Evaluación de la permeación de cafeína a partir de productos cosméticos comerciales con acción lipolítica empleando ensayos in vitro en celdas de difusión de Franz

dc.contributor.advisorBaena Aristizabal, Yolima
dc.contributor.advisorMartín Reyes, Liliana Astrid
dc.contributor.authorLeon Merchan, Heinny Estefania
dc.contributor.researchgroupSistemas Para Liberación Controlada de Moléculas Biológicamente Activasspa
dc.date.accessioned2023-08-08T19:47:02Z
dc.date.available2023-08-08T19:47:02Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn el mercado colombiano se comercializan cosméticos con proclamas lipolíticas que presentan en sus ingredientes cafeína, un compuesto ampliamente utilizado por su acción sobre los mecanismos de acumulación de grasa en el adipocito. Para cumplir con el efecto cosmético prometido, el ingrediente debería poder permear a la hipodermis donde se encuentran las células adiposas, no obstante, esto también implicaría que la cafeína presente en estos productos podría alcanzar el fluido sistémico, causando contravención con la definición de cosméticos según la legislación nacional. En este sentido, se seleccionaron siete productos del mercado colombiano con proclamas lipolíticas que contienen cafeína, con el objetivo de recolectar información sobre la concentración de ésta que podría alcanzar la hipodermis y/o el fluido sistémico al ser aplicados sobre la piel. El desarrollo metodológico incluyó, la realización de ensayos in vitro en celdas de difusión de Franz con dos espesores diferentes de membrana, una con tejido hipodérmico y otra sin éste, determinando la concentración permeada bajo una aplicación de dosis en condiciones de uso. Así mismo, se realizó la caracterización fisicoquímica de los productos elegidos en términos de pH, parámetros reológicos, microestructura, percepción sensorial y fórmula cualicuantitativa, para establecer una correlación entre el comportamiento de permeación y las características propias del vehículo. El estudio de caracterización de la fórmula de los productos evidenció que tres ellos no presentan un contenido de cafeína superior al 0,009 [%w/w] bajo el método de extracción desarrollado. Los demás productos presentaron concentraciones de cafeína superiores al 0,39 [%w/w] y fueron evaluados en ensayos de liberación y permeación, demostrando que la cafeína efectivamente se libera del producto, pero la que logra alcanzar la capa hipodérmica con respecto a la dosis aplicada es inferior al 1%, excepto para un producto que obtuvo un porcentaje del 10 probablemente a causa de sus propiedades fisicoquímicas. No obstante, la concentración de cafeína que se encontró en la capa hipodérmica es menor a la concentración estudiada en los reportes encontrados en la literatura que puede causar un efecto del tipo lipolítico, por lo que no es seguro que pudiese generar el efecto proclamado. Por otro lado, se determinó que la cafeína de estas formulaciones tópicas podría alcanzar el fluido sistémico. En conjunto, los resultados demuestran la importancia de formular adecuadamente un producto que permita la entrega del ingrediente funcional en la capa objetivo, y el valor de implementar este tipo de herramientas in vitro para contribuir con información relacionada con la seguridad y eficacia, con miras a fortalecer los programas de cosmetovigilancia. (Texto tomado de la fuente)spa
dc.description.abstractCosmetics with lipolytic claims that contain caffeine in their ingredients are commercialized in the Colombian market. Caffeine is a compound widely used for its action on the mechanisms of fat accumulation in the adipocyte. To fulfill the promised cosmetic effect, the ingredient should be able to permeate the hypodermis where the adipose cells are, however, this would also imply that the caffeine present in these products could reach the systemic fluid, causing contravention with the definition of cosmetics under national legislation. In this context, seven products from the Colombian market with lipolytic claims containing caffeine were selected, with the aim of collecting information on the concentration of caffeine that could reach the hypodermis and/or the systemic fluid when the product is applied to the skin. The methodological development includes in vitro testing in Franz diffusion cells with two different membrane thicknesses, one with hypodermic tissue and the other without it, determining the permeated concentration under a dose application under conditions of use. It also includes the physicochemical characterization of the products chosen in terms of pH, rheological parameters, microstructure, sensory perception and qualitative-quantitative formula, to establish a correlation between permeation behavior and vehicle characteristics. The characterization study of the formula of the products evidence that three of them do not present a caffeine content greater than 0,009 [%w/w] under the extraction method developed. The other products had caffeine concentrations higher than 0,39 [%w/w] and were evaluated in release and permeation trials, showing that caffeine is effectively released from the product, but that the caffeine that reaches the hypodermic layer with respect to the applied dose is less than 1%, except for a product which obtained a percentage of 10 because of its physicochemical properties. However, the concentration of caffeine found in the hypodermic layer is lower than the concentration studied in the reports found in the literature that can cause a lipolytic-type effect, so it is not certain that it could generate the proclaimed effect. On the other hand, it was determined that the caffeine of these topical formulations could reach the systemic fluid. All these results demonstrate the importance of formulating a suitable product that allows the delivery of the functional ingredient in the target layer, and the value of implementing such in vitro tools to contribute information related to safety and efficacy to strengthen cosmetovigilance programs.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.format.extentxxi, 159 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84496
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.references1. H. I. M. Raja K Sivamani, Jared R. Jagdeo, Peter Elsner, Cosmeceuticals and Active Cosmetics. 2016.spa
dc.relation.references2. A. Benaiges, “Concepto, clasificación y tratamiento de la celulitis,” Dermofarmacia, vol. 22. pp. 78–88, May 2003, Accessed: Nov. 09, 2020. [Online]. Available: https://www.elsevier.es/es-revista-offarm-4-pdf-13047748.spa
dc.relation.references3. A. Herman and A. P. Herman, “Caffeine’s mechanisms of action and its cosmetic use,” Skin Pharmacology and Physiology, vol. 26, no. 1. pp. 8–14, Dec. 2012, doi: 10.1159/000343174spa
dc.relation.references4. N. Hasegawa; and M. Mori, “Effect of Powdered Green Tea and Its Caffeine Content on Lipogenesis and Lipolysis in 3T3-L1 Cell,” Chem. Pharm. Bull., vol. 40, no. 6, pp. 1569–1572, 2000.spa
dc.relation.references5. Comunidad Andina, “DECISIÓN 833. Actualización de la Decisión 516 ‘Armonización de Legislaciones en materia de Productos Cosméticos,’” Gac. Of., 2018.spa
dc.relation.references6. República de colombia, “DECRETO NÚMERO 677 DE 1995 Por el cual se reglamenta parcialmente el Régimen de Registros y Licencias, el Control de Calidad, así como el Régimen de Vigilancia Sanitaria de Medicamentos, Cosméticos, Preparaciones Farmacéuticas a base de Recursos Naturales,” vol. 246, no. abril 26, pp. 1–70, 1995.spa
dc.relation.references7. G. Beauchamp, A. Amaducci, and M. Cook, “Caffeine Toxicity: A Brief Review and Update,” Clin. Pediatr. Emerg. Med., vol. 18, no. 3, pp. 197–202, 2017, doi: 10.1016/j.cpem.2017.07.002.spa
dc.relation.references8. C. Willson, “The clinical toxicology of caffeine: A review and case study,” Toxicol. Reports, vol. 5, no. November, pp. 1140–1152, 2018, doi: 10.1016/j.toxrep.2018.11.002.spa
dc.relation.references9. A. S. Tolley, “Caffeine: Consumption, side effects and impact on performance and mood,” Caffeine Consum. Side Eff. Impact Perform. Mood, no. January, pp. 1–217, 2014.spa
dc.relation.references10. M. Gajewska et al., “In vitro-to-in vivo correlation of the skin penetration, liver clearance and hepatotoxicity of caffeine,” Food Chem. Toxicol., vol. 75, pp. 39–49, 2015, doi: 10.1016/j.fct.2014.10.017.spa
dc.relation.references11. J. Michael, V. Nadine, K. Maike, and B. Adolf, “Erratum: Caffeine and Its Pharmacological Benefits in the Management of Androgenetic Alopecia: A Review (Skin Pharmacol Physiol (2020) 33 (93-109) DOI: 10.1159/000508228),” Skin Pharmacol. Physiol., pp. 153–169, 2020, doi: 10.1159/000511410.spa
dc.relation.references12. M. Visconti, W. Haidari, and S. Feldman, “Therapeutic use of caffeine in dermatology: A literature review,” J. Dermatology Dermatologic Surg., vol. 24, no. 1, p. 18, 2020, doi: 10.4103/jdds.jdds_52_19.spa
dc.relation.references13. C. L. Petersen, V. Kalil, and V. Campos, Drug Delivery in Dermatology. Rio de Janeiro: Springer, 2021.spa
dc.relation.references14. J. B. Wilkinson and R. J. Moore, Cosmetología de Harry, vol. 53, no. 9. 1990.spa
dc.relation.references15. M. A. Bolzinger, S. Briançon, J. Pelletier, and Y. Chevalier, “Penetration of drugs through skin, a complex rate-controlling membrane,” Curr. Opin. Colloid Interface Sci., vol. 17, no. 3, pp. 156–165, 2012, doi: 10.1016/j.cocis.2012.02.001.spa
dc.relation.references16. D. T. Ginat, Neuroradiological imaging of skin diseases and related conditions. Chicago: Springer, 2018.spa
dc.relation.references17. K. S. Saladin, Human Anatomy - Kenneth S. Saladin. Mc Graw Hill, 2007.spa
dc.relation.references18. W. Montagna, A. M. Kligman, K. S. Carlisle, W. Montagna, A. M. Kligman, and K. S. Carlisle, “Hypodermis,” in Atlas of Normal Human Skin, Springer New York, 1992, pp. 367–377.spa
dc.relation.references19. J. A. Bouwstra and M. Ponec, “The skin barrier in healthy and diseased state,” Biochim. Biophys. Acta, vol. 1758, no. 12, pp. 2080–2095, Dec. 2006, doi: 10.1016/j.bbamem.2006.06.021.spa
dc.relation.references20. T. Agner, Skin Barrier Function. current problems in dermatology, 2016.spa
dc.relation.references21. S. Singh and J. Singh, “Transdermal drug delivery by passive diffusion and iontophoresis: A review,” Med. Res. Rev., vol. 13, no. 5, pp. 569–621, Sep. 1993, doi: 10.1002/med.2610130504.spa
dc.relation.references22. SCCP, “SCCP/0970/06 Basic Criteria for the in vitro assessment of dermal absorption of cosmetic ingredients-update March 2006, European Commission,” no. March, 2006, [Online]. Available: https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_s_03.pdf.spa
dc.relation.references23. J. Kielhorn, S. Melching-Kollmuß, I. Mangelsdorf, and World Health Organization, “Environmental health criteria 235 for dermal absorption,” Environ. Heal. Criteria, 2006.spa
dc.relation.references24. A. Z. Alkilani, M. T. C. McCrudden, and R. F. Donnelly, “Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum,” Pharmaceutics, vol. 7, no. 4, pp. 438–470, 2015, doi: 10.3390/pharmaceutics7040438.spa
dc.relation.references25. S. Trauer et al., “Permeation of topically applied caffeine through human skin - A comparison of in vivo and in vitro data,” Br. J. Clin. Pharmacol., vol. 68, no. 2, pp. 181–186, Aug. 2009, doi: 10.1111/j.1365-2125.2009.03463.x.spa
dc.relation.references26. B. J. Thomas and B. C. Finnin, “The transdermal revolution,” Drug Discov. Today, vol. 9, no. 16, pp. 697–703, 2004, doi: 10.1016/S1359-6446(04)03180-0.spa
dc.relation.references27. R. Gutiérrez Fernández de Molina, “Estudios De Difusión A Través De Piel De Formulaciones Liposómicas De Aciclovir,” Universidad Computense de Madrid, 2011.spa
dc.relation.references28. C. Ehrhardt and K.-J. Kim, Drug Absorption Studies. New York: Springer, 2008.spa
dc.relation.references29. OECD, “OECD Test Guideline 428: Skin Absorption: in vitro method,” no. April. 2004.spa
dc.relation.references30. V. Rogiers and M. Pauwels, “Critical Analysis of the Safety Assessment of Cosmetic Ingredients Performed at the European Level: the in vitro delmal absorption study,” in Safety assesment of cosmetics in Europe, KARGER, 2008, pp. 74–81.spa
dc.relation.references31. D. Selzer, M. M. A. Abdel-Mottaleb, T. Hahn, U. F. Schaefer, and D. Neumann, “Finite and infinite dosing: Difficulties in measurements, evaluations and predictions,” Adv. Drug Deliv. Rev., vol. 65, no. 2, pp. 278–294, 2013, doi: 10.1016/j.addr.2012.06.010.spa
dc.relation.references32. L. Luo and M. E. Lane, “Topical and transdermal delivery of caffeine,” International Journal of Pharmaceutics, vol. 490, no. 1–2. Elsevier B.V., pp. 155–164, May 31, 2015, doi: 10.1016/j.ijpharm.2015.05.050.spa
dc.relation.references33. M. O’Neil, The Merck index : an encyclopedia of chemicals, drugs, and biologicals., Fifteenth edition /. Cambridge UK: Royal Society of Chemistry, 2013.spa
dc.relation.references34. “Caffeine C8H10N4O2 | ChemSpider.” http://www.chemspider.com/Chemical-Structure.2424.html (accessed Aug. 10, 2020).spa
dc.relation.references35. European Food Safety Authority, “Scientific Opinion on the safety of caffeine,” EFSA J., vol. 13, no. 5, 2015, doi: 10.2903/j.efsa.2015.4102.spa
dc.relation.references36. A. Murray and J. Traylor, Caffeine Toxicity. StatPearls Publishing, 2018.spa
dc.relation.references37. A. Bolsoni-Lopes and M. I. C. Alonso-Vale, “Lipolysis and lipases in white adipose tissue – An update,” Archives of Endocrinology and Metabolism, vol. 59, no. 4. Sociedade Brasileira de Endocrinologia e Metabologia, pp. 335–342, 2015, doi: 10.1590/2359-3997000000067.spa
dc.relation.references38. A. Lass, R. Zimmermann, M. Oberer, and R. Zechner, “Lipolysis - A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores,” Progress in Lipid Research, vol. 50, no. 1. Elsevier Ltd, pp. 14–27, 2011, doi: 10.1016/j.plipres.2010.10.004.spa
dc.relation.references39. M. V. Velasco Robles, C. Tano Nakamura, G. M. Machado-Santelli, C. Vladi Olga, T. M. Kaneko, and A. Rolim Baby, “Effects of caffeine and siloxanetriol alginate caffeine, as anticellulite agents, on fatty tissue: histological evaluation,” 2008.spa
dc.relation.references40. E. Dupont et al., “An integral topical gel for cellulite reduction: Results from a double-blind, randomized, placebo-controlled evaluation of efficacy,” Clin. Cosmet. Investig. Dermatol., vol. 7, pp. 73–88, Feb. 2014, doi: 10.2147/CCID.S53580.spa
dc.relation.references41. B. Vogelgesang, I. Bonnet, N. Godard, B. Sohm, and E. Perrier, “In vitro and in vivo efficacy of sulfo-carrabiose, a sugar-based cosmetic ingredient with anti-cellulite properties,” Int. J. Cosmet. Sci., vol. 33, no. 2, pp. 120–125, Apr. 2011, doi: 10.1111/j.1468-2494.2010.00593.x.spa
dc.relation.references42. F. Turati et al., “Efficacy of cosmetic products in cellulite reduction: systematic review and meta-analysis,” J. Eur. Acad. Dermatology Venereol., vol. 28, no. 1, pp. 1–15, Jan. 2014, doi: 10.1111/jdv.12193.spa
dc.relation.references43. R. Roure, T. Oddos, A. Rossi, F. Vial, and C. Bertin, “Evaluation of the efficacy of a topical cosmetic slimming product combining tetrahydroxypropyl ethylenediamine, caffeine, carnitine, forskolin and retinol, in vitro, ex vivo and in vivo studies,” Int. J. Cosmet. Sci., vol. 33, no. 6, pp. 519–526, Dec. 2011, doi: 10.1111/j.1468-2494.2011.00665.x.spa
dc.relation.references44. C. Dray, D. Daviaud, C. Guigné, P. Valet, and I. Castan-Laurell, “Caffeine reduces TNFα up-regulation in human adipose tissue primary culture,” J. Physiol. Biochem., vol. 63, no. 4, pp. 329–336, 2007, doi: 10.1007/BF03165764.spa
dc.relation.references45. H. Hamishehkar, J. Shokri, S. Fallahi, A. Jahangiri, S. Ghanbarzadeh, and M. Kouhsoltani, “Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite,” Drug Dev. Ind. Pharm., vol. 41, no. 10, pp. 1640–1646, 2015, doi: 10.3109/03639045.2014.980426.spa
dc.relation.references46. S. Murosaki et al., “A combination of caffeine, arginine, soy isoflavones, and L-carnitine enhances both lipolysis and fatty acid oxidation in 3T3-L1 and HepG2 cells in vitro and in KK mice in vivo,” J. Nutr., vol. 137, no. 10, pp. 2252–2257, 2007, doi: 10.1093/jn/137.10.2252.spa
dc.relation.references47. C. Sugiura, G. Zheng, L. Liu, and K. Sayama, “Catechins and Caffeine Promote Lipid Metabolism and Heat Production Through the Transformation of Differentiated 3T3-L1 Adipocytes from White to Beige Adipocytes,” J. Food Sci., vol. 85, no. 1, pp. 192–200, 2020, doi: 10.1111/1750-3841.14811.spa
dc.relation.references48. J. Stanek and M. Wochner, “Current and Future ‘ Body-sculpting ’ Cosmetics The Science of Fat,” vol. 130, no. 9, pp. 20–28, 2015.spa
dc.relation.references49. D. Hexsel and M. Soirefmann, “Cosmeceuticals for Cellulite,” Seminars in Cutaneous Medicine and Surgery, vol. 30, no. 3. pp. 167–170, Sep. 2011, doi: 10.1016/j.sder.2011.06.005.spa
dc.relation.references50. N. Otberg et al., “The role of hair follicles in the percutaneous absorption of caffeine,” Br. J. Clin. Pharmacol., vol. 65, no. 4, pp. 488–492, 2008, doi: 10.1111/j.1365-2125.2007.03065.x.spa
dc.relation.references51. M. A. Bolzinger, S. Briançon, J. Pelletier, H. Fessi, and Y. Chevalier, “Percutaneous release of caffeine from microemulsion, emulsion and gel dosage forms,” Eur. J. Pharm. Biopharm., vol. 68, no. 2, pp. 446–451, 2008, doi: 10.1016/j.ejpb.2007.10.018.spa
dc.relation.references52. “Caffeine - Registration Dossier - ECHA,” Dermal absorption. https://echa.europa.eu/registration-dossier/-/registered-dossier/10085/7/2/3 (accessed Nov. 10, 2020).spa
dc.relation.references53. J. Frelichowska, M. A. Bolzinger, J. P. Valour, H. Mouaziz, J. Pelletier, and Y. Chevalier, “Pickering w/o emulsions: Drug release and topical delivery,” Int. J. Pharm., vol. 368, no. 1–2, pp. 7–15, Feb. 2009, doi: 10.1016/j.ijpharm.2008.09.057.spa
dc.relation.references54. M. V Debandi, N. J. François, and M. E. Daraio, “Evaluación De Distintas Membranas Para Liberación in Vitro De Principios Activos Anticelulíticos.,” Aci, vol. 2, no. 2, pp. 97–105, 2011.spa
dc.relation.references55. S. Meesen, “In vitro percutaneus absorption of caffeine from cosmetic formulations,” no. thesis Msc.Cosmetic Sciences, 2011.spa
dc.relation.references56. R. Mustapha, C. Lafforgue, N. Fenina, and J. Marty, “Influence of drug concentration on the diffusion parameters of caffeine,” Indian J. Pharmacol., vol. 43, no. 2, pp. 157–162, Apr. 2011, doi: 10.4103/0253-7613.77351.spa
dc.relation.references57. J. Djajadisastra, Sutriyo, and Hadyanti, “Percutane transport profile of caffeine and aminophyllin as anticellulite and the influences of other substances on in vitro penetration,” Int. J. Pharm. Pharm. Sci., vol. 6, no. 5, pp. 532–538, 2014.spa
dc.relation.references58. E. Abd et al., “Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test,” Int. J. Cosmet. Sci., pp. 1–10, 2020, doi: 10.1111/ics.12659.spa
dc.relation.references59. N. H. C. S. Silva et al., “Topical caffeine delivery using biocellulose membranes: A potential innovative system for cellulite treatment,” Cellulose, vol. 21, no. 1, pp. 665–674, Feb. 2014, doi: 10.1007/s10570-013-0114-1.spa
dc.relation.references60. I. Iskandarsyah, A. W. Puteri, and E. Ernysagita, “Penetration test of caffeine in ethosome and desmosome gel using an in vitro method,” Int. J. Appl. Pharm., vol. 9, pp. 120–123, 2017, doi: 10.22159/ijap.2017.v9s1.69_76.spa
dc.relation.references61. F. Farner, L. Bors, Á. Bajza, G. Karvaly, I. Antal, and F. Erdő, “Validation of an In vitro-in vivo Assay System for Evaluation of Transdermal Delivery of Caffeine,” Drug Deliv. Lett., vol. 9, no. 1, pp. 15–20, Sep. 2018, doi: 10.2174/2210303108666180903102107.spa
dc.relation.references62. J. Pavlačková et al., “Transdermal absorption of active substances from cosmetic vehicles,” J. Cosmet. Dermatol., vol. 18, no. 5, pp. 1410–1415, 2019, doi: 10.1111/jocd.12873.spa
dc.relation.references63. J. Ageis, H. Suryadi, and M. Jufri, “Formulation and in vitro skin penetration of a solid lipid nanoparticle gel containing coffea arabica extract,” Int. J. Appl. Pharm., vol. 12, no. Special Issue 1, pp. 177–181, 2020, doi: 10.22159/ijap.2020.v12s1.FF040.spa
dc.relation.references64. Y. de Lafuente, A. Ochoa-Andrade, M. E. Parente, M. C. Palena, and A. F. Jimenez-Kairuz, “Preparation and evaluation of caffeine bioadhesive emulgels for cosmetic applications based on formulation design using QbD tools,” Int. J. Cosmet. Sci., pp. 548–556, 2020, doi: 10.1111/ics.12638.spa
dc.relation.references65. M. Dias, A. Farinha, E. Faustino, J. Hadgraft, J. Pais, and C. Toscano, “Topical delivery of caffeine from some commercial formulations,” 1999.spa
dc.relation.references66. A. Smith, A. Chadha, R. Homan, and G. Baki, “Skin Penetration of Caffeine from Marketed Eye Creams,” New York, 2017. [Online]. Available: http://permegear.com/wp-.spa
dc.relation.references67. MINISTERIO DE SALUD, “RESOLUCION NUMERO 8430 DE 1993 ‘Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud,’” 1993.spa
dc.relation.references68. República de Colombia, “Estatuto nacional de proteccion de los animales Ley 84 de 1989,” El Congr. Colomb., vol. 5, no. Diciembre 27, p. 14, 1989, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0.spa
dc.relation.references69. Congreso de Colombia, “Ley 2047 de 2020 "por el cual se prohíbe en colombia la experimentación, importación, fabricación y comercialización de productos cosméticos, sus ingredientes o combinaciones de ellos que sean objeto de pruebas con animales y se dictan otras disposiciones,” 2020.spa
dc.relation.references70. J. Y. Kim, J. Y. Song, E. J. Lee, and S. K. Park, “Rheological properties and microstructures of Carbopol gel network system,” Colloid Polym. Sci., vol. 281, no. 7, pp. 614–623, 2003, doi: 10.1007/s00396-002-0808-7.spa
dc.relation.references71. R. Injac, B. Srdjenovic, M. Prijatelj, M. Boskovic, K. Karljikovic-Rajic, and B. Strukelj, “Determination of caffeine and associated compounds in food, beverages, natural products, pharmaceuticals, and cosmetics by micellar electrokinetic capillary chromatography,” J. Chromatogr. Sci., vol. 46, no. 2, pp. 137–143, 2008, doi: 10.1093/chromsci/46.2.137.spa
dc.relation.references72. E. Marchei, D. De Orsi, C. Guarino, S. Dorato, R. Pacifici, and S. Pichini, “Measurement of iodide and caffeine content in cellulite reduction cosmetic products sold in the European market,” Anal. Methods, vol. 5, no. 2, pp. 376–383, Jan. 2013, doi: 10.1039/c2ay25761k.spa
dc.relation.references73. K. Mladenov and S. SunariĆ, “Caffeine in Hair Care and Anticellulite Cosmetics: Sample Preparation, Solid-Phase Extraction, and HPLC Determination,” J. Cosmet. Sci., vol. 71, no. 5, pp. 251–262, 2020.spa
dc.relation.references74. L. M. Sanabria, J. A. Martínez, and Y. Baena, “Validación de una metodología analítica por HPLC-DAD para la cuantificación de cafeína en un ensayo de permeación in vitro empleando mucosa oral porcina,” Rev. Colomb. Ciencias Químico-Farmacéuticas, vol. 46, no. 2, May 2017, doi: 10.15446/rcciquifa.v46n2.67956.spa
dc.relation.references75. A. M. A. Hasan and M. E.-S. Abdel-Raouf, Cellulose-Based Superabsorbent Hydrogels. 2019.spa
dc.relation.references76. L. A. Martínez, L. M. Sanabria, and Y. Baena, “Safety assessment of complex benzoic acid using in vitro permeation assays with pig skin in Franz cells,” pp. 1–17, 2020.spa
dc.relation.references77. Y. Baena, L. Dallos, R. Manzo, and L. Ponce D’León, “Estandarización de celdas de Franz para la realización de ensayos de liberación de fármacos a partir de complejos con polielectrolitos,” Rev. Colomb. Ciencias Químico-Farmacéuticas, vol. 40, no. 2, pp. 174–188, 2011.spa
dc.relation.references78. L. Sanabria, “Contribución a la implementación de un ensayo de permeación bucal, in vitro, empleano cafeína como compuesto modelo.,” Universidad Nacional de Colombia, 2017.spa
dc.relation.references79. European Medicines Agency, “ICH Guideline M10 on Bioanalytical Method Validation,” Sci. Med. Heal., vol. 44, no. March, p. 57, 2019.spa
dc.relation.references80. Food and Drug Administration -Guidance for Industry, “Bioanalytical method validation,” in Guidance for Industry, 2018, pp. 1–41, doi: 10.5958/2231-5675.2015.00035.6.spa
dc.relation.references81. E. A. Fernández-montes, “Control de calidad Fórmulas dermatológicas,” Farm. Prof., vol. 17, pp. 70–75, 2003, [Online]. Available: https://www.elsevier.es/es-revista-farmacia-profesional-3-pdf-13044489.spa
dc.relation.references82. K. Welin-Berger, J. A. M. Neelissen, and B. Bergenståhl, “The effect of rheological behaviour of a topical anaesthetic formulation on the release and permeation rates of the active compound,” Eur. J. Pharm. Sci., vol. 13, no. 3, pp. 309–318, 2001, doi: 10.1016/S0928-0987(01)00118-X.spa
dc.relation.references83. L. Binder, J. Mazál, R. Petz, V. Klang, and C. Valenta, “The role of viscosity on skin penetration from cellulose ether-based hydrogels,” Ski. Res. Technol., vol. 25, no. 5, pp. 725–734, 2019, doi: 10.1111/srt.12709.spa
dc.relation.references84. C. Wibowo and K. M. Ng, “Product-oriented process synthesis and development: Creams and pastes,” AIChE J., vol. 47, no. 12, pp. 2746–2767, 2001, doi: 10.1002/aic.690471214.spa
dc.relation.references85. D. Saha and S. Bhattacharya, “Hydrocolloids as thickening and gelling agents in food: A critical review,” J. Food Sci. Technol., vol. 47, no. 6, pp. 587–597, 2010, doi: 10.1007/s13197-010-0162-6.spa
dc.relation.references86. H. Iwata and K. Shimada, Formula Ingredients and production in cosmetics, Springer., vol. 53, no. 9. Japan, 2013.spa
dc.relation.references87. D. W. Lachenmeier, “Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity,” J. Occup. Med. Toxicol., vol. 3, no. 1, pp. 1–16, 2008, doi: 10.1186/1745-6673-3-26.spa
dc.relation.references88. L. C. Becker et al., “Safety Assessment of Glycerin as Used in Cosmetics,” Int. J. Toxicol., vol. 38, no. 3_suppl, pp. 6S-22S, Nov. 2019, doi: 10.1177/1091581819883820.spa
dc.relation.references89. S. Björklund, J. Engblom, K. Thuresson, and E. Sparr, “Glycerol and urea can be used to increase skin permeability in reduced hydration conditions,” Eur. J. Pharm. Sci., vol. 50, no. 5, pp. 638–645, 2013, doi: 10.1016/j.ejps.2013.04.022.spa
dc.relation.references90. “Hansch, C., Leo, A., D. Hoekman. Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society., 1995., p. 31 Hazardous Substances Data Bank (HSDB).” .spa
dc.relation.references91. “Flick, E.W. (ed.). Industrial Solvents Handbook 4 th ed. Noyes Data Corporation., Park Ridge, NJ., 1991., p. 394 Hazardous Substances Data Bank (HSDB).” .spa
dc.relation.references92. C. Reichardt and T. Welton, “Solvents and Solvent Effects in Organic Chemistry: Fourth Edition,” Solvents Solvent Eff. Org. Chem. Fourth Ed., Nov. 2010, doi: 10.1002/9783527632220.spa
dc.relation.references93. “Liquids - Dielectric Constants.” https://www.engineeringtoolbox.com/liquid-dielectric-constants-d_1263.html (accessed Sep. 04, 2022).spa
dc.relation.references94. “Solvent Polarity Table - Miller’s Home.” https://sites.google.com/site/miller00828/in/solvent-polarity-table (accessed Sep. 04, 2022).spa
dc.relation.references95. INVIMA, “Validación de Métodos Analíticos,” pp. 1–92, 2014, [Online]. Available: https://www.invima.gov.co/documents/20143/1433858/Validación+Medicamentos.pdf.spa
dc.relation.references96. Food and Drug Administration, “Methods, Method Verification and Validation,” ORA Lab. Proced., vol. II, pp. 1–19, 2014.spa
dc.relation.references97. M. Akdeniz, S. Gabriel, A. Lichterfeld-Kottner, U. Blume-Peytavi, and J. Kottner, “Transepidermal water loss in healthy adults: a systematic review and meta-analysis update,” Br. J. Dermatol., vol. 179, no. 5, pp. 1049–1055, 2018, doi: 10.1111/bjd.17025.spa
dc.relation.references98. C. Jacques-Jamin, C. Jeanjean-Miquel, A. Domergue, S. Bessou-Touya, and H. Duplan, “Standardization of an in vitro model for evaluating the bioavailability of topically applied compounds on damaged skin: Application to sunscreen analysis,” Skin Pharmacol. Physiol., vol. 30, no. 2, pp. 55–65, 2017, doi: 10.1159/000455196.spa
dc.relation.references99. L. Kong et al., “Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells,” J. Food Biochem., no. January, pp. 1–11, 2021, doi: 10.1111/jfbc.13795.spa
dc.relation.references100. H. Nakabayashi, T. Hashimoto, H. Ashida, S. Nishiumi, and K. Kanazawa, “Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3-L1 adipocytes,” BioFactors, vol. 34, no. 4, pp. 293–302, 2008, doi: 10.1002/biof.5520340405.spa
dc.relation.references101. S. H. Su, H. W. Shyu, Y. T. Yeh, K. M. Chen, H. Yeh, and S. J. Su, “Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells,” Toxicol. Vitr., vol. 27, no. 6, pp. 1830–1837, 2013, doi: 10.1016/j.tiv.2013.05.011.spa
dc.relation.references102. FOOD AND DRUG ADMINISTRATION (FDA), “Thigh Creams (Cellulite Creams) | FDA.” https://www.fda.gov/cosmetics/cosmetic-products/thigh-creams-cellulite-creams (accessed Sep. 06, 2022).spa
dc.relation.references103. M. Nomura et al., “Inhibition of epidermal growth factor-induced cell transformation and Akt activation by caffeine,” Mol. Carcinog., vol. 44, no. 1, pp. 67–76, Sep. 2005, doi: 10.1002/MC.20120.spa
dc.relation.references104. J. V. Forrester, A. D. Dick, P. G. McMenamin, F. Roberts, and E. Pearlman, “General and ocular pharmacology,” Eye, pp. 338-369.e1, Jan. 2016, doi: 10.1016/B978-0-7020-5554-6.00006-X.spa
dc.relation.references105. K. Al-Khamis, S. S. Davis, and J. Hadgraft, “In vitro-in vivo correlations for the percutaneous absorption of salicylates,” Int. J. Pharm., vol. 40, no. 1–2, pp. 111–118, 1987, doi: 10.1016/0378-5173(87)90055-X.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalCafeínaspa
dc.subject.proposalCosméticos lipolíticosspa
dc.subject.proposalCeldas de difusión de Franzspa
dc.subject.proposalCaracterización fisicoquímicaspa
dc.subject.proposalGelspa
dc.subject.proposalEmulgelspa
dc.subject.proposalValidación analíticaspa
dc.subject.proposalCaffeineeng
dc.subject.proposalLipolytic cosmeticseng
dc.subject.proposalFranz diffusion cellseng
dc.subject.proposalPhysicochemical characterizationeng
dc.subject.proposalGeleng
dc.subject.proposalEmulgeleng
dc.subject.proposalAnalytical validationeng
dc.subject.wikidataPermeationeng
dc.subject.wikidataPermeaciónspa
dc.subject.wikidataHipodermis
dc.titleEvaluación de la permeación de cafeína a partir de productos cosméticos comerciales con acción lipolítica empleando ensayos in vitro en celdas de difusión de Franzspa
dc.title.translatedEvaluation of caffeine permeation from commercial cosmetic products with lipolytic action using in vitro assays in Franz diffusion cellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1057599911.2023.pdf
Tamaño:
4.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: