Modelamiento de la formación de microcavidades en silicio poroso (SP): densidad y distribución de poros

dc.contributor.advisorDussán Cuenca, Andersonspa
dc.contributor.authorVinchira Morato, Manuel Daríospa
dc.contributor.researchgroupMateriales Nanoestructurados y sus Aplicacionesspa
dc.date.accessioned2020-08-14T20:43:47Zspa
dc.date.available2020-08-14T20:43:47Zspa
dc.date.issued2020-06-19spa
dc.description.abstractEn el presente trabajo se fabricaron muestras de silicio poroso (SP) sobre sustratos de c-Si tipo-p con orientación <100> y <111> y resistividad eléctrica de 1 − 5mΩ cm, a partir de la variación de los parámetros de síntesis como: la concentración del electrolito de [HF:DMF], la densidad de corriente y tiempo de anodización. Se obtuvieron los parámetros óptimos para tener muestras de SP reproducibles y uniformes. Se encontró una morfología final dependiente de los parámetros de anodización y las condiciones de pretratamiento. Se realizaron las mediciones características de la morfología de los poros formados por medio de la aplicación de software ImageJ, dando lugar a estructuras con dimensiones de mesoporos y macroporos. Adicionalmente, se estudió la distribución de poros y se determinó la densidad de poros formados como función de los parámetros de síntesis. Posteriormente, se construyó un algoritmo en C++ modelando el perfil de crecimiento de los poros por el método de simulación de autómatas celulares (AC) basado en los caminos de reacción propuestos por Memming y Schwant para formación de SP. Se contrastaron los resultados experimentales con el perfil resultante de simulación para determinar la validez del modelo.spa
dc.description.abstractIn the present work samples of porous silicon (SP) were manufactured on substrates of c-Si type-p with orientation <100> and <111> and electrical resistivity of 1 − 5mΩ-cm, from the variation of the synthesis parameters such as: [HF: DMF] electrolyte concentration, current density and anodizing time. The optimal parameters were obtained to have reproducible and uniform SP samples. A final morphology was found depending on the anodizing parameters and pretreatment conditions. The characteristic measurements of the morphology of the pores formed by means of the application of ImageJ software were carried out, giving rise to structures with mesopore and macropore dimensions. Additionally, the pore distribution was studied and the density of pores formed as a function of the synthesis parameters was determined. Subsequently, a C ++ algorithm was constructed by modeling the growth profile of the pores by the simulation method of cellular automata (CA) based on the reaction paths proposed by Memming and Schwant for SP formation. The experimental results were contrasted with the resulting simulation profile to determine the validity of the model.spa
dc.description.degreelevelMaestríaspa
dc.format.extent97spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78046
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesLehmann, V. The Physics of Macropore Formation in Low Doped n‐Type Silicon. Journal of the Electrochemical Society, 140(10), 2836-2843 (1993).spa
dc.relation.referencesCandal, R., Bilmes, S., Blesa, M. . Semiconductores con actividad fotocatalítica. en Eliminación de contaminantes por fotocatálisis heterogénea. M. Blesa, Ed. La Plata (Argentina): CYTED, 79-101 (2001).spa
dc.relation.referencesZhang, G. X. Porous silicon: morphology and formation mechanisms. In Modern aspects of electrochemistry (pp. 65-133). Springer US (2006).spa
dc.relation.referencesBisi, O., Ossicini, S., Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surface science reports, 38(1), 1-126 (2000).spa
dc.relation.referencesBarillaro, G., Bruschi, P., Pieri, F. Two-dimensional macroscopical simulations of porous silicon growth. Computational materials science, 24(1), 99-104 (2002).spa
dc.relation.referencesRico, F. F. Fabricación y Caracterización de dispositivos basados en Silicio Poroso sobre c-Si. Aplicaciones eléctricas, Ópticas y Térmicas(Doctoral dissertation, Universitat Rovira i Virgili) (2007).spa
dc.relation.referencesLehmann, V. Electrochemistry of silicon: instrumentation, science, materials and applications. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications, by Volker Lehmann, pp. 286. ISBN 3-527-29321-3. Wiley-VCH, (2002).spa
dc.relation.referencesRauscher, M., Spohn, H. Porous silicon formation and electropolishing. Physical Review E, 64(3), 031604 (2001).spa
dc.relation.referencesLehmann, V., Stengl, R., Luigart, A. On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials Science and Engineering: B, 69, 11-22 (2000).spa
dc.relation.referencesRonkel, F., Schultze, J. W. Electrochemical aspects of porous silicon formation. Journal of Porous Materials, 7(1-3), 11-16 (2000).spa
dc.relation.referencesSailor, M. J. Porous silicon in practice: Preparation, Characterization and Applications. John Wiley & Sons (2012).spa
dc.relation.referencesLawrence, B., Alagumanikumaran, N., Prithivikumaran, N., Jeyakumaran, N., Ramadas, V., Natarajan, B. Effect of surface modification on the porous silicon infiltrated with biomolecules. Applied Surface Science, 264, 767-771 (2013).spa
dc.relation.referencesParkhutik, V. Porous silicon—mechanisms of growth and applications. Solid-State Electronics, 43(6), 1121-1141 (1999).spa
dc.relation.referencesBalagurov, L. A., Loginov, B. A., Petrova, E. A., Sapelkin, A., Unal, B., Yarkin, D. G. Formation of porous silicon at elevated temperatures.Electrochimica acta, 51(14), 2938-2941 (2006).spa
dc.relation.referencesKorotcenkov, G., Cho, B. K. Silicon porosification: State of the Art.Critical Reviews in Solid State and Materials Sciences, 35(3), 153-260 (2010).spa
dc.relation.referencesLiu, D. Q., Blackwood, D. J. Mechanism and dissolution rates of anodic oxide films on silicon. Electrochimica Acta, 105, 209-217 (2013).spa
dc.relation.referencesSharma, S. N., Sharma, R. K., Lakshmikumar, S. T. Role of an electrolyte and substrate on the stability of porous silicon. Physica E: Low-dimensional Systems and Nanostructures, 28(3), 264-272 (2005).spa
dc.relation.referencesPatel, B. K., Mythili, R., Vijayalaxmi, R., Soni, R. K., Behera, S. N., Sahu, S. N. . Porous Si formation and study of its structural and vibrational properties. Physica B: Condensed Matter, 322(1), 146-153 (2002).spa
dc.relation.referencesJakubowicz, J., Szlaferek, A. Computational simulations of pore nucleation in silicon (111). Electrochemistry Communications, 10(2), 329-334 (2008).spa
dc.relation.referencesGranitzer, P., Rumpf, K. Porous silicon—a versatile host material. Materials, 3(2), 943-998 (2010).spa
dc.relation.referencesManiya, N. H., Patel, S. R., Murthy, Z. V. P. Electrochemical preparation of microstructured porous silicon layers for drug delivery applications. Superlattices and Microstructures, 55, 144-150 (2013).spa
dc.relation.referencesChristophersen, M., Carstensen, J., Föll, H. Crystal Orientation Dependence of Macropore Formation in p-Type Silicon Using Organic Electrolytes.Ciencia de Materiales, Facultad de Ingeniería, Kaiserstr. 2, D-24143 Kiel, Alemania (2000).spa
dc.relation.referencesPeng, K. Q., Yan, Y. J., Gao, S. P., Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Advanced Materials, 14(16), 1164 (2002).spa
dc.relation.referencesLehmann, V., Rönnebeck, S. The Physics of Macropore Formation in Low-Doped p-Type Silicon. Journal of The Electrochemical Society, 146 (8) 2968-2975 (1999)spa
dc.relation.referencesCullis, A. G., L. T. Canham,L. T., Calcott, P. D. J.The structural and luminescence properties of porous silicon 82 (3),909-965 (1997).spa
dc.relation.referencesBalagurov, L. A., Loginov, B. A., Petrova, E. A., Sapelkin, A., Unal, B., Yarkin, D. G. Formation of porous silicon at elevated temperatures. Electrochimica Acta. Vol 51. 2938-2941. (2006).spa
dc.relation.referencesToranzos, V. J., Koropecki, R. R., Urteaga, R., Ortiz, G. P. (2008, November). Electroluminiscencia en silicio poroso nanoestructurado. Anales AFA (Vol. 20, No. 1).spa
dc.relation.referencesLehmann, V. The physics of macroporous silicon formation. Thin Solid Films, 255(1), 1-4 (1995).spa
dc.relation.referencesFöll, H., Christophersen, M., Carstensen, J., Hasse, G. (2002). Formation and application of porous silicon. Materials Science and Engineering: R: Reports, 39(4), 93-141.spa
dc.relation.referencesD.V.Garcia. Efecto de la temperatura sobre la morfología de silicio poroso: aplicación en los filtros UV. Tesis profesional. Universidad Autónoma del estado de Morelos (2007).spa
dc.relation.referencesUrata, T., Fukami, K., Sakka, T., Ogata, Y. H. Pore formation in p-type silicon in solutions in containing different types of alcohol, Nanoscale Research Letters. 7(1): p. 5 (2012).spa
dc.relation.referencesKim, H., Cho, N. Morphological and nanostructural features of porous silicon prepared by electrochemical etching. Nanoscale Research Letters , 7:408 (2012)spa
dc.relation.referencesFlake, J. C., Rieger, M. R., Schmid, G. M.,Kohla, P. A. Electrochemical Etching of Silicon in Nonaqueous Electrolytes Containing Hydrogen Fluoride or Fluoroborate.Journal of The Electrochemical Society, 146 (5) 1960-1965 (1999).spa
dc.relation.referencesReiger, M. M., Kohl, P. A. Mechanism of (111) Silicon Etching in HF-Acetonitrile. Journal of The Electrochemical Society, 142(5), 1490 (1995).spa
dc.relation.referencesSmith, R. L., Collins, S. D. Porous silicon formation mechanisms. Journal of Applied Physics, 71(8), R1–R22. (1992).spa
dc.relation.referencesKulathuraan,K., Mohanraj, K., Natarajan, B.Structural, optical and electrical characterization of nanostructured porous silicon: Effect of current density. Spectrochimica Act Part A: Molecular and Biomolecular Spectroscopy. Vol 152, 51-57 (2016).spa
dc.relation.referencesCanham, L. Mechanical Properties of Porous Silicon. Handbook of porous silicon. Springer (2017).spa
dc.relation.referencesFakiria, S., Montagneb, A., Rahmounc, K., Lostb, A., Ziouchea, K. Mechanical properties of porous silicon and oxidized porous silicon by nanoindentation technique. Materials Science and Engineering:A. Vol 711, 470-475 (2018).spa
dc.relation.referencesRahmouna, K., Faraouna, H. I., Bassoub, G., Mathieuc, C., N.E.Chabane Saria, N. E. Determination of Mechanical Properties of Porous Silicon with Image Analysis and Finite Element. Physics Procedia. Vol 55, 390-395 (2014)spa
dc.relation.referencesElia, P., Nativ-Roth, E., Zeiri, Y., Porat, Z. Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs. Microporous and Mesoporous Materials. Vol 225, 465-471 (2016).spa
dc.relation.referencesKumar, P., Lemmens, P., Ghosh, M., Ludwig, F., Schilling, M. Effect of HF Concentration on Physical and Electronic Properties of Electrochemically Formed Nanoporous Silicon. Journal of Nanomaterials, 1–7 (2009)spa
dc.relation.referencesKopani,M.,Mikula, M., Kosnac, D. Vojtek, P., Gregus, J., Vavrinsky, E., Jergel, M., Pincik, E .Effect of etching time on structure of p-type porous silicon.Applied Surface Science 461,44–47 (2018).spa
dc.relation.referencesMedia, E.M.,Outemzabet, R. Surface chemistry of a hydrogenated mesoporous p-type silicon. Applied Surface Science, 395, 61–65 (2017).spa
dc.relation.referencesOutemzabet, R., Cherkaoui, M., Gabouze, N., Ozanam, F., Kesri, N., Chazalviel, J.-N. . Origin of the Anisotropy in the Anodic Dissolution of Silicon. Journal of The Electrochemical Society, 153(2), C108 (2006).spa
dc.relation.referencesRasi, S., Naderi,N., M. Moradi, M. Correlation Between Surface Morphology and Optical Properties of Quasi-Columnar Porous Silicon Nanostructures. ACERP: Vol. 2, No. 4, 44-49 (2016).spa
dc.relation.referencesSpivak, Y. M., Mjakin, S. V., Moshnikov, V. A., Panov, M. F., Belorus, A. O., Bobkov, A. A. (2016). Surface Functionality Features of Porous Silicon Prepared and Treated in Different Conditions. Journal of Nanomaterials, 1–8 (2016).spa
dc.relation.referencesMozetič, M. Surface Modification to Improve Properties of Materials. Materials, 12(3), 441.(2019).spa
dc.relation.referencesLion, A., Laidani, N., Bettotti, P., Piotto, C., Pepponi, G., Barozzi, M., Scarpa, M. Angle resolved XPS for selective characterization of internal and external surface of porous silicon. Applied Surface Science, 406, 144–149 (2017).spa
dc.relation.referencesKhaldi, K., Sam, S., Lounas, A., Yaddaden, C., Gabouze, N.-E. Comparative investigation of two methods for Acetylcholinesterase enzyme immobilization on modified porous silicon. Applied Surface Science, 421, 148–154 (2017).spa
dc.relation.referencesAzaiez, K., Zaghouani, R. B., Khamlich, S., Meddeb, H., Dimassi, W. Enhancement of porous silicon photoluminescence property by lithium chloride treatment. Applied Surface Science, 441, 272–276 (2018).spa
dc.relation.referencesBiswas, P., Karn, A. K., Balasubramanian, P., Kale, P. G). Biosensor for detection of dissolved chromium in potable water: A review. Biosensors and Bioelectronics, 94, 589–604 (2017).spa
dc.relation.referencesCChatterjee, S., Saxena, M., Padmanabhan, D., Jayachandra, M., Pandya, H. J. Futuristic medical implants using bioresorbable materials and devices. Biosensors and Bioelectronics, 111489 (2019).spa
dc.relation.referencesSoussi, I., Mazouz, Z., Collart-Dutilleul, P. Y., Echabaane, M., Martin, M., Cloitre, T., … Othmane, A. Electrochemical and optical investigation of dental pulp stem cell adhesion on modified porous silicon scaffolds. Colloids and Surfaces B: Biointerfaces (2019).spa
dc.relation.referencesDegli Esposti, M., Chiellini, F., Bondioli, F., Morselli, D., Fabbri, P. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Materials Science and Engineering: C, 100, 286–296 (2019).spa
dc.relation.referencesGuillem-Marti, J., Cinca, N., Punset, M., García Cano, I., Gil, F. J., Guilemany, J. M., Dosta, S). Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids and Surfaces B: Biointerfaces. (2019.spa
dc.relation.referencesKaur, P., Singh, K. J., Yadav, A. K., Kaur, S., Kaur, R., Kaur, S. Growth of Bone Like Hydroxyapatite and Cell Viability Studies on CeO2 Doped CaO-P2O5-MgO-SiO2 Bioceramics. Materials Chemistry and Physics, 122352 (2019).spa
dc.relation.referencesKier, L. B., Seybold, P. G., Cheng C. K. Cellular automata modeling of chemical systems. Springer (2005).spa
dc.relation.referencesWolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, (1983).spa
dc.relation.referencesKarafyllidis, I.,Thanailakis, A. A model for predicting forest fire spreading using cellular automata. Ecological Modelling, 99(1), 87–97. (1997).spa
dc.relation.referencesSchiff J. L. Cellular Automata: A Discrete View of the World. Hoboken, N.J.: Wiley- Interscience. (2008)spa
dc.relation.referencesPérez-Brokate, C. F., di Caprio, D., Mahé, É., Féron, D., de Lamare, J.. Cyclic voltammetry simulations with cellular automata. Journal of Computational Science, 11, 269–278 (2015)spa
dc.relation.referencesW. Chmielewski, D. di Caprio and J. Stafiej, “Cellular automata modeling of nanopore formation in passive layers”, in Proceedings of the International Conference on Scientific Computing CSC’11, pp. 236–240, Las Vegas June (2014).spa
dc.relation.referencesPérez-Brokate, C. F., di Caprio, D., Féron, D., de Lamare, J., Chaussé, A. Three dimensional discrete stochastic model of occluded corrosion cell. Corrosion Science, 111, 230–241 (2016).spa
dc.relation.referencesBartosik, Ł., Stafiej, J., Di Caprio, D. Cellular automata model of anodization. Journal of Computational Science, 11, 309–316 (2015).spa
dc.relation.referencesChopard, B., Droz, M. (1998). Cellular Automata Modeling of Physical Systems. Cambridge Books Online (1998).spa
dc.relation.referencesGorodetsky, A.E.,Tarasova, I.L. The simulation of the porous silicon formation. Matematicheskoe Modelirovanie. 20 (2008).spa
dc.relation.referencesStępień, J., di Caprio, D., Stafiej, J. 3D simulations of the metal passivation process in potentiostatic conditions using discrete lattice gas automaton. Electrochimica Acta (2018).spa
dc.relation.referencesVautrin-Ul, C., Taleb, A., Stafiej, J., Chaussé, A., Badiali, J. P. Mesoscopic modelling of corrosion phenomena: Coupling between electrochemical and mechanical processes, analysis of the deviation from the Faraday law. Electrochimica Acta, 52(17), 5368–5376(2007).spa
dc.relation.referencesSaunier, J., Chaussé, A., Stafiej, J., & Badiali, J. P. Simulations of diffusion limited corrosion at the metal|environment interface. Journal of Electroanalytical Chemistry, 563(2), 239–247 (2004).spa
dc.relation.referencesJohn, G. Porous silicon: theoretical studies. Physics Reports, 263(2), 93–151(1995).spa
dc.relation.referencesM,Hjorth- Jensen. Computational Physics. Department of Physics, University, Oslo (2003).spa
dc.relation.referencesBertel, S. Estudio morfológico y espectroscópico de silicio poroso para su uso como sustrato en el crecimiento de Hidroxiapatita. Grupo: Materiales Nanoestructurados y sus Aplicaciones. Universidad Nacional de Colombia (2014).spa
dc.relation.referencesMelo S,F. Preparación y estudio de la morfología de silicio poroso (SP). Grupo: Materiales Nanoestructurados y sus Aplicaciones. Universidad Nacional de Colombia (2014).spa
dc.relation.referencesSancho Caparrini, F. Autómatas Celulares. http://www.cs.us.es/~fsancho/?e=66 (2016)spa
dc.relation.referencesZhao, M., McCormack, A., Keswani, M. The formation mechanism of gradient porous Si in a contactless electrochemical process. Journal of Materials Chemistry C, 4(19), 4204–4210 (2016).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc005 - Programación, programas, datos de computaciónspa
dc.subject.proposalsilicio porosospa
dc.subject.proposalporous siliconeng
dc.subject.proposalmodelingeng
dc.subject.proposalmodelamientospa
dc.subject.proposalautomatas celularesspa
dc.subject.proposalcellular automataeng
dc.subject.proposalnanoestructuradosspa
dc.subject.proposalnanostructuredeng
dc.subject.proposalmorphologyeng
dc.subject.proposalmorfologíaspa
dc.titleModelamiento de la formación de microcavidades en silicio poroso (SP): densidad y distribución de porosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestría en Ciencias Física - Manuel Darío Vinchira M.pdf
Tamaño:
5.87 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: