Decomposition of the Laplace-Beltrami operator on riemannian manifolds
dc.contributor.advisor | Becerra Rojas, Edward Samuel | |
dc.contributor.author | Estévez Joya, Lizeth Alexandra | |
dc.date.accessioned | 2021-09-08T21:44:10Z | |
dc.date.available | 2021-09-08T21:44:10Z | |
dc.date.issued | 2021 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | The goal of this work is to study the geometric conditions required on a pseudo-Riemannian manifold M to guarantee the existence of solutions of a second order partial differential equation posed on M. We closely follow the basic ideas in [3], where the considerations are carried out in the presence of a Riemannian metric and it is used the decomposition of the Laplace-Beltrami operator given by Helgason in [14]. In the indefinite case, the geometry of the manifold changes significantly and there are various pitfalls to watch out for. However, conditions for Helgason's results, in a certain sense, can be naturally set. Hence, we consider M as a globally hyperbolic Lorentzian manifold because a one dimensional submanifold \Sigma transversal to the orbits of a given group action is easily recognisable. This means M is endowed with a polar action and thus the equation can be reduced on \Sigma as in the Riemannian case. Then the solutions are obtained in such a way that these are constant along the orbits of the action. Finally, we propose an extension of our considerations to Lorentzian warped products. | eng |
dc.description.abstract | En este trabajo estudiamos las condiciones geométricas requeridas sobre una variedad pseudo-Riemanniana M para garantizar la existencia de soluciones de una ecuación diferencial parcial de segundo orden planteada sobre M. Seguimos de cerca las ideas principales expuestas en [3], donde las consideraciones se llevan a cabo en presencia de una métrica Riemanniana y se usa la descomposición del operador Laplace-Beltrami dada por Helgason en [14]. A pesar de que en el caso indefinido la geometría de la variedad cambia significativamente y hay varios obstáculos a los que prestar atención, las condiciones para los resultados de Helgason se pueden encontrar naturalmente. En vista de esto, consideramos M como una variedad Lorentziana globalmente hiperbólica, pues en este contexto se puede identificar fácilmente una subvariedad unidimensional \Sigma transversal a las órbitas de una acción de grupo dada. Esto significa que M está dotada de una acción polar y así la ecuación se puede reducir sobre \Sigma como en el caso Riemanniano. Entonces las soluciones se obtienen de tal manera que resultan ser constantes a largo de las órbitas de la acción. Por último, proponemos una extensión de nuestras consideraciones a productos warped Lorentzianos. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.description.researcharea | Differential Geometry | spa |
dc.format.extent | ix, 95 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80138 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Matemáticas | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | P. Ahmadi and S. Kashani. Cohomogeneity one Minkowski space R^n_1. Publicationes mathematicae, 78, 02 2011 | |
dc.relation.references | P. Ahmadi, S. Safari, and M. Hassani. A classification of cohomogeneity one actions on the Minkowski space R. Bulletin of the Iranian Mathematical Society, 10 2020 | |
dc.relation.references | N. M. Alba, J. Galvis, and E. Becerra. On polar actions invariant solutions of semilinear equations on manifolds. arXiv:1802.08625, 2018 | |
dc.relation.references | M.M. Alexandrino and R.G. Bettiol. Lie groups and geometric aspects of isometric actions. Springer International Publishing, 2015 | |
dc.relation.references | J.K. Beem, P. Ehrlich, and K. Easley. Global Lorentzian geometry, second edition. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1996 | |
dc.relation.references | J. Berndt, S. Console, and C.E. Olmos. Submanifolds and holonomy. Chapman & Hall/CRC Monographs and Research Notes in Mathematics. CRC Press, second edition, 2016 | |
dc.relation.references | C. Bär. Lorentzian Geometry. Lecture Notes, Summer Term 2004. Universit at Potsdam, 2020. | |
dc.relation.references | C. Bär, N. Ginoux, and F. Pf a e. Wave equations on Lorentzian manifolds and quantization. European Mathematical Society., 2007. | |
dc.relation.references | José Díaz-Ramos. Proper isometric actions. 12 2008. | |
dc.relation.references | Paul Ehrlich, Yoon-Tae Jung, Jeong-Sik Kim, and Seon-Bu Kim. Jacobians and volume comparison for Lorentzian warped products. Contemporary Mathematics, "Recent Advances in Riemannian and Lorentzian Geometries", pages 39{52, 01 2003. | |
dc.relation.references | F. Flaherty and M.P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkh auser Boston, 2013. | |
dc.relation.references | S. Helgason. Differential operators on homogeneous spaces. Acta Math., 102(3-4):239-299 1959. | |
dc.relation.references | S. Helgason. Di erential geometry and symmetric spaces. Pure and Applied Mathematics. Elsevier Science, 1962. | |
dc.relation.references | S. Helgason. A formula for the radial part of the Laplace-Beltrami operator. Journal of Differential Geometry, 6(3):411-419, 1972. | |
dc.relation.references | S. Helgason. Groups and geometric analysis: integral geometry, invariant di erential operators, and spherical functions. Pure and applied mathematics. Academic Press, 1984. | |
dc.relation.references | S. Helgason. The Radon transform. Progress in Mathematics. Birkh auser Boston, 1999. | |
dc.relation.references | J. Jost. Riemannian geometry and geometric analysis. Universitext. Springer Berlin Heidelberg, 2011. | |
dc.relation.references | J. Lee. Introduction to smooth manifolds. Graduate Texts in Mathematics. Springer New York, 2012. | |
dc.relation.references | J.M. Lee. Riemannian manifolds: An introduction to curvature. Graduate Texts in Mathematics. Springer New York, 2006. | |
dc.relation.references | J.M. Lee. Introduction to Riemannian manifolds. Graduate Texts in Mathematics. Springer International Publishing, 2019. | |
dc.relation.references | B. O'Neill. Semi-Riemannian geometry with applications to relativity. Pure and Applied Mathematics. Elsevier Science, 1983. | |
dc.relation.references | T. Sakai. Riemannian geometry. Fields Institute Communications. American Mathematical Soc., 1996. | |
dc.relation.references | R.A. Wijsman. Invariant measures on groups and their use in statistics. IMS Lecture Notes. Institute of Mathematical Statistics, 1990. | |
dc.relation.references | Joseph A. Wolf. Spaces of constant curvature. sixth edition. AMS, 2011. | |
dc.relation.references | Hongtao Xue and Xigao Shao. Existence of positive entire solutions of a semilinear elliptic problem with a gradient term. Nonlinear Analysis: Theory, Methods & Applications, 71(7):3113-3118, 2009. | |
dc.relation.references | Q.S. Zhang. Sobolev inequalities, heat kernels under Ricci flow, and the Poincare conjecture. CRC Press, 2010. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::516 - Geometría | spa |
dc.subject.lemb | Variables diferenciables | |
dc.subject.lemb | Differential manifolds | |
dc.subject.lemb | Variedades de Riemann | |
dc.subject.lemb | Riemann manifolds | |
dc.subject.lemb | Differential equations | |
dc.subject.lemb | Ecuaciones diferenciales | |
dc.subject.proposal | Laplace-Beltrami operator | eng |
dc.subject.proposal | Manifolds with indefinite metrics | eng |
dc.subject.proposal | Existence problems for PDEs | eng |
dc.subject.proposal | Polar actions | eng |
dc.subject.proposal | Variedades con métricas indefinidas | spa |
dc.subject.proposal | Problemas de existencia para EDPs | spa |
dc.subject.proposal | Operador de Laplace-Beltrami | spa |
dc.subject.proposal | Acciones polares | spa |
dc.title | Decomposition of the Laplace-Beltrami operator on riemannian manifolds | eng |
dc.title.translated | Descomposición del operador Laplace-Beltrami sobre variedades riemannianas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1049627183.2021.pdf
- Tamaño:
- 707.26 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: