. Embryo Technol. Newsletter-IETS 36, 1–26.spa
dc.relation.referencesVoelkel, S.A., Hu, Y.X., 1992. Use of ethylene glycol as a cryoprotectant for bovine embryos allowing direct transfer of frozen-thawed embryos to recipient females. Theriogenology 37, 687–697.spa
dc.relation.referencesvon Mengden, L., Klamt, F., Smitz, J., 2020. Redox Biology of Human Cumulus Cells: Basic Concepts, Impact on Oocyte Quality, and Potential Clinical Use. Antioxid. Redox Signal. 32, 522–535. https://doi.org/10.1089/ars.2019.7984spa
dc.relation.referencesWang, Y., Zhang, M., Chen, Z., Du, Y., 2018. Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. Vitr. Cell. Dev. Biol. - Anim. 430–438. https://doi.org/https://doi.org/10.1007/s11626-018-0262-6spa
dc.relation.referencesWang, F., Tian, X., Zhang, L., He, C., Ji, P., Li, Y., Tan, D., Liu, G., 2014. Beneficial effect of Resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertil. Steril. 101, 577–586. https://doi.org/http://dx.doi.org/10.1016/j.fertnstert.2013.10.041spa
dc.relation.referencesWoods, E.J., Benson, J.D., Agca, Y., Critser, J.K., 2004. Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–156.spa
dc.relation.referencesWowk, B., 2007. How Cryoprotectans Work. Cryonics 28, 3–7.spa
dc.relation.referencesWright, J.S., Johnson, E.R., Di Labio, G.A., 2001. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123, 1173–1183.spa
dc.relation.referencesXia, N., Daiber, A., Förstermann, U., Li, H., 2017. Antioxidant effects of Resveratrol in the cardiovascular system. Br. J. Pharmacol. 174, 1633–1646. https://doi.org/https://doi.org/10.1111/bph.13492spa
dc.relation.referencesXiang, Y., Xu, J., Li, L., Lin, X., Chen, X., Zhang, X., Fu, Y., Luo, L., 2012. Calorie restriction increases primordial follicle reserve in mature female chemotherapy-treated rats. Gene 493, 77–82. https://doi.org/https://doi.org/10.1016/j.gene.2011.11.019spa
dc.relation.referencesYang, Z., Argenziano, M., Salamone, P. et al., 2016. Preclinical pharmacokinetics comparison between Resveratrol 2-hydroxypropyl-β-cyclodextrin complex and Resveratrol suspension after oral administration. J Incl Phenom Macrocycl Chem 86, 263–271, . https://doi.org/10.1007/s10847-016-0657-5spa
dc.relation.referencesYang, H.W., Hwang, K.J., Kwon, H.C., Kim, H.S., Choi, K.W., Oh, K.S., 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 4, 998– 1002.spa
dc.relation.referencesYao, J., Geng, L., Huang, R., Peng, W., Chen, X., Jiang, X., Yu, M., Li, M., Huang, Y., Yang, X., 2017. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction 154, 197–205. https://doi.org/10.1530/REP-16-0480spa
dc.relation.referencesYashiro, I., Tagiri, M., Ogawa, H., Tashima, K., Takashima, S., Hara, H., Hirabayashi, M., Hochi, S., 2015. High revivability of vitrified-warmed bovine mature oocytes after recovery culture with a -tocopherol. Reproduction 149, 347–355. https://doi.org/10.1530/REP-14-0594spa
dc.relation.referencesYing C, Hsu WL, Hong WF, Cheng WT, Yang Y., 2000. Estrogen receptor is expressed in pig embryos during preimplantation development. Mol Reprod Dev. 55: 83-88.spa
dc.relation.referencesYoon, J., Juhn, K.M., Jung, E.H., Park, H.J., Yoon, S.H., Ko, Y., Hur, C.Y., Lim, J.H., 2020. Effects of Resveratrol, granulocyte-macrophage colony-stimulating factor or dichloroacetic acid in the culture media on embryonic development and pregnancy rates in aged mice. Aging (Albany. NY). 12, 2659–2669. https://doi.org/10.18632/aging.102768spa
dc.relation.referencesYoshikawa, T., Takahashi, S., Tanigawa, T., Naito, Y., Ichikawa, H., Takano, H., Al., E., 1991. Investigation into the reactivity between various amino acids and oxygen-derived free radicals by use of the ESR spin trapping method. J. Clin. Biochem. Nutr. 11, 161–169.spa
dc.relation.referencesYou, J., Kim, J., Lim, J., Lee, E., 2010. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 74, 777–785. https://doi.org/https://doi.org/10.1016/j.theriogenology.2010.04.002spa
dc.relation.referencesYoum, J., Ki, S., Chul, B., Hyun, S., 2017. Embryonic survival , development and cryoinjury of repeatedly vitrified mouse preimplantation embryos. Eur. J. Obstet. Gynecol. Reprod. Biol. 217, 66–70. https://doi.org/10.1016/j.ejogrb.2017.08.027spa
dc.relation.referencesYu, X.L., Deng, W., Liu, F.J., Li, Y.H., Li, X.X., Zhang, Y.L., Zan, L.S., 2010. Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos. Theriogenology 73, 474–479. https://doi.org/10.1016/j.theriogenology.2009.10.004spa
dc.relation.referencesZabihi, A., Shabankareh, H.K., Hajarian, H., Foroutanifar, S., 2019. Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domest. Anim. Endocrinol. 68, 25–31. https://doi.org/10.1016/j.domaniend.2018.12.010spa
dc.relation.referencesZhang, L., Xue, X., Yan, J., Yan, L.Y., Jin, X.H., Zhu, X.H., He, Z.Z., Liu, J., Li, R., Qiao, J., 2016. L-proline: A highly effective cryoprotectant for mouse oocyte vitrification. Sci. Rep. 6, 1–8. https://doi.org/10.1038/srep26326spa
dc.relation.referencesZhao, X., Hao, H., Du, W., Zhao, S., Wang, H., Wang, N., Wang, D., Liu, Y., Qin, T., Zhu, H., 2016. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Resveratrol 60, 132–141.spa
dc.relation.referencesZhao, X.-M., Min, J.-T., Du, W.-H., Hao, H.-S., Liu, Y., Qin, T., Wang, D., Zhu, H.-B., 2015. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 23, 525–536. https://doi.org/DOI: 10.1017/S0967199414000161spa
dc.relation.referencesZhao, X., Wei-hua, D.U., Dong, W., Hai-sheng, H.A.O., Tong, Q.I.N., Yan, L.I.U., Hua-bin, Z.H.U., 2012. Controlled Freezing and Open-Pulled Straw ( OPS ) Vitrification of In vitro Produced Bovine Blastocysts Following Analysis of ATP Content and Reactive Oxygen Species ( ROS ) Level. J. Integr. Agric. 11, 446–455. https://doi.org/10.1016/S2095-3119(12)60030-6spa
dc.relation.referencesZhong, R., Zhou, D., 2013. Oxidative stress and role of natural plant derived antioxidants in animal reproduction. J. Integr. Agric. Beijing 12, 1826–1838.spa
dc.relation.referencesZullo, G., Albero, G., Neglia, G., Canditiis, C., Bifulco, G., Campanile, G., Gasparrini, B., 2016. L-ergothioneine supplementation during culture improves quality of bovine in vitro-produced embryos. Theriogenology, New York 85, 688–697.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocRecursos genéticos
dc.subject.agrovocGenetic resources
dc.subject.agrovocCriopreservación
dc.subject.agrovocCryopreservation
dc.subject.agrovocDesarrollo embrionario
dc.subject.agrovocEmbryonic development
dc.subject.agrovocResveratrol
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalBiotecnologíaspa
dc.subject.proposalBovinos Criollosspa
dc.subject.proposalAtemperadospa
dc.subject.proposalEstrés Oxidativospa
dc.subject.proposalVitrificaciónspa
dc.titleEvaluación del efecto antioxidante del Resveratrol sobre la criotolerancia de embriones bovinos de la raza Hartón del Valle producidos in vitrospa
dc.title.translatedEvaluation of the antioxidant effect of Resveratrol on the cryotolerance of bovine embryos of the Hartón del Valle breed produced in vitroeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1114823584.2021.pdf
Tamaño:
3.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: