Modelación conjunta de media y varianza en modelos semiparamétricos autorregresivos espaciales

dc.contributor.advisorMelo Martínez, Oscar Orlandospa
dc.contributor.authorToloza Delgado, Jurgen Danielspa
dc.date.accessioned2021-01-19T23:24:13Zspa
dc.date.available2021-01-19T23:24:13Zspa
dc.date.issued2020-01-18spa
dc.description.abstractIn this thesis, two spatial econometrics methodologies are proposed to estimate jointly the mean and the variance of the dependent variable, which have a spatial dependence whenare used in semiparametric autoregressive models. The proposed algorithms are based on the theory of generalized additive models for location, scale and shape; these methodologies allow to include nonparametric smoothing terms in the mean and variance of the considered models. The methods have a remarkable prediction capacity when they are compared in terms of the mean square error. In addition, they have a noteworthy estimation of the spatial autoregressive term, when they are compared with traditional ways of estimation (Anselin, 1988) and contemporary proposals of other authors (Basile & Mínguez, 2018). The proposed methodologies are applied in the construction of a hedonic price model for the cities of Bogotá and Boston. The results of the applications are notable due to their capacity of modelling the variability of housing prices in both locations.spa
dc.description.abstractDentro del contexto de la econometría espacial se proponen dos metodologías que permiten la modelación conjunta de media y varianza en modelos semiparamétricos autorregresivos con dependencia espacial en la variable dependiente. Los algoritmos desarrollados se fundamentan en los modelos aditivos generalizados para localización, escala y forma; los cuales permiten la inclusión de términos no paramétricos tanto en la media como la varianza. Se encuentra que los dos métodos propuestos tienen una destacable capacidad predictiva en términos del error cuadrático medio. Adicionalmente, evidencian una notable mejora en la estimación del parámetro espacial autorregresivo, respecto a otros métodos tradicionales (Anselin, 1988) y algunos desarrollos recientes (Basile & Mínguez, 2018). Las metodologías se emplean en la construcción de un modelo de precios hedónicos para las ciudades de Boston y Bogotá, destacando como principal resultado la capacidad de modelar la variabilidad del precio de las viviendas en estas localizaciones.spa
dc.description.additionalLínea de Investigación: Estadística espacialspa
dc.description.degreelevelMaestríaspa
dc.format.extent135spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationToloza, J. (2020) Modelación conjunta de media y varianza en modelos semiparamétricos autorregresivos espaciales [Tesis de Maestría en Ciencias - Estadística, Universidad Nacional de Colombia] Repositorio Institucionalspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78835
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAitkin, M. (1987). Modelling variance heterogeneity in normal regression using glim, Journal of the Royal Statistical Society: Series C (Applied Statistics) 36(3): 332–339.spa
dc.relation.referencesAnselin, L. (1988). Spatial Econometrics: Methods and Models, Springer Science & Business Media. Dordrecht.spa
dc.relation.referencesAnselin, L. (2009). Spatial regression, The SAGE handbook of spatial analysis 1: 255–276.spa
dc.relation.referencesAnselin, L. & Bera, A. (1998). Introduction to spatial econometrics, Handbook of applied economic statistics 237.spa
dc.relation.referencesAnselin, L. & Lozano, N. (2009). Spatial hedonic models, Palgrave handbook of econometrics, Springer, pp. 1213–1250. New York.spa
dc.relation.referencesArbia, G. (2006). Spatial econometrics: statistical foundations and applications to regional convergence, Springer Science & Business Media. Berlín.spa
dc.relation.referencesAzomahou, T. & Lahatte, A. (2000). On the inconsistency of the ols estimator for spatial autoregressive models, Technical report.spa
dc.relation.referencesBasile, R., Durbán, M., Mínguez, R., Montero, J. M. & Mur, J. (2014). Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities, Journal of Economic Dynamics and Control 48: 229–245.spa
dc.relation.referencesBasile, R. & Mínguez, R. (2018). Advances in spatial econometrics: parametric vs. semiparametric spatial autoregressive models, The economy as a complex spatial system, Springer, pp. 81–106.spa
dc.relation.referencesBodson, P. & Peeters, D. (1975). Estimation of the coefficients of a linear regression in the presence of spatial autocorrelation. an application to a belgian labour-demand function, Environment and Planning A 7(4): 455–472.spa
dc.relation.referencesBorrego, J. (2018). Modelos de regresión para datos espaciales.spa
dc.relation.referencesCase, A. C., Rosen, H. S. & Hines Jr, J. R. (1993). Budget spillovers and fiscal policy interdependence: Evidence from the states, Journal of Public Economics 52(3): 285–307.spa
dc.relation.referencesCellmer, R., Kobylinska, K. & Be lej, M. (2019). Application of hierarchical spatial autoregressive models to develop land value maps in urbanized areas, ISPRS International Journal of Geo-Information 8(4): 195.spa
dc.relation.referencesCepeda, E. (2016). Double generalized linear models, Disponible en http://www.redeabe.org.br/novosinape2016/minicursos/minicurso2.pdf. Online; accessed 26 May 2019.spa
dc.relation.referencesCepeda, E., Urdinola, B. & Rodríguez, D. (2012). Double generalized spatial econometric models, Communications in Statistics-Simulation and Computation 41(5): 671–685.spa
dc.relation.referencesClapp, J. M., Kim, H.-J. & Gelfand, A. E. (2002). Predicting spatial patterns of house prices using lpr and bayesian smoothing, Real Estate Economics 30(4): 505–532.spa
dc.relation.referencesCliff, A. & Ord, K. (1970). Spatial autocorrelation: a review of existing and new measures with applications, Economic Geography 46(sup1): 269–292.spa
dc.relation.referencesCole, T. & Green, P. (1992). Smoothing reference centile curves: the lms method and penalized likelihood, Statistics in medicine 11(10): 1305–1319.spa
dc.relation.referencesCressie, N. (1993). Statistics for spatial data, Wiley series in probability and mathematical statistics: Applied probability and statistics, John Wiley.spa
dc.relation.referencesDacey, M. (1965). A review on measures of contiguity for two and k-color maps, Technical report, Northwestern University. Evanstone.spa
dc.relation.referencesDavid, H. & Rubinfeld, D. (1978). Hedonic housing prices and the demand for clean air, Journal of environmental economics and management 5(1): 81–102.spa
dc.relation.referencesDe Boor, C. (1978). A practical guide to splines, Vol. 27, Springer-Verlag, New York.spa
dc.relation.referencesDurbán, M. (2006). Métodos de suavizado eficientes con p-splines, http://www.est.uc3m.es/durban/esp/web/cursos/Colombia/material/Pspline.pdf. Online; accessed 27 February 2019.spa
dc.relation.referencesEckey, H.-F., Dreger, C. & Tu¨rck, M. (2006). European regional convergence in a human capital augmented solow model, Technical report, Volkswirtschaftliche Diskussionsbeitrage.spa
dc.relation.referencesEilers, P. H. & Marx, B. D. (1996). Flexible smoothing with b-splines and penalties, Statistical science pp. 89–102.spa
dc.relation.referencesFahrmeir, L., Kneib, T., Lang, S. & Marx, B. (2013). Regression: models, methods and applications, Springer Science & Business Media. Berlín.spa
dc.relation.referencesFaraway, J. J. (2016). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models, Chapman and Hall/CRC. Boca Ratón.spa
dc.relation.referencesGeary, R. (1954). The contiguity ratio and statistical mapping, The incorporated statistician 5(3): 115–146.spa
dc.relation.referencesGoulard, M., Laurent, T. & Thomas-Agnan, C. (2017). About predictions in spatial autoregressive models: Optimal and almost optimal strategies, Spatial Economic Analysis 12(2-3): 304–325.spa
dc.relation.referencesHastie, T. & Tibshirani, R. (1990). Generalized additive models, Chapman and Hall/CRC. London.spa
dc.relation.referencesKelejian, H. & Prucha, I. (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, The Journal of Real Estate Finance and Economics 17(1): 99–121.spa
dc.relation.referencesLancaster, K. J. (1966). A new approach to consumer theory, Journal of political economy 74(2): 132–157.spa
dc.relation.referencesLee, Y., Ronnegard, L. & Noh, M. (2017). Data analysis using hierarchical generalized linear models with R, CRC Press. Boca Ratón.spa
dc.relation.referencesLeSage, J. P. (1999). The theory and practice of spatial econometrics, University of Toledo. Toledo, Ohio 28(11).spa
dc.relation.referencesLeSage, J. & Pace, R. (2009). Introduction to spatial econometrics, Chapman and Hall/CRC. Boca Ratón.spa
dc.relation.referencesLiu, S. & Yang, Z. (2015). Modified qml estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality, Regional Science and Urban Economics 52: 50–70.spa
dc.relation.referencesMínguez, R., Basile, R. & Durbán, M. (2019). An alternative semiparametric model for spatial panel data, Statistical Methods & Applications pp. 1–40.spa
dc.relation.referencesMínguez, R., Durbán, M. L. & Basile, R. (2016). Spatio-temporal autoregressive semiparametric model for the analysis of regional economic data, Technical report, Dipartimento di Economia e Finanza, LUISS Guido Carli.spa
dc.relation.referencesMontero, J., Mínguez, R. & Durbán, M. (2012). Sar models with nonparametric spatial trends. a p-spline approach, Estadística Española 54(177): 89–111.spa
dc.relation.referencesMontero, J., Mínguez, R. & Fernández, G. (2018). Housing price prediction: parametric versus semi-parametric spatial hedonic models, Journal of Geographical Systems 20(1): 27– 55.spa
dc.relation.referencesMoran, P. (1948). The interpretation of statistical maps, Journal of the Royal Statistical Society. Series B (Methodological) 10(2): 243–251.spa
dc.relation.referencesMoreno, R. & Vayá, E. (2000). Técnicas econométricas para el tratamiento de datos espaciales: la econometría espacial, Vol. 44, Ediciones Universitat Barcelona.spa
dc.relation.referencesPace, R. K. & Gilley, O. W. (1997). Using the spatial configuration of the data to improve estimation, The Journal of Real Estate Finance and Economics 14(3): 333–340.spa
dc.relation.referencesPérez, J. A. (2006). Econometría espacial y ciencia regional, Investigación económica 65(258): 129–160.spa
dc.relation.referencesPlant, R. E. (2018). Spatial data analysis in ecology and agriculture using R, CRC Press.spa
dc.relation.referencesR Core Team (2020). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/spa
dc.relation.referencesRigby, R. & Stasinopoulos, D. (1996). A semi-parametric additive model for variance heterogeneity, Statistics and Computing 6(1): 57–65.spa
dc.relation.referencesRigby, R. & Stasinopoulos, M. (2005). Generalized additive models for location, scale and shape, Journal of the Royal Statistical Society: Series C (Applied Statistics) 54(3): 507– 554.spa
dc.relation.referencesRodríguez, M., Lee, D.-J., Kneib, T., Durbán, M. & Eilers, P. (2015). Fast smoothing parameter separation in multidimensional generalized p-splines: the sap algorithm, Statistics and Computing 25(5): 941–957.spa
dc.relation.referencesRuppert, D., Wand, M. P. & Carroll, R. J. (2003). Semiparametric regression, Cambridge University Press. New York.spa
dc.relation.referencesRuttenauer, T. (2019). Spatial regression models: A systematic comparison of different model specifications using monte carlo experiments, Sociological Methods & Research p. 0049124119882467.spa
dc.relation.referencesSicacha, J. & Cepeda, E. (2018). Package BSPADATA.spa
dc.relation.referencesSilverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting, Journal of the Royal Statistical Society: Series B (Methodological) 47(1): 1–21.spa
dc.relation.referencesStasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V. & De Bastiani, F. (2017). Flexible regression and smoothing: using GAMLSS in R, Chapman and Hall/CRC.spa
dc.relation.referencesStasinopoulos, M., Rigby, B., Voudouris, V., Akantziliotou, C., Enea, M. & Kiose, D. (2020). Package gamlss.spa
dc.relation.referencesVayá, E. (1998). Localización, crecimiento y externalidades regionales. Una propuesta basada en la econometría espacial, Universitat de Barcelona. Barcelona.spa
dc.relation.referencesVer Hoef, J. M., Peterson, E. E., Hooten, M. B., Hanks, E. M. & Fortin, M.-J. (2018). Spatial autoregressive models for statistical inference from ecological data, Ecological Monographs 88(1): 36–59.spa
dc.relation.referencesWahba, G. (1990). Spline models for observational data, SIAM. Philadelphia.spa
dc.relation.referencesWood, S. (2006). On confidence intervals for generalized additive models based on penalized regression splines, Australian & New Zealand Journal of Statistics 48(4): 445–464.spa
dc.relation.referencesWood, S. (2017). Generalized additive models: An Introduction with R, Chapman and Hall/CRC. Boca Ratón.spa
dc.relation.referencesWood, S. (2020). Package mgcv, R package version.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalModelo aditivo generalizadospa
dc.subject.proposalGeneralized additive modeleng
dc.subject.proposalEconometría espacialspa
dc.subject.proposalSpatial econometricseng
dc.subject.proposalSmoothingeng
dc.subject.proposalSuavizamientospa
dc.subject.proposalRegresión no paramétricaspa
dc.subject.proposalNonparametric regressioneng
dc.subject.proposalPrecios hedónicosspa
dc.subject.proposalHedonic pricingeng
dc.titleModelación conjunta de media y varianza en modelos semiparamétricos autorregresivos espacialesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1093773164.2020.pdf
Tamaño:
1.97 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: