Un modelo TRI de múltiples facetas para la evaluación del desempeño docente en el aula

dc.contributor.advisorMontenegro Díaz, Alvaro Mauriciospa
dc.contributor.authorCordoba Perozo, Karen Rosanaspa
dc.contributor.researchgroupSICS Research Groupspa
dc.date.accessioned2020-08-13T14:45:21Zspa
dc.date.available2020-08-13T14:45:21Zspa
dc.date.issued2020-06-19spa
dc.description.abstractTeacher evaluation in higher education has been a controversial topic and its use is frequent in this field for taking decision. In most of cases, the evaluation is based on the assumption that students learn more from highly qualified teachers and its validity is based on the fact that students observe the teachers performances in the classroom. Therefore, the students should be the evaluators under the assumption that they will respond sincerely when asked about the teacher performance. However, many studies question about the methodologies used for getting such measurements, in general, because the averages by categorical responses have little statistical sense. In this document, the measurement of teaching performance is proposed through a multi-faceted TRI model that takes into account parameters associated with the severity of the evaluator and an additional parameter that is related to the effect of the evaluated course. For the model estimation, Bayesian inference techniques were used due to the large number of parameters to be estimated. The proposal was applied to a data set obtained from a survey of perception of teaching performance conducted by the Faculty of Science of the National University of Colombia to students of the same faculty. The proposed model was evaluated with goodness of fit statistics and compared with a model that did not include the additional parameter. The results obtained indicate that the proposed model had a better fit and the selection criteria indicate that the proposed model was more appropriate for the measurement. Additionally, using auxiliary variables, differences were observed between the qualifications given by female students and male students and the qualifications by postgraduate students and undergraduate students, in addition, there were differences between the estimated average difficulties of the courses according to the study area that offers.spa
dc.description.abstractLa evaluación del desempeño docente en la educación superior ha sido un tema controversial y de frecuente uso en este campo para la toma de decisiones. En la mayoría de casos, se basan en el supuesto de que los estudiantes aprenden más de profesores altamente calificados y su validez se sustenta en el hecho de que los estudiantes observan el desempeño de los docentes en el salón de clase. Por lo tanto, deberían ser ellos los evaluadores bajo el supuesto que responderán sinceramente cuando sean preguntados por el desempeño del docente. Sin embargo, muchos estudios ponen en duda las metodologías usadas para dichas mediciones, en general, porque los promedios de respuestas categóricas tienen poco sentido estadístico. En este documento, se propone la medición del desempeño docente a través de un modelo de TRI de múltiples facetas que tiene en cuenta parámetros asociados a la severidad del evaluador y un parámetro adicional que está relacionado con el efecto del curso evaluado. Para la estimación del modelo se hizo uso de técnicas de inferencia bayesiana debido a la gran cantidad de parámetros a estimar. La propuesta se aplicó a un conjunto de datos obtenido de una encuesta de percepción de desempeño docente realizada por la Facultad de Ciencias de la Universidad Nacional de Colombia a estudiantes de la misma durante el año 2015. El modelo propuesto se evaluó con estadísticas de bondad de ajuste y se comparó con un modelo que no contempla el parámetro adicional. Los resultados obtenidos indican que el modelo propuesto presentó mejor ajuste y los criterios de selección indican que el modelo propuesto es más apropiado para la medición. Adicionalmente, haciendo uso de variables auxiliares se observaron diferencias entre las calificaciones otorgadas por estudiantes mujeres y estudiantes hombres y por estudiantes pertenecientes a programas de posgrado y de pregrado, además, se observaron diferencias entre las dificultades promedio estimadas de los cursos según el área de estudio.spa
dc.description.additionalLínea de Investigación: Teoría de Respuesta al Ítemspa
dc.description.degreelevelMaestríaspa
dc.format.extent71spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78018
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesBélanger, C. H. & Longden, B. (2009). The effective teacher’s characteristics as perceived by students, Tertiary Education and Management 15(4): 323–340.spa
dc.relation.referencesBox, G. E. (1980). Sampling and bayes’ inference in scientific modelling and robustness, Journal of the Royal Statistical Society: Series A (General) 143(4): 383–404.spa
dc.relation.referencesBraga, M., Paccagnella, M. & Pellizzari, M. (2014). Evaluating students’ evaluations of professors, Economics of Education Review 41: 71–88.spa
dc.relation.referencesCameletti, M. & Caviezel, V. (2012). The cronbach-mesbah curve for assessing the unidimensionality of an item set: The r package cmc.spa
dc.relation.referencesCarpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Bru-baker, M., Guo, J., Li, P. & Riddell, A. (2017). Stan: A probabilistic programming language, Journal of statistical software 76(1).spa
dc.relation.referencesCasella, G. & George, E. I. (1992). Explaining the gibbs sampler, The American Statistician 46 (3): 167–174.spa
dc.relation.referencesCentra, J. A. (1993). Reflective Faculty Evaluation: Enhancing Teaching and Determining Faculty Effectiveness. The Jossey-Bass Higher and Adult Education Series., ERIC.spa
dc.relation.referencesCentra, J. A. & Creech, F. R. (1976). The relationship between student teachers and course characteristics and student ratings of teacher effectiveness, Project Report, Princeton,NJ, Educational Testing Service, pp. 76–1.spa
dc.relation.referencesChen, M.-H., Shao, Q.-M. & Ibrahim, J. G. (2012). Monte Carlo methods in Bayesian computation, Springer Science & Business Media.spa
dc.relation.referencesClayson, D. E. (2009). Student evaluations of teaching: Are they related to what students learn? a meta-analysis and review of the literature, Journal of Marketing Education 31(1): 16–30.spa
dc.relation.referencesCohen, P. A. (1981). Student ratings of instruction and student achievement: A meta-analysis of multisection validity studies, Review of educational Research 51(3): 281–309.spa
dc.relation.referencesCranton, P. A. & Smith, R. A. (1986). A new look at the effect of course characteristics on student ratings of instruction, American Educational Research Journal 23(1): 117–128.spa
dc.relation.referencesCronbach, L. J. (1951). Coefficient alpha and the internal structure of tests, psychometrika 16(3): 297–334.spa
dc.relation.referencesde Andrade, D. F., Tavares, H. R. & da Cunha Valle, R. (2000). Teoria da resposta ao item: conceitos e aplicações, ABE, Sao Paulo.spa
dc.relation.referencesEckes, T. (2011). Introduction to many-facet rasch measurement, Frankfurt: Peter Lang.spa
dc.relation.referencesFeldman, K. A. (1977). Consistency and variability among college students in rating theirteachers and courses: A review and analysis, Research in Higher Education 6(3): 223–274.spa
dc.relation.referencesFeldman, K. A. (1978). Course characteristics and college students’ ratings of their teachers: What we know and what we don’t, Research in Higher Education 9(3): 199–242.spa
dc.relation.referencesFeldman, K. A. (1979). The significance of circumstances for college students’ ratings of their teachers and courses, Research in Higher Education 10(2): 149–172.spa
dc.relation.referencesFeldman, K. A. (1983). Seniority and experience of college teachers as related to evaluations they receive from students, Research in Higher Education 18(1): 3–124.spa
dc.relation.referencesFeldman, K. A. (1987). Research productivity and scholarly accomplishment of college teachers as related to their instructional effectiveness: A review and exploration, Research in higher education 26(3): 227–298spa
dc.relation.referencesFeldman, K. A. (1989). The association between student ratings of specific instructional dimensions and student achievement: Refining and extending the synthesis of data from multisection validity studies, Research in Higher education 30(6): 583–645.spa
dc.relation.referencesFeldman, K. A. (1992). College students’ views of male and female college teachers: Part (i) —evidence from the social laboratory and experiments, Research in Higher Education 33(3): 317–375spa
dc.relation.referencesFox, J.-P. (2010). Bayesian item response modeling: Theory and applications, Springer Science & Business Media.spa
dc.relation.referencesGalbraith, C. S., Merrill, G. B. & Kline, D. M. (2012). Are student evaluations of teaching effectiveness valid for measuring student learning outcomes in business related classes? a neural network and bayesian analyses, Research in Higher Education 53(3): 353–374.spa
dc.relation.referencesGelfand, A. E., Dey, D. K. & Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods, Technical report, Stanford Univ CA Dept of Statisticsspa
dc.relation.referencesGelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2013). Bayesian data analysis, Chapman and Hall/CRC.spa
dc.relation.referencesGelman, A., Hwang, J. & Vehtari, A. (2014). Understanding predictive information criteriafor bayesian models, Statistics and computing 24(6): 997–1016spa
dc.relation.referencesGelman, A., Lee, D. & Guo, J. (2015). Stan: A probabilistic programming language for bayesian inference and optimization, Journal of Educational and Behavioral Statistics 40(5): 530–543.spa
dc.relation.referencesGelman, A., Meng, X.-L. & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies, Statistica sinica pp. 733–760.spa
dc.relation.referencesGelman, A., Rubin, D. B. et al. (1992). Inference from iterative simulation using multiple sequences, Statistical science 7(4): 457–472.spa
dc.relation.referencesGeman, S. & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images, IEEE Transactions on pattern analysis and machine intelligence (6): 721–741.spa
dc.relation.referencesGriewank, A. & Walther, A. (2008). Evaluating derivatives: principles and techniques of algorithmic differentiation, Vol. 105, Siam.spa
dc.relation.referencesHambleton, R. K., Swaminathan, H. & Rogers, H. J. (1991). Fundamentals of item response theory, Vol. 2, Sage.spa
dc.relation.referencesHastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications,Biometrika 57(1): 97–109.spa
dc.relation.referencesHoffman, M. D. & Gelman, A. (2014). The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo., Journal of Machine Learning Research 15(1): 1593–1623spa
dc.relation.referencesJolliffe, I. T. (2002). Principal components in regression analysis, Principal component analysis pp. 167–198.spa
dc.relation.referencesKoushki, P. A. & Kunh, H. A. J. (1982). How realiable are student evaluations of teachers?, Engineering Education 72: 362–367spa
dc.relation.referencesLord, F. M. & Novick, M. R. (2008). Statistical theories of mental test scores, IAP.spa
dc.relation.referencesLuo, Y. & Jiao, H. (2018). Using the stan program for bayesian item response theory, Educational and psychological measurement 78 (3): 384–408.spa
dc.relation.referencesMarsh, H. W. (1987). Students’ evaluations of university teaching: Research findings, methodological issues, and directions for future research, International journal of educational research 11(3): 253–388.spa
dc.relation.referencesMarsh, H. W. (2007). Students’ evaluations of university teaching: Dimensionality, reliability, validity, potential biases and usefulness, The scholarship of teaching and learning in higher education: An evidence-based perspective, Springer, pp. 319–383.spa
dc.relation.referencesMartin, E. (1984). Power and authority in the classroom: Sexist stereotypes in teaching evaluations, Signs: Journal of Women in Culture and Society 9(3): 482–492.spa
dc.relation.referencesMasters, G. N. (1982). A rasch model for partial credit scoring, Psychometrika 47(2): 149–174.spa
dc.relation.referencesMetropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953). Equation of state calculations by fast computing machines, The journal of chemical physics 21(6): 1087–1092.spa
dc.relation.referencesMetropolis, N. & Ulam, S. (1949). The monte carlo method, Journal of the American statistical association 44(247): 335–341.spa
dc.relation.referencesMurray, H. G. (2005). Student evaluation of teaching: Has it made a difference, Annual Meeting of the Society for Teaching and Learning in Higher Education. Charlottetown, Prince Edward Island.spa
dc.relation.referencesNeal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods, Department of Computer Science, University of Toronto, Toronto, ON, Canada.spa
dc.relation.referencesNeal, R. M. et al. (2011). Mcmc using hamiltonian dynamics, Handbook of markov chain monte carlo 2(11): 2.spa
dc.relation.referencesOstini, R. & Nering, M. L. (2006). Polytomous item response theory models, number 144, Sage.spa
dc.relation.referencesPerry, R. P., Niemi, R. R. & Jones, K. (1974). Effect of prior teaching evaluations and lecture presentation on ratings of teaching performance., Journal of Educational Psychology 66(6): 851.spa
dc.relation.referencesRoberts, G. O. (1996). Markov chain concepts related to sampling algorithms, Markov chain Monte Carlo in practice 57: 45–58.spa
dc.relation.referencesSmall, A. C., Hollenbeck, A. R. & Haley, R. L. (1982). The effect of emotional state on student ratings of instructors, Teaching of Psychology 9(4): 205–211.spa
dc.relation.referencesSpencer, P. A. & Flyr, M. L. (1992). The formal evaluation as an impetus to classroom change: Myth or reality?. Riverside, CA Research/Technical Reportspa
dc.relation.referencesSpiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the royal statistical society: Series b (statistical methodology) 64(4): 583–639.spa
dc.relation.referencesStan (2018). Stan Modeling Language Users Guide and Reference Manual. Version 2.18.0. URL: http://mc-stan.orgspa
dc.relation.referencesStark, P. & Freishtat, R. (2014). An evaluation of course evaluations, ScienceOpen Re-search.spa
dc.relation.referencesUttl, B., Eche, A., Fast, O., Mathison, B., Valladares Montemayor, H. & Raab,V. (2012). Student evaluation of instruction/teaching (sei/set) review, Calgary, AB, Canada: Mount Royal Faculty Association Retrieved from: http://mrfa.net/files/MRFASEIReviewv6. pdf.spa
dc.relation.referencesUttl, B., White, C. A. & Gonzalez, D. W. (2017). Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related, Studies in Educational Evaluation 54: 22–42.spa
dc.relation.referencesVan Der Linden, W. J. & Hambleton, R. K. (1997). Item response theory: Brief history, common models, and extensions, Handbook of modern item response theory, Springer, pp. 1–28.spa
dc.relation.referencesVehtari, A., Gelman, A. & Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and waic, Statistics and computing 27(5): 1413–1432.spa
dc.relation.referencesWachtel, H. K. (1998). Student evaluation of college teaching effectiveness: A brief review, Assessment & Evaluation in Higher Education 23(2): 191–212.spa
dc.relation.referencesWatanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory, Journal of Machine Learning Research 11(Dec): 3571–3594.spa
dc.relation.referencesWolfe, E. W. & Dobria, L. (2008). Applications of the multifaceted rasch model, Best practices in quantitative methods pp. 71–85.spa
dc.relation.referencesAbrami, P. C., Perry, R. P. & Leventhal, L. (1982). The relationship between student personality characteristics, teacher ratings, and student achievement., Journal of Educational Psychology 74(1): 111.spa
dc.relation.referencesAleamoni, L. M. (1981). Student ratings of instruction, inJ. Millman (ed.), Handbook of Teacher Evaluation, Beverly Hills, Calif.: Sage Publications, Beverly Hills, pp. 110–145.spa
dc.relation.referencesAndrich, D. (1978). A rating formulation for ordered response categories, Psychometrika 43(4): 561–573.spa
dc.relation.referencesAriyo, O., Quintero, A., Muñoz, J., Verbeke, G. & Lesaffre, E. (2019). Bayesian model selection in linear mixed models for longitudinal data, Journal of Applied Statistics pp. 1–24.spa
dc.relation.referencesBartholomew, D. J., Knott, M. & Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach, Vol. 904, John Wiley & Sons.spa
dc.relation.referencesBasow, S. A. & Silberg, N. T. (1987). Student evaluations of college professors: Are female and male professors rated differently?, Journal of educational psychology 79(3): 308.spa
dc.relation.referencesBecker, W. E. & Watts, M.(1999). How departments of economics evaluate teaching, American Economic Review 89(2): 344–349.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc378 - Educación superior (Educación terciaria)spa
dc.subject.proposalmodelos de TRI de múltiples facetasspa
dc.subject.proposalmulti-faceted TRI modeleng
dc.subject.proposalteacher performanceeng
dc.subject.proposaldesempeño docentespa
dc.subject.proposalbayesian inferenceeng
dc.subject.proposalinferencia bayesianaspa
dc.subject.proposalEducaciónspa
dc.subject.proposalEducationeng
dc.titleUn modelo TRI de múltiples facetas para la evaluación del desempeño docente en el aulaspa
dc.title.alternativeA multi-faceted TRI model for the evaluation of teacher performance in the classroomspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023936219.2020.pdf
Tamaño:
1.04 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: