Desarrollo de una película flexible con características inteligentes a base de harina de ñame morado (Dioscorea alata) con adición de nanopartículas obtenidas mediante contra colisión acuosa

dc.contributor.advisorCadena Chamorro, Edith Marleny
dc.contributor.advisorOsorio Tobon, Juan Felipe
dc.contributor.authorDiaz Martinez, Gregorio Simon
dc.contributor.orcidCadena Chamorro, Edith Marleny [0000-0002-7143-2009]spa
dc.contributor.orcidOsorio Tobón, Juán Felipe [0000-0002-6853-7184]spa
dc.contributor.researcherLavoine Nathalie
dc.contributor.researchgroupIngeniería Agrícolaspa
dc.date.accessioned2023-07-26T16:40:23Z
dc.date.available2023-07-26T16:40:23Z
dc.date.issued2023-07-24
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa investigación tiene como eje principal el desarrollo de un bioplástico biobasado en harina de ñame morado (Dioscorea alata), utilizando su contenido de antocianinas como indicador de pH. Se proyecta un material antiestático, aislante, amortiguador, resistente y completamente biodegradable y/o compostable. Para llevar a cabo el proceso, se inicia con la extracción del pigmento (Antocianinas) presente en la harina, y caracterización físico química de las antocianinas mediante extractos asistidos por ultrasonido, en el cual se evaluaron las mejores condiciones de extracción variando temperatura (30, 50 y 70 °C), amplitud (20, 40 y 60%) y relación Etanol: Agua (80:20 y 50:50). Adicionalmente se procedió con la extracción de nanopartículas de harina a través de un proceso mecánico llamado (Contra Colisión Acuosa). Para esto, se llevó a cabo la descomposición del material utilizando 1.5, 2.0 y 2.5% en relación agua: harina bajo una presión de 200 MPa. Finalmente se procedió con el desarrollo de las películas; donde se evaluaron el contenido de nanopartículas (5, 15 y 25 %), utilizando 15% glicerol con respecto al peso de la harina, la cual fue de 2% como etapa de formulación. Las películas desarrolladas, fueron caracterizadas morfológica, mecánica y superficialmente. Toda la investigación, se llevó a cabo garantizando que el producto final cumpliera con las especificaciones y normativas pertinentes basadas en las pruebas estándares ASTM; potencializando la cadena productiva del ñame morado (Dioscorea alata), generando valor agregado y su aprovechamiento integral para el desarrollo de biomateriales, obteniéndose resultados relevantes, nanopartículas de hasta menos de 100 nm, películas resistentes reflejando una resistencia a la tensión de más de 7.0 MPa, y características hidrofóbicas. Además de contenidos de antocianinas de más de 22 ppm, y la aplicación de una nueva técnica de extracción de nanopartículas para polímeros como la harina. (Texto tomado de la fuente)spa
dc.description.abstractThe main objective corresponded to the development of a bioplastic biobased on purple yam (Dioscorea alata) flour, using its anthocyanin content as a pH indicator with addition of nanoparticles extracted by a mechanical process; in order to obtain a smart, resistant and completely biodegradable and/or compostable material. The first step was the extraction of anthocyanins in the flour; therefore, a characterization was performed using ultrasound assistance as extraction method, where the best conditions were evaluated applying different temperatures, amplitude and ethanol: water ratio. Then, the extraction of flour nanoparticles was performed through a mechanical process called “Aqueous Counter Collision” or ACC. The decomposition of the material was carried out using specifics concentrations of water: flour ratio. Finally, the development of the films using glycerol and flour was performed, where the content of nanoparticles was evaluated. Also, the anthocyanins content was evaluated as a pH indicator in the films as well. The films were characterized morphologically, mechanically and superficially, obtaining the best analysis through an-ANOVA. All the research was performed ensuring that the material obtained would give value to the purple yam production chain, and its utilization as a possible resource in the food packaging industry. The results obtained were relevant, nanoparticles down to less than 100 nm, resistant films reflecting a tensile strength of more than 7.0 MPa, and hydrophobic characteristics. In addition to anthocyanin contents of more than 22 ppm, and the application of a new nanoparticle extraction technique for polymers such as flour.eng
dc.description.curricularareaÁrea Curricular en Ingeniería Agrícola y Alimentosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Agroindustrialspa
dc.description.researchareaBiomaterialesspa
dc.format.extent123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84291
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ingeniería Agroindustrialspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgcam E, Akyıldız A, Balasubramaniam VM. Optimization of anthocyanins extraction from black carrot pomace with thermosonication. Food Chem [Internet]. 2017; 237:461–70.spa
dc.relation.referencesAlmeida, A. d., & Ruiz, J. (2004). Bioplásticos: Una alternativa ecológica. Química viva.spa
dc.relation.referencesAnaya et al. (2012). Polímeros utilizados para la elaboración de película biodegradables. Temas Selectos de Ingeniería de Alimentos, 6.spa
dc.relation.referencesAndrea Lubbe et al. (2011). Cultivation of medicnla and aromatic plants for specialty industrial materials. Industrial crops and productos, 785–801.spa
dc.relation.referencesAndres, C., AdeOluwa, O. O., & Bhullar, G. S. (2017). Yam (Dioscorea spp.). In Encyclopedia of Applied Plant Sciences (pp. 435–441). Elsevier.spa
dc.relation.referencesAndretta, R., Luchese, C. L., Tessaro, I. C., & Spada, J. C. (2019). Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids, 93, 317–324. https://doi.org/10.1016/j.foodhyd.2019.02.019spa
dc.relation.referencesAndri Cahyo Kumoro et al., (2015). Microwave Assisted Extraction of Dioscorin from Gadung Dioscorea hispida Dennst) Tuber Flour. Procedia Chemestry, 47 – 55.spa
dc.relation.referencesAnita Patrón Espá, María Eugenia Martín Esparza, Ana María Albors Sorolla, & María Dolores Raigón Jiménez. (2019) Caracterización funcional y química de cuatro variedades de chuño comercializadas en españa. Tesis de Maestría. Universidad Politécnica de Valencia, Instituto de ingeniería de alimentos para el desarrollo, Departamento de tecnología de alimentos. Valencia, España.spa
dc.relation.referencesAnny Manrich et al. (2017). Hydrophobic edible film made up of tomatoe cutin and pectin. Carbohydrete Polymers.spa
dc.relation.referencesAranza, Y. R. (2012). E l cultivo de ñame en el Caribe Colombiao. Banco de la Republica.spa
dc.relation.referencesArgenBio, 2018, http://www.argenbio.org/index.php?action=novedades&note=200spa
dc.relation.referencesArruda, H. S., Silva, E. K., Peixoto Araujo, N. M., Pereira, G. A., Pastore, G. M., & Marostica Junior, M. R. (2021). Anthocyanins recovered from agri-food by-products using innovative processes: Trends, challenges, and perspectives for their application in food systems. Molecules (Basel, Switzerland), 26(9). https://doi.org/10.3390/molecules26092632spa
dc.relation.referencesAVANI. (2019). Obtenido de https://www.avanieco.com/about-us/spa
dc.relation.referencesAlvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Fisicoquímico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas. CIT Informacion Tecnologica, 19(1), 19–28. https://doi.org/10.4067/s0718-07642008000100004spa
dc.relation.referencesBernardo, C. N., Kling, I. C. S., Ferreira, W. H., Andrade, C. T., & Simao, R. A. (2022). Starch films containing starch nanoparticles as produced in a single step green route. Industrial Crops and Products, 177(114481), 114481. https://doi.org/10.1016/j.indcrop.2021.114481spa
dc.relation.referencesBambang Kuswandi et al. (2011). Smart packaging: sensors for monitoring of food quality and safety. Sens. & Instrumen. Food Qual., 137–146.spa
dc.relation.referencesBBC. (2019). Obtenido de https://www.bbc.com/mundo/noticias-47620369spa
dc.relation.referencesBonilla, J., Hoyoc, J., & Villada, H. (2014). Modificación enzimática de almidón de yuca para eldesarrollo de peliculas flexbles. Biotecnologia en el sector Agropecuario y Agroindustrial, 9.spa
dc.relation.referencesCampelo, P. H., Sant’Ana, A. S., & Pedrosa Silva Clerici, M. T. (2020). Starch nanoparticles: production methods, structure, and properties for food applications. Current Opinion in Food Science, 33, 136–140.spa
dc.relation.referencesCarle R, S. (2016). andbook on Natural Pigments in Food and Beverages. UK: Duxford, UK: Woodhead Publishing.spa
dc.relation.referencesCarrera, C., Aliaño-González, M. J., Valaityte, M., Ferreiro-González, M., Barbero, G. F., & Palma, M. (2021). A novel ultrasound-assisted extraction method for the analysis of anthocyanins in potatoes (Solanum tuberosum L.). Antioxidants (Basel, Switzerland), 10(9), 1375. https://doi.org/10.3390/antiox10091375spa
dc.relation.referencesChampagne et al. (2011). Diversity of anthocyanins and other phenolic compounds among tropical root. Journal of Food Composition and Analysis, 315-325.spa
dc.relation.referencesChemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023spa
dc.relation.referencesChen, L., Ma, R., McClements, D. J., Zhang, Z., Jin, Z., & Tian, Y. (2019). Impact of granule size on microstructural changes and oil absorption of potato starch during frying. FoodHydrocolloids, 94,428–438. https://doi.org/10.1016/j.foodhyd.2019.03.046spa
dc.relation.referencesCondés, M. C., Añón, M. C., Dufresne, A., & Mauri, A. N. (2018). Composite and nanocomposite films based on amaranth biopolymers. Food Hydrocolloids, 74, 159–167.spa
dc.relation.referencesDenis Cornet et al. (2014). Yams plant size hierarchy and yield variability: Emergence time is crutial. European Journal of Agronomy.spa
dc.relation.referencesDong, H., Zhang, Q., Gao, J., Chen, L., & Vasanthan, T. (2022). Preparation and characterization of nanoparticles from cereal and pulse starches by ultrasonic-assisted dissolution and rapid nanoprecipitation. Food Hydrocolloids, 122(107081), 107081. https://doi.org/10.1016/j.foodhyd.2021.107081spa
dc.relation.referencesDorado, M., & Van, R. (2011). FAO. Obtenido de http://www.fao.org/3/a-i3684s.pdf EFE. (2018). El espectador. Obtenido de: https://www.elespectador.com/noticias/actualidad/cuantos-kilos-de-plastico-se-consumen-en-colombia-articulo-823132spa
dc.relation.referencesHuang, J., Huang, Q., Chang, P. R., & Yu, J. (2013). Chemical modification of starch nanoparticles. En Biopolymer Nanocomposites (pp. 181–202). John Wiley & Sons, Inc.spa
dc.relation.referencesEnriquez, M. (2012). Composición y procesamiento de películas biodegradables basadas en almidón. Biotecnología en el Sector Agropecuario y Agroindustrial.spa
dc.relation.referencesFang, Z., Wu, D., Yü, D., Ye, X., Liu, D., & Chen, J. (2011). Phenolic compounds in Chinese purple yam and changes during vacuum frying. Food Chemistry, 128(4), 943–948. https://doi.org/10.1016/j.foodchem.2011.03.123spa
dc.relation.referencesFAO. (2015). Obtenido de http://www.fao.org/news/story/es/item/319970/icode/spa
dc.relation.referencesFAO. (2017). Obtenido de http://www.fao.org/3/ca3540es/ca3540es.pdfspa
dc.relation.referencesFlórez, j. F., Chamorro, E. M., Sandoval, E. R., & Velásquez, J. S. (2019). Cassava starches modified by enzymatic biocatalysis: effect of reaction time and drying method. DYNA, 162-170.spa
dc.relation.referencesFrancias Perez et al. (2006). Bioplasticos.spa
dc.relation.referencesGhafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994. https://doi.org/10.1021/jf9001439spa
dc.relation.referencesGarzón, G. (2008). Las antocianinas como colorantes naturales y compuestos bioactivos. Acta Bio colombiana.spa
dc.relation.referencesGarzon, G. A. (2008). Anthocyanins As Natural Colorants And Bioactive Compounds. Act biol.spa
dc.relation.referencesGenafo, D. F. (s.f). Envases Inteligentes.spa
dc.relation.referencesGiusi. (2001). Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry.spa
dc.relation.referencesGóngora, J. P. (2014). La industria del plastico en Mexico y el mundo. Comercio exteriorspa
dc.relation.referencesGolmohamadi A, Möller G, Powers J, Nindo C. Effect of ultrasound requency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason Sonochem [Internet]. 2013;20(5):1316–23. Available from: http://dx.doi.org/10.1016/j.ultsonch.2013.01.020spa
dc.relation.referencesGonzales, C. M. (2012). El Ñame (Dioscorea spp.). Características, usos y valor medicinal. Aspectos de importancia en el desarrollo de su cultivo. Ministerio de Educación Superior. Cuba Instituto Nacional de Ciencias Agrícolas.spa
dc.relation.referencesGonzales, M. (2012). El ñame: caracteristicas, usos y valor medicinal, aspectos importantes en el desarrollo de su cultivo. Cultivos tropicales. Godoy E, Reinheimer MA, Scenna NJ. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyaninsspa
dc.relation.referencesGodoy E, Reinheimer MA, Scenna NJ. Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J Food Eng. 2017; 207:56–72.spa
dc.relation.referencesGuerrero et al. (2012). Polimeros utilizados para la elaboracion de peliculas biodegradables. Temas selectos de Ingenieria de Alimentos.spa
dc.relation.referencesGujral, H., Sinhmar, A., Nehra, M., Nain, V., Thory, R., Pathera, A. K., & Chavan, P. (2021). Synthesis, characterization, and utilization of potato starch nanoparticles as a filler in nanocomposite films. International Journal of Biological Macromolecules, 186, 155–162. https://doi.org/10.1016/j.ijbiomac.2021.07.005spa
dc.relation.referencesHou, J., & Yan, X. (2021). Preparation of chitosan-SiO2 nanoparticles by ultrasonic treatment and its effect on the properties of starch film. International Journal of Biological Macromolecules, 189, 271–278. https://doi.org/10.1016/j.ijbiomac.2021.08.141spa
dc.relation.referencesHumberto Leblanc et al. (2007). Produccion de raices y tuberculos: los ñames cultivados en la region Atlantica de Costa Rica. Costa Rica: Earth.spa
dc.relation.referencesIshida, K., Yokota, S., & Kondo, T. (2019). Localized surface acetylation of aqueous counter collision cellulose nanofibrils using a Pickering emulsion as an interfacial reaction platform. Carbohydrate Polymers, 261(117845), 117845. https://doi.org/10.1016/j.carbpol.2021.117845spa
dc.relation.referencesJavier David Vega, A., Hector, R.-E., Juan Jose, L.-G., Maria L, L.-G., Paola, H.-C., Raúl, Á.-S., & Carlos Enrique, O.-V. (2017). Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech Journal of Food Sciences, 35(5), 456–465. https://doi.org/10.17221/316/2016-cjfsspa
dc.relation.referencesJia, Y., Asoh, T.-A., Hsu, Y.-I., & Uyama, H. (2020). Wet strength improvement of starch-based blend films by formation of acetal/hemiacetal bonding. Polymer Degradation and Stability, 177(109197), 109197. https://doi.org/10.1016/j.polymdegradstab.2020.109197spa
dc.relation.referencesFigueroa. (2018). Cassava starches modified by enzymatic biocatalysis: effect of reaction time and drying method. Dyna.spa
dc.relation.referencesJosé Aliaño González, M., Carrera, C., Barbero, G. F., & Palma, M. (2022). A comparison study between ultrasound-assisted and enzyme-assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chemistry: X, 13(100192), 100192. https://doi.org/10.1016/j.fochx.2021.100192spa
dc.relation.referencesJosé Cortez et al. (2014). Evalucacion de propiedades mecanicas, opticas y de barrera en peliculas activas de almidon de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial.spa
dc.relation.referencesK.B. Biji et al. (2015). Smart packaging systems for food applications: a review. Association of Food Scientists & Technologists.spa
dc.relation.referencesKo, E. B., & Kim, J.-Y. (2021). Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability. Food Hydrocolloids, 120(106984), 106984. https://doi.org/10.1016/j.foodhyd.2021.106984spa
dc.relation.referencesKondo, T., Kose, R., Naito, H., & Kasai, W. (2014). Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydrate Polymers, 112, 284–290. https://doi.org/10.1016/j.carbpol.2014.05.064spa
dc.relation.referencesLe Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: a review. Biomacromolecules, 11(5), 1139–1153.spa
dc.relation.referencesLe Corre, D., & Dufresne, A. (2013). Preparation of starch nanoparticles. En Biopolymer Nanocomposites (pp. 153–180). John Wiley & Sons, Inc.spa
dc.relation.referencesLi, X., Qiu, C., Ji, N., Sun, C., Xiong, L., & Sun, Q. (2015). Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydrate Polymers, 121, 155–162.spa
dc.relation.referencesLiu, D., Wu, Q., Chen, H., & Chang, P. R. (2009). Transitional properties of starch colloid with particle size reduction from micro- to nanometer. Journal of Colloid and Interface Science, 339(1), 117–124. https://doi.org/10.1016/j.jcis.2009.07.035spa
dc.relation.referencesKM Davies et al. (2017). Anthocyanins. Encyclopedia of Applied Plant Sciences.spa
dc.relation.referencesMa Lourders Pacheco et al. (2009). Chemical studies of anthocyanins: A review. Mexico.spa
dc.relation.referencesMane S, Bremner DH, Tziboula-Clarke A, Lemos MA. Effect of ultrasound on the extraction of total anthocyanins from Purple Majesty potato. Ultrason Sonochem [Internet]. 2015; 27:509–14. Available from: http://dx.doi.org/10.1016/j.ultsonch.2015.06.021spa
dc.relation.referencesManuel Valero et al. (2013). Biopolimeros: avances y perspectivas. Dyna.spa
dc.relation.referencesMcDonnell C, Tiwari BK. (2017) Ultrasound: A Clean, Green Extraction Technology for Bioactives and Contaminants. In: Ibáñez E, Cifuentes A, editors. Green Extraction Techniques: Principles, Advances and Applications nventional extraction processes. Food and Bioproducts Processing, 122, 111–123. https://doi.org/10.1016/j.fbp.2020.04.007spa
dc.relation.referencesMoazzami Goudarzi, Z., Behzad, T., & Sheykhzadeh, A. (2022). Effect of hydrophobically modified extracted starch nanocrystal on the properties of LDPE / thermoplastic starch (TPS)/ PE‐g‐MA nanocomposite. Journal of Applied Polymer Science, 139(2), 51490. https://doi.org/10.1002/app.51490spa
dc.relation.referencesMusso, Y. (2017). Desarrollo de película protéicas para el evasado activo e inteligente de alimentos. La Plata: Universidad Nacional de La Plata.spa
dc.relation.referencesNarváez-Gómez, G., Figueroa-Flórez, J., Salcedo-Mendoza, J., Pérez-Cervera, C., & Andrade-Pizarro, R. (2021). Development and characterization of dual-modified yam (Dioscorea rotundata) starch-based films. Heliyon, 7(4), e06644. https://doi.org/10.1016/j.heliyon.2021.e06644spa
dc.relation.referencesNascimento, T. A., Calado, V., & Carvalho, C. W. P. (2012). Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Research International (Ottawa, Ont.), 49(1), 588–595. https://doi.org/10.1016/j.foodres.2012.07.051spa
dc.relation.referencesOcampo, A. M. (2018). Obtenido de: https://www.revistaialimentos.com/blog/multidimensionales/empaques-inteligentes/spa
dc.relation.referencesOchoa, S., Durango-Zuleta, M. M., & Felipe Osorio-Tobón, J. (2020). Techno-economic evaluation of the extraction of anthocyanins from purple yam (Dioscorea alata) using ultrasound-assisted extraction and conventional extraction processes. Food and Bioproducts Processing, 122, 111–123. https://doi.org/10.1016/j.fbp.2020.04.007spa
dc.relation.referencesONU. (5 de 6 de 2018). Obtenido de https://news.un.org/es/story/2018/06/1435111spa
dc.relation.referencesONU. (2019). Obtenido de https://news.un.org/es/story/2019/03/1452961spa
dc.relation.referencesONU. (2019). Obtenido de https://news.un.org/es/story/2019/08/1460271spa
dc.relation.referencesP, N. L., Ribba, L., Dufresne, A., Arangueren, M., & Goyanes, S. (2009). Influencia del tipo de almidón empleado como matriz en las prppiedades fisico-quimicas de nanocompuestos BIODEGRADABLES. Revista Latinoamericana de Metalurgia y Materiales, 6.spa
dc.relation.referencesParra, R. (2015). Digestión anaerobica: Mecanismos biotcnologicos en el tratamiento de agua residuales y su aplicacion en la industria alimentaria. Produccion limpia. PlasticsEurope. (2019). Obtenido de https://www.plasticseurope.org/es/about-plastics/what-are-plastics/how-plastics-are-madespa
dc.relation.referencesRatnaningsih, R., Richana, N., Suzuki, S., & Fujii, Y. (2018). Effect of soaking treatment on anthocyanin, flavonoid, phenolic content and antioxidant activities of Dioscorea alata flour. Indonesian journal of chemistry, 18(4), 656. https://doi.org/10.22146/ijc.23945spa
dc.relation.referencesRodríguez Sauceda, R., Rojo Martínez, G. E., Martínez Ruiz, R., Piña Ruiz, H. H., Ramírez Valverde, B., Vaquera Huerta, H., & Cong Hermida, M. de la C. (2014). Envases inteligentes para la conservación de alimentos. Ra Ximhai, 151–174. https://doi.org/10.35197/rx.10.03.e2.2014.12.rrspa
dc.relation.referencesRuttarattanamongkol, K., Chittrakorn, S., Weerawatanakorn, M., & Dangpium, N. (2016). Effect of drying conditions on properties, pigments and antioxidant activity retentions of pretreated orange and purple-fleshed sweet potato flours. Journal of Food Science and Technology, 53(4), 1811–1822. https://doi.org/10.1007/s13197-015-2086-7spa
dc.relation.referencesReyes, M. C. (2017). La problemática de la cultura de del empaque: del diseño centrado en el consumo y centrado en la funcion ambental. Bogota.spa
dc.relation.referencesRichard Coles, D. M., & Kirwan, M. (2003). Food packaging technology. London.spa
dc.relation.referencesRodrigues, A. A. M., Costa, R. R. da, Santos, L. F. dos, Silva, S. de M., Britto, D. de, & Lima, M. A. C. de. (2021). Properties and characterization of biodegradable films obtained from different starch sources. Food Science and Technology, 41(suppl 2), 476–482. https://doi.org/10.1590/fst.28520spa
dc.relation.referencesRodrigues S, Fernandes FAN, de Brito ES, Sousa AD, Narain N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind Crops Prod [Internet]. 2015; 69:400–7. Available from: http://dx.doi.org/10.1016/j.indcrop.2015.02.059spa
dc.relation.referencesRuan, S., Tang, J., Qin, Y., Wang, J., Yan, T., Zhou, J., Gao, D., Xu, E., & Liu, D. (2022). Mechanical force-induced dispersion of starch nanoparticles and nanoemulsion: Size control, dispersion behaviour, and emulsified stability. Carbohydrate Polymers, 275(118711), 118711. https://doi.org/10.1016/j.carbpol.2021.118711spa
dc.relation.referencesRubio-Anaya, M., & Guerrero-Beltrán, J. A. (2012). Polímeros utilizados para la elaboración de películas biodegradables. Temas Selectos de Ingeniería de Alimentos, 6.spa
dc.relation.referencesJ.G. Salcedo-Mendoza, M.C. Rodrıguez-Lora, J.A. Figueroa-Florez (2016). Efecto de la acetilacion en las propiedades estructurales yfuncionales de almidones de yuca (Manihot esculenta Crantz) y ñame (Dioscorea alata cv. Diamante 22. Revista Mexicana de Ingeniería Química.spa
dc.relation.referencesSantillán, M. L. (27 de 07 de 2018). Universidad Autonoma de Mexico. Obtenido de http://ciencia.unam.mx/leer/766/una-vida-de-plasticospa
dc.relation.referencesRodríguez Sauceda, R., Rojo Martínez, G. E., Martínez Ruiz, R., Piña Ruiz, H. H., Ramírez Valverde, B., Vaquera Huerta, H., & Cong Hermida, M. de la C. (2014). Envases inteligentes para la conservación de alimentos. Ra Ximhai, 151–174. https://doi.org/10.35197/rx.10.03.e2.2014.12.rrspa
dc.relation.referencesRojas, A. M., Flores, S., Famá, L., Goyanes, S., & Gerschenson, L. (2007). Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Research International (Ottawa, Ont.), 40(2), 257–265. https://doi.org/10.1016/j.foodres.2006.02.004spa
dc.relation.referencesSun, Q., & Guanghua Li, L. D. (2014). Green preparation and characterisation of waxy maize starch Green preparation and characterisation of waxy maize starch. Food Chemistry, 5.spa
dc.relation.referencesTamaroh, S., & Sudrajat, A. (2021). Antioxidative characteristics and sensory acceptability of bread substituted with purple yam (Dioscorea alata L.). International Journal of Food Science, 2021, 5586316. https://doi.org/10.1155/2021/5586316spa
dc.relation.referencesTan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., & Xue, H. (2022). Extraction and purification of anthocyanins: A review. Journal of Agriculture and Food Research, 8(100306), 100306. https://doi.org/10.1016/j.jafr.2022.100306spa
dc.relation.referencesTiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. Trends in Analytical Chemistry: TRAC, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013spa
dc.relation.referencesVillén, M. (19 de marzo de 2019). CONASI. Obtenido de https://www.conasi.eu/blog/consejos-de-salud/consejos-de-salud-consejos-de-salud/plasticos-reciclables-biodegradables/spa
dc.relation.referencesWang, F., Qiu, L., & Tian, Y. (2021). Super anti-wetting colorimetric starch-based film modified with poly(dimethylsiloxane) and micro-/nano-starch for aquatic-product freshness monitoring. Biomacromolecules, 22(9), 3769–3779. https://doi.org/10.1021/acs.biomac.1c00588spa
dc.relation.referencesYan, X., Diao, M., Yu, Y., Gao, F., Wang, E., Wang, Z., & Zhang, T. (2021). Influence of esterification and ultrasound treatment on formation and properties of starch nanoparticles and their impact as a filler on chitosan based films characteristics. International Journal of Biological Macromolecules, 179, 154–160. https://doi.org/10.1016/j.ijbiomac.2021.03.004spa
dc.relation.referencesYokota, S., Tagawa, S., & Kondo, T. (2021). Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision. Carbohydrate Polymers, 255(117342), 117342. https://doi.org/10.1016/j.carbpol.2020.117342spa
dc.relation.referencesYasser, M., Badai, M., Thahir, R., Sukasri, A., & Kurniawan. (2021). Antioxidant Extraction from Purple Sweet Potato (Ipomea batatas l.) using Ultrasound Assisted Extraction (UAE). Journal of physics. Conference series, 2049(1), 012027. https://doi.org/10.1088/1742-6596/2049/1/012027spa
dc.relation.referencesYoshida et al. (1991). Usually satable monoacylated anthocyanin from purple yam (Dioscorea alata).spa
dc.relation.referencesZhao, T., & Jiang, L. (2018). Contact angle measurement of natural materials. Colloids and Surfaces. B, Biointerfaces, 161, 324–330. https://doi.org/10.1016/j.colsurfb.2017.10.056spa
dc.relation.referencesZou, J., Xu, M., Wen, L., & Yang, B. (2020). Structure and physicochemical properties of native starch and resistant starch in Chinese yam (Dioscorea opposita Thunb.). Carbohydrate Polymers, 237(116188), 116188. https://doi.org/10.1016/j.carbpol.2020.11618spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembFood industry and tradeeng
dc.subject.lembFood productioneng
dc.subject.lembProducción alimenticiaspa
dc.subject.lembIndustrias alimenticiasspa
dc.subject.proposalAntocianinasspa
dc.subject.proposalBiobasadospa
dc.subject.proposalBiodegradablespa
dc.subject.proposalIndicador de pHspa
dc.subject.proposalContra Colisión Acuosaspa
dc.subject.proposalAnthocyaninseng
dc.subject.proposalbiobasedeng
dc.subject.proposalbiodegradables filmseng
dc.subject.proposalpH indicatoreng
dc.subject.proposalAqueous Counter Collisioneng
dc.titleDesarrollo de una película flexible con características inteligentes a base de harina de ñame morado (Dioscorea alata) con adición de nanopartículas obtenidas mediante contra colisión acuosaspa
dc.title.translatedDevelopment of a flexible film based on Purple Yam Flour and Nanoparticles obtained by aqueous Counter Collision.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1066185955.2022.pdf
Tamaño:
10.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Agroindustrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: