A distributional approach to asymptotics of the Spectral Action

dc.contributor.advisorPaycha, Sylviespa
dc.contributor.advisorNeira Jiménez, Carolinaspa
dc.contributor.authorLópez Castaño, Juan Danielspa
dc.date.accessioned2021-02-24T15:39:02Zspa
dc.date.available2021-02-24T15:39:02Zspa
dc.date.issued2020-08-18spa
dc.description.abstractLa acción espectral es el concepto natural y apropiado para hablar de una acción en el espacio de triplas espectrales, y fue introducido por primera vez por Chamseddine y Connes en 1997. Después de incluir definiciones y resultados que conciernen a la teoría de Cesàro para distribuciones y análisis asintótico, discutimos la expansión asintótica de la acción espectral en el sentido distribucional para una tripla espectral conmutativa, siguiendo a Estrada, Gracia-Bondía y Várilly.spa
dc.description.abstractThe spectral action is the natural and appropriate notion of an action on the space of spectral triples, and it was introduced by Chamseddine and Connes in 1997. After including some definitions and results concerning the Cesàro theory of distributions and asymptotic analysis, we discuss the asymptotic expansion of the spectral action in the distributional sense for a commutative spectral triple following Estrada, Gracia-Bondía and Várilly.spa
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso en línea (94 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationLópez-Castaño, J. D. (2020) A distributional approach to asymptotics of the Spectral Action. Master thesis, Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79294
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesN. Berline, E. Getzler, and M. Vergne. Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer Berlin Heidelberg, 2003. ISBN: 9783540200628. URL: https://books.google.com.co/books?id=\_e2FjvLbO94C (see p. 81).spa
dc.relation.referencesAli H. Chamseddine and Alain Connes. “The spectral action principle”. In: Comm. Math. Phys. 186.3 (1997), pp. 731–750. ISSN: 0010-3616. DOI: 10.1007/s002200050126. URL: https://doi.org/10.1007/s002200050126 (see pp. 9, 67, 71).spa
dc.relation.referencesAli H. Chamseddine, Alain Connes, and Matilde Marcolli. “Gravity and the standard model with neutrino mixing”. In: Adv. Theor. Math. Phys. 11.6 (2007), pp. 991–1089. ISSN: 1095-0761. URL: http://projecteuclid.org/euclid.atmp/1198095373 (see p. 9).spa
dc.relation.referencesAlain Connes and Matilde Marcolli. Noncommutative geometry, quantum fields and motives. Vol. 55. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008, pp. xxii+785. ISBN: 978-0-8218-4210-2 (see pp. 9, 64, 71).spa
dc.relation.referencesAlain Connes and Matilde Marcolli. Noncommutative geometry, quantum fields and motives. Vol. 55. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008, pp. xxii+785. ISBN: 978-0-8218-4210-2 (see pp. 10, 69, 75).spa
dc.relation.referencesAlain Connes. “On the spectral characterization of manifolds”. In: J. Noncommut. Geom. 7.1 (2013), pp. 1–82. ISSN: 1661-6952. DOI:10.4171/JNCG/108. URL: https://doi.org/10.4171/JNCG/108 (see p. 66).spa
dc.relation.referencesAlain Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994, pp. xiv+661. ISBN: 0-12-185860-X (see pp. 9, 63).spa
dc.relation.referencesR. Estrada, J. M. Gracia-Bondía, and J. C. Várilly. “On summability of distributions and spectral geometry”. In: Comm. Math. Phys. 191.1 (1998), pp. 219–248. ISSN: 0010-3616. DOI: 10.1007/s002200050266. URL: https://doi.org/10.1007/s002200050266 (see pp. 9, 10, 19, 30, 49, 54, 58, 75).spa
dc.relation.referencesM. Eckstein and B. Iochum. Spectral Action in Noncommutative Geometry. SpringerBriefs in Mathematical Physics. Springer International Publishing, 2018. ISBN: 9783319947884. URL: https://books.google.com.co/books?id=nnWADwAAQBAJ (see p. 15).spa
dc.relation.referencesRicardo Estrada and Ram P. Kanwal. A distributional approach to asymptotics. Second. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Theory and applications. Birkhäuser Boston, Inc., Boston, MA, 2002, pp. xvi+451. ISBN: 0-8176-4142-4. DOI: 10.1007/978-0-8176-8130-2. URL: https://doi.org/10.1007/978-0-8176-8130-2 (see pp. 9, 13, 19, 34, 37, 39).spa
dc.relation.referencesR Estrada, R. P Kanwal, and Michael James Lighthill. “A distributional theory for asymptotic expansions”. In: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 428.1875 (1990), pp. 399–430. DOI: 10.1098/rspa.1990.0041. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1990.0041. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1990.0041 (see pp. 34, 48, 58).spa
dc.relation.referencesRicardo Estrada. “The Cesàro behaviour of distributions”. In: R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454.1977 (1998), pp. 2425–2443. ISSN: 1364-5021. DOI: 10.1098/rspa.1998.0265. URL: https://doi.org/10.1098/rspa.1998.0265 (see pp. 9, 13, 26, 28, 34).spa
dc.relation.referencesBoris V. Fedosov et al. “The noncommutative residue for manifolds with boundary”. In: J. Funct. Anal. 142.1 (1996), pp. 1–31. ISSN: 0022-1236. DOI: 10.1006/jfan.1996.0142. URL: https://doi.org/10.1006/jfan.1996.0142 (see pp. 77, 79, 80).spa
dc.relation.referencesG.B. Folland. Real Analysis: Modern Techniques and Their Applications. A Wiley-Interscience publication. Wiley, 1999. ISBN: 9780471317166. URL: https://books.google.com.co/books?id=uPkYAQAAIAAJ (see p. 31).spa
dc.relation.referencesWentao Fan, Farzad Fathizadeh, and Matilde Marcolli. “Spectral action for Bianchi type-IX cosmological models”. In: J. High Energy Phys. 10 (2015), 085, front matter+28. ISSN: 1126-6708. DOI:10.1007/JHEP10(2015)085. URL: https://doi.org/10.1007/JHEP10(2015)085 (see p. 9).spa
dc.relation.referencesG.B. Folland. Advanced Calculus. Featured Titles for Advanced Calculus Series. Prentice Hall, 2002. ISBN: 9780130652652. URL: https://books.google.com.co/books?id=iatzQgAACAAJ (see p. 26).spa
dc.relation.referencesJosé M. Gracia-Bondía, Joseph C. Várilly, and Héctor Figueroa. Elements of noncommutative geometry. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston, Inc., Boston, MA, 2001, pp. xviii+685. ISBN: 0-8176-4124-6. DOI: 10.1007/978-1-4612-0005-5. URL: https://doi.org/10.1007/978-1-4612-0005-5 (see pp. 9, 66, 81, 84, 85).spa
dc.relation.referencesPeter B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Second. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995, pp. x+516. ISBN: 0-8493-7874-4 (see pp. 9, 68, 69).spa
dc.relation.referencesA. Grossmann, G. Loupias, and E. M. Stein. “An algebra of pseudodifferential operators and quantum mechanics in phase space”. In: Ann. Inst. Fourier (Grenoble) 18.fasc., fasc. 2 (1968), 343–368, viii (1969). ISSN: 0373-0956. URL: http://www.numdam.org/item?id=AIF_1968__18_2_343_0 (see pp. 34, 35).spa
dc.relation.referencesGerd Grubb. Distributions and operators. Vol. 252. Graduate Texts in Mathematics. Springer, New York, 2009, pp. xii+461. ISBN: 978-0-387-84894-5 (see pp. 9, 13, 19, 20, 21, 25, 35, 77, 78, 79).spa
dc.relation.referencesG. H. Hardy. Divergent series. With a preface by J. E. Littlewood and a note by L. S. Bosanquet, Reprint of the revised (1963) edition. Éditions Jacques Gabay, Sceaux, 1992, pp. xvi+396. ISBN: 2-87647-131-0 (see pp. 13, 15, 16, 18, 19, 87).spa
dc.relation.referencesB. Iochum, C. Levy, and D. V. Vassilevich. “Global and local aspects of spectral actions”. In: J. Phys. A 45.37 (2012), pp. 374020, 19. ISSN: 1751-8113. DOI: 10.1088/1751-8113/45/37/374020. URL: https://doi.org/10.1088/1751-8113/45/37/374020 (see p. 9).spa
dc.relation.referencesAnthony W. Knapp. Representation Theory of Semisimple Groups: An Overview Based on Examples (PMS-36). REV - Revised. Princeton University Press, 1986. ISBN: 9780691084015. URL: http://www.jstor.org/stable/j.ctt1bpm9sn (see p. 44).spa
dc.relation.referencesH. Blaine Lawson Jr. and Marie-Louise Michelsohn. Spin geometry. Vol. 38. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1989, pp. xii+427. ISBN: 0-691-08542-0 (see pp. 81, 84)spa
dc.relation.referencesMatilde Marcolli, Elena Pierpaoli, and Kevin Teh. “The spectral action and cosmic topology”. In: Comm. Math. Phys. 304.1 (2011), pp. 125–174. ISSN: 0010-3616. DOI: 10.1007/s00220-011-1211-3. URL: https://doi.org/10.1007/s00220-011-1211-3 (see p. 9).spa
dc.relation.referencesKarl-Hermann Neeb. “On differentiable vectors for representations of infinite dimensional Lie groups”. In: Journal of Functional Analysis 259.11 (2010), pp. 2814 –2855. ISSN: 0022-1236. DOI: https://doi.org/10.1016/j.jfa.2010.07.020. URL: http://www.sciencedirect.com/science/article/pii/S0022123610003095 (see p. 46).spa
dc.relation.referencesS. Paycha. Regularised Integrals, Sums, and Traces: An Analytic Point of View. University lecture series. American Mathematical Society, 2012. ISBN: 9780821890356. URL: https://books.google.com.co/books?id=ut0tnQAACAAJ (see p. 56).spa
dc.relation.referencesMichael Reed and Barry Simon. Methods of modern mathematical physics. I. Second. Functional analysis. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980, pp. xv+400. ISBN: 0-12-585050-6 (see pp. 41, 42, 43, 44).spa
dc.relation.referencesMairi Sakellariadou. “Noncommutative geometry spectral action as a framework for unification: introduction and phenomenological/cosmological consequences”. In: Internat. J. Modern Phys. D 20.5 (2011), pp. 785–804. ISSN: 0218-2718. DOI: 10.1142/S021827181101913X. URL: https://doi.org/10.1142/S021827181101913X (see p. 9).spa
dc.relation.referencesHeikkilä Seppo and Talvila Erik. “Distributions, their primitives and integrals with applications to distributional differential equations”. In: Dynamic Systems and Applications 22 (June 2013), pp. 207–249 (see p. 26).spa
dc.relation.referencesR. T. Seeley. “Complex powers of an elliptic operator”. In: Proc. Symp. Pure Math. 10 (1967), pp. 288–307 (see p. 53).spa
dc.relation.referencesK. Yosida. Functional Analysis. Classics in Mathematics. Springer Berlin Heidelberg, 2012. ISBN: 9783642618598. URL: https://books.google.com.co/books?id=yj4mBQAAQBAJ (see p. 46).spa
dc.relation.referencesA. H. Zemanian. “The Distributional Laplace and Mellin Transformations”. In: SIAM Journal on Applied Mathematics 14.1 (1966), pp. 41–59. DOI: 10.1137/0114004. eprint: https://doi.org/10.1137/0114004. URL: https://doi.org/10.1137/0114004 (see p. 72).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalSpectral actioneng
dc.subject.proposalAcción espectralspa
dc.subject.proposalSumabilidad de Cesàrospa
dc.subject.proposalCesàro summabilityeng
dc.subject.proposalDistribucionesspa
dc.subject.proposalDistributionseng
dc.subject.proposalAsymptotic expansioneng
dc.subject.proposalExpansiones asintóticasspa
dc.subject.proposalOperadores pseudidiferencialesspa
dc.subject.proposalPseudodifferential operatorseng
dc.subject.proposalTeoría espectralspa
dc.subject.proposalSpectral theoryeng
dc.subject.proposalNoncommutative geometryeng
dc.subject.proposalGeometría no conmutativaspa
dc.titleA distributional approach to asymptotics of the Spectral Actionspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
main.pdf
Tamaño:
752.75 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: