Decomposition of the Laplace-Beltrami operator on riemannian manifolds

dc.contributor.advisorBecerra Rojas, Edward Samuel
dc.contributor.authorEstévez Joya, Lizeth Alexandra
dc.date.accessioned2021-09-08T21:44:10Z
dc.date.available2021-09-08T21:44:10Z
dc.date.issued2021
dc.descriptionIlustracionesspa
dc.description.abstractThe goal of this work is to study the geometric conditions required on a pseudo-Riemannian manifold M to guarantee the existence of solutions of a second order partial differential equation posed on M. We closely follow the basic ideas in [3], where the considerations are carried out in the presence of a Riemannian metric and it is used the decomposition of the Laplace-Beltrami operator given by Helgason in [14]. In the indefinite case, the geometry of the manifold changes significantly and there are various pitfalls to watch out for. However, conditions for Helgason's results, in a certain sense, can be naturally set. Hence, we consider M as a globally hyperbolic Lorentzian manifold because a one dimensional submanifold \Sigma transversal to the orbits of a given group action is easily recognisable. This means M is endowed with a polar action and thus the equation can be reduced on \Sigma as in the Riemannian case. Then the solutions are obtained in such a way that these are constant along the orbits of the action. Finally, we propose an extension of our considerations to Lorentzian warped products.eng
dc.description.abstractEn este trabajo estudiamos las condiciones geométricas requeridas sobre una variedad pseudo-Riemanniana M para garantizar la existencia de soluciones de una ecuación diferencial parcial de segundo orden planteada sobre M. Seguimos de cerca las ideas principales expuestas en [3], donde las consideraciones se llevan a cabo en presencia de una métrica Riemanniana y se usa la descomposición del operador Laplace-Beltrami dada por Helgason en [14]. A pesar de que en el caso indefinido la geometría de la variedad cambia significativamente y hay varios obstáculos a los que prestar atención, las condiciones para los resultados de Helgason se pueden encontrar naturalmente. En vista de esto, consideramos M como una variedad Lorentziana globalmente hiperbólica, pues en este contexto se puede identificar fácilmente una subvariedad unidimensional \Sigma transversal a las órbitas de una acción de grupo dada. Esto significa que M está dotada de una acción polar y así la ecuación se puede reducir sobre \Sigma como en el caso Riemanniano. Entonces las soluciones se obtienen de tal manera que resultan ser constantes a largo de las órbitas de la acción. Por último, proponemos una extensión de nuestras consideraciones a productos warped Lorentzianos. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaDifferential Geometryspa
dc.format.extentix, 95 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80138
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesP. Ahmadi and S. Kashani. Cohomogeneity one Minkowski space R^n_1. Publicationes mathematicae, 78, 02 2011
dc.relation.referencesP. Ahmadi, S. Safari, and M. Hassani. A classification of cohomogeneity one actions on the Minkowski space R. Bulletin of the Iranian Mathematical Society, 10 2020
dc.relation.referencesN. M. Alba, J. Galvis, and E. Becerra. On polar actions invariant solutions of semilinear equations on manifolds. arXiv:1802.08625, 2018
dc.relation.referencesM.M. Alexandrino and R.G. Bettiol. Lie groups and geometric aspects of isometric actions. Springer International Publishing, 2015
dc.relation.referencesJ.K. Beem, P. Ehrlich, and K. Easley. Global Lorentzian geometry, second edition. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1996
dc.relation.referencesJ. Berndt, S. Console, and C.E. Olmos. Submanifolds and holonomy. Chapman & Hall/CRC Monographs and Research Notes in Mathematics. CRC Press, second edition, 2016
dc.relation.referencesC. Bär. Lorentzian Geometry. Lecture Notes, Summer Term 2004. Universit at Potsdam, 2020.
dc.relation.referencesC. Bär, N. Ginoux, and F. Pf a e. Wave equations on Lorentzian manifolds and quantization. European Mathematical Society., 2007.
dc.relation.referencesJosé Díaz-Ramos. Proper isometric actions. 12 2008.
dc.relation.referencesPaul Ehrlich, Yoon-Tae Jung, Jeong-Sik Kim, and Seon-Bu Kim. Jacobians and volume comparison for Lorentzian warped products. Contemporary Mathematics, "Recent Advances in Riemannian and Lorentzian Geometries", pages 39{52, 01 2003.
dc.relation.referencesF. Flaherty and M.P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkh auser Boston, 2013.
dc.relation.referencesS. Helgason. Differential operators on homogeneous spaces. Acta Math., 102(3-4):239-299 1959.
dc.relation.referencesS. Helgason. Di erential geometry and symmetric spaces. Pure and Applied Mathematics. Elsevier Science, 1962.
dc.relation.referencesS. Helgason. A formula for the radial part of the Laplace-Beltrami operator. Journal of Differential Geometry, 6(3):411-419, 1972.
dc.relation.referencesS. Helgason. Groups and geometric analysis: integral geometry, invariant di erential operators, and spherical functions. Pure and applied mathematics. Academic Press, 1984.
dc.relation.referencesS. Helgason. The Radon transform. Progress in Mathematics. Birkh auser Boston, 1999.
dc.relation.referencesJ. Jost. Riemannian geometry and geometric analysis. Universitext. Springer Berlin Heidelberg, 2011.
dc.relation.referencesJ. Lee. Introduction to smooth manifolds. Graduate Texts in Mathematics. Springer New York, 2012.
dc.relation.referencesJ.M. Lee. Riemannian manifolds: An introduction to curvature. Graduate Texts in Mathematics. Springer New York, 2006.
dc.relation.referencesJ.M. Lee. Introduction to Riemannian manifolds. Graduate Texts in Mathematics. Springer International Publishing, 2019.
dc.relation.referencesB. O'Neill. Semi-Riemannian geometry with applications to relativity. Pure and Applied Mathematics. Elsevier Science, 1983.
dc.relation.referencesT. Sakai. Riemannian geometry. Fields Institute Communications. American Mathematical Soc., 1996.
dc.relation.referencesR.A. Wijsman. Invariant measures on groups and their use in statistics. IMS Lecture Notes. Institute of Mathematical Statistics, 1990.
dc.relation.referencesJoseph A. Wolf. Spaces of constant curvature. sixth edition. AMS, 2011.
dc.relation.referencesHongtao Xue and Xigao Shao. Existence of positive entire solutions of a semilinear elliptic problem with a gradient term. Nonlinear Analysis: Theory, Methods & Applications, 71(7):3113-3118, 2009.
dc.relation.referencesQ.S. Zhang. Sobolev inequalities, heat kernels under Ricci flow, and the Poincare conjecture. CRC Press, 2010.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.lembVariables diferenciables
dc.subject.lembDifferential manifolds
dc.subject.lembVariedades de Riemann
dc.subject.lembRiemann manifolds
dc.subject.lembDifferential equations
dc.subject.lembEcuaciones diferenciales
dc.subject.proposalLaplace-Beltrami operatoreng
dc.subject.proposalManifolds with indefinite metricseng
dc.subject.proposalExistence problems for PDEseng
dc.subject.proposalPolar actionseng
dc.subject.proposalVariedades con métricas indefinidasspa
dc.subject.proposalProblemas de existencia para EDPsspa
dc.subject.proposalOperador de Laplace-Beltramispa
dc.subject.proposalAcciones polaresspa
dc.titleDecomposition of the Laplace-Beltrami operator on riemannian manifoldseng
dc.title.translatedDescomposición del operador Laplace-Beltrami sobre variedades riemannianasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049627183.2021.pdf
Tamaño:
707.26 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: