Evaluación de la interferometría diferencial de radar en el estudio de fenómenos de remoción en masa y su uso en alertas tempranas
dc.contributor.advisor | Vargas Cuervo, German | spa |
dc.contributor.author | Leyva Pinto, Tobias | spa |
dc.contributor.cvlac | Leyva Pinto, Tobias [0000983543] | spa |
dc.contributor.orcid | Leyva-Pinto, Tobias [0000-0003-4503-0230] | spa |
dc.contributor.researchgroup | Geotecnologías | spa |
dc.date.accessioned | 2025-04-09T12:55:35Z | |
dc.date.available | 2025-04-09T12:55:35Z | |
dc.date.issued | 2025-03-19 | |
dc.description | ilustraciones, diagramas, fotografías, mapas | spa |
dc.description.abstract | Este documento presenta los análisis realizados sobre diversos fenómenos de remoción en masa a lo largo de Colombia, utilizando la técnica de interferometría diferencial de radar (DInSAR). Para ello, en primer lugar, se describen las principales características de esta herramienta y su aplicación, con un enfoque especial en los diferentes tipos de deslizamiento. A continuación, se expone un breve recuento histórico sobre el uso de la técnica a nivel global y en Colombia. Posteriormente, se realizó un análisis de deformación mediante interferometría sobre un fenómeno específico de remoción en masa: el evento de Paz Vieja localizado en el departamento de Boyacá, Colombia, al cual se le hizo seguimiento durante tres años y cinco meses. Los mapas de deformación obtenidos a partir de la interferometría fueron compilados y analizados de manera inicial con otros interferogramas de la misma órbita, y posteriormente con los mapas de deformación de la órbita opuesta de la misma zona. Este análisis preliminar permitió formular diversas conclusiones, las cuales se verificaron en otros eventos de remoción en masa en Colombia, seleccionados de manera aleatoria del “Sistema de Información de Movimientos en Masa” (SIMMA) del Servicio Geológico Colombiano. Los resultados obtenidos muestran una alternancia entre los momentos de deformación: positiva y negativa, fenómenos especialmente predominantes en eventos de remoción de gran magnitud y en pendientes moderadas. Si bien existen limitaciones causadas por la vegetación y las precipitaciones, estas pueden mitigarse con el uso de otras longitudes de onda como la banda L, algo que puede explorarse en trabajos posteriores. Uno de los hallazgos más interesantes es que, cuando se registran valores elevados de deformación positiva, estos suelen seguirse de una fuerte deformación negativa, lo que puede ser interpretado como un evento de remoción en masa. Esto sugiere la necesidad de profundizar en la definición de umbrales a escala local, para validar estas observaciones iniciales y determinar a partir de qué punto se constituye en un evento amenazante para sus vecinos. Con base en los datos obtenidos y su corroboración, se proponen varias medidas para mejorar los sistemas de alerta temprana para fenómenos de remoción en masa en Colombia. Estas propuestas, junto con recomendaciones para optimizar el procesamiento de los datos de radar se presentan en la parte final del documento (Texto tomado de la fuente) | spa |
dc.description.abstract | The document presented below recapitulates the analyzes carried out in different mass removal phenomena throughout Colombia using the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique. First, it describes the main features of this tool and its application, with a special focus on the different types of landslides. Next, a brief historical overview of the technique’s use globally and in Colombia is provided, after which a deformation analysis was carried out using interferometry on a mass removal phenomenon, in this case the event of Paz Vieja located in the department of Boyacá in Colombia, which was monitored for three years and five months. The deformation maps obtained from the interferometry were initially compiled and analyzed with the other interferograms of the same orbit and later with the deformation maps of the opposite orbit of the same area; This preliminary analysis allowed for the formulation of various conclusions, which were verified against other randomly selected mass removal events in Colombia, chosen from the “Mass Movement Information System” (SIMMA) of the Colombian Geological Service. The results obtained show an alternation between periods of positive and negative deformation, phenomena that are especially predominant in large-scale removal events and on moderate slopes. Although there are limitations caused by vegetation and rainfall, these can be mitigated by using other wavelengths, such as the L-band, something that could be explored in future work. One of the most interesting elements is that when very high values of positive deformation occur, they are often followed by strong negative deformation, which can be interpreted as a mass removal event. This suggests the need to further define local-scale thresholds to validate these initial observations and determine the point at which this constitutes a threatening event for nearby areas. Based on the data obtained and their corroboration, several measures are proposed to improve early warning systems for mass removal phenomena in Colombia. These proposals, along with recommendations to optimize radar data processing, are presented in the final section of the document. | eng |
dc.description.curriculararea | Geografía e Historia.Sede Bogotá | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Geografía | spa |
dc.description.researcharea | Sensores remotos y geomodelamiento | spa |
dc.description.sponsorship | Ministerio de Ciencia, Tecnología e Innovación (MINCIENCIAS) | spa |
dc.format.extent | xviii, 204 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87904 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Humanas | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Humanas - Doctorado en Geografía | spa |
dc.relation.references | Administración Nacional de Aeronáutica y del espacio. NASA. (s.f. 1978). Misision Seasat 1. https://science.nasa.gov/mission/seasat/ (Recuperado el 18 de abril de 2015) | spa |
dc.relation.references | Administración Nacional de Aeronáutica y del espacio (NASA). (2017). ARSET introduction synthetic aperture radar. https://appliedsciences.nasa.gov/join-mission/training/english/arset-introduction-synthetic-aperture-radar (Recuperado el 10 de febrero de 2022) | spa |
dc.relation.references | Administración Nacional de Aeronáutica y del espacio (NASA). (s.f.) Página principal. https://www.nasa.gov/ | spa |
dc.relation.references | Administración Nacional de Aeronáutica y del espacio (NASA). (s.f.). “NISAR: Nasa-Isro Sar Mision”. https://nisar.jpl.nasa.gov/. Recuperado el 16 de enero 2021. | spa |
dc.relation.references | Administración Nacional de Aeronáutica y del espacio NASA. (2017). “ARSET introduction synthetic aperture radar”. https://appliedsciences.nasa.gov/join-mission/training/english/arset-introduction-synthetic-aperture-radar. Recuperado el 10 de febrero de 2020 | spa |
dc.relation.references | Administración Nacional de Aeronáutica y del espacio. NASA. (s.f.) “Applied Remote Sensing Training (ARSET) ”. (https://appliedsciences.nasa.gov) | spa |
dc.relation.references | Agliardi, F., G. B. Crosta, F. Meloni, C. Valle, and C. Rivolta. (2013). “Structurally-Controlled Instability, Damage and Slope Failure in a Porphyry Rock Mass.” Tectonophysics. https://doi.org/10.1016/j.tecto.2013.05.033 | spa |
dc.relation.references | Agostini, A De, M Floris, P Pasquali, M Barbieri, A Cantone, P Riccardi, G Stevan, R Genevois, and N Giesen. (2012). “The Contribute of DInSAR Techniques to Landslide Hazard Evaluation in Mountain and Hilly Regions: A Case Study from Agno Valley (North-Eastern Italian Alps).” EGU General Assembly Conference Abstracts http://adsabs.harvard.edu/abs/2012EGUGA..14.3535D | spa |
dc.relation.references | Agustan, Fumiaki Kimata, Hasanuddin Z. Abidin, and Yoga Era Pamitro. (2010). “Measuring Ground Deformation of the Tropical Volcano, Ibu, Using ALOS-PALSAR Data.” Remote Sensing Letters 1 (1): 37–44. https://doi.org/10.1080/01431160903246717 | spa |
dc.relation.references | Alaska Satellite Facility (ASF). (2014). “Alos palsar rtc/alos palsar radiometric terrain correction”. https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/ | spa |
dc.relation.references | Al-nakib, N. (2000). “Mapping of Large Areas in Tropical Countries.” Archives XXXIII: 19–23 | spa |
dc.relation.references | Alimuddin, Ilham, Luhur Bayuaji, Haeruddin C Maddi, Josaphat Tetuko, and Sri Sumantyo. (2011). “Developing Tropical Landslide Susceptibility Map Using Dinsar Technique of Jers-1 Sar Data” 8: 32–40 | spa |
dc.relation.references | Allan, T D. (1983). Satellite Microwave Remote Sensing. Ellis Horwood Series in Marine Science. Chichester [etc.]: Horwood [etc.] | spa |
dc.relation.references | Alsdorf, De, Jm Melack, T Dunne, La Mertes, Ll Hess, and Lc Smith. (2000). “Interferometric Radar Measurements of Water Level Changes on the Amazon Flood Plain.” Nature 404 (6774): 174–77. https://doi.org/10.1038/35004560 | spa |
dc.relation.references | Amani, Meisam, Brian Brisco, Majid Afshar, S. Mohammad Mirmazloumi, Sahel Mahdavi, Sayyed Mohammad Javad Mirzadeh, Weimin Huang, and Jean Granger. (2019). “A Generalized Supervised Classification Scheme to Produce Provincial Wetland Inventory Maps: An Application of Google Earth Engine for Big Geo Data Processing.” Big Earth Data 3 (4): 378–94. https://doi.org/10.1080/20964471.2019.1690404 | spa |
dc.relation.references | Angel M Felicísimo, Pilar García-Manteca. (1990). “Corrección Del Efecto Topográfico de Las Imágenes Landsat Mediante El Uso de Un Modelo Digital de Elevaciones.” III Reunión Científica Del Grupo de Trabajo En Teledetección, 209–16 | spa |
dc.relation.references | Arbiol, Roman, and Gloria González. (2000). “Map Production in Venezuela Using Airborne Insar” XXXIII: 24–28 | spa |
dc.relation.references | Arisoft. Industrial Internet of Things. (2023) “Las imágenes de radar: RAR y SAR”. https://atisoft.com.mx/capella-space-news/imagenes-radar-rar-y-sar/. Recuperado el 5 de junio de 2023 | spa |
dc.relation.references | Aulard-Macler, M. (2012). “Sentinel-1 Product Definition.” | spa |
dc.relation.references | Bakon, Matus, Daniele Perissin, Milan Lazecky, and Juraj Papco. (2014). “Infrastructure Non-Linear Deformation Monitoring Via Satellite Radar Interferometry.” Procedia Technology 16: 294–300. https://doi.org/10.1016/j.protcy.2014.10.095. | spa |
dc.relation.references | Ballanti, Laurel, Kristin B. Byrd, Isa Woo, and Christopher Ellings. (2017). “Remote Sensing for Wetland Mapping and Historical Change Detection at the Nisqually River Delta.” Sustainability (Switzerland) 9 (11). https://doi.org/10.3390/su9111919. | spa |
dc.relation.references | Bamler, R, and P Hartl. (1998). “Synthetic Aperture Radar Interferometry.” Inverse Problems 14 (4): R1–54. https://doi.org/10.1088/0266-5611/14/4/001. | spa |
dc.relation.references | Bauer, Bernard O. (1999). “On Methodology in Physical Geography.” Main 89 (4): 677–79 | spa |
dc.relation.references | Baugh, Calum A., Paul D. Bates, Guy Schumann, and Mark A. Trigg. (2013). “SRTM Vegetation Removal and Hydrodynamic Modeling Accuracy.” Water Resources Research 49 (9): 5276–89. https://doi.org/10.1002/wrcr.20412. | spa |
dc.relation.references | Berardino, Paolo, Gianfranco Fornaro, Riccardo Lanari, and Eugenio Sansosti. (2002). “A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms.” IEEE Transactions on Geoscience and Remote Sensing 40 (11): 2375–83. https://doi.org/10.1109/TGRS.2002.803792. | spa |
dc.relation.references | Bhatta, Basudeb. (2013). Analysis of Data BT - Research Methods in Remote Sensing. https://doi.org/10.1007/978-94-007-6594-8_4. | spa |
dc.relation.references | Bianchini, Silvia. Pratesi, Fabio. Nolesini, Teresa. and Casagli, Nicola. (2015). “Building Deformation Assessment by Means of Persistent Scatterer Interferometry Analysis on a Landslide-Affected Area: The Volterra (Italy) Case Study. Remote Sensing.” 17 abril. http://eds.b.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=41ad3e78-e32c-410a-a503-c0e74ee7026e%40sessionmgr113&vid=3&hid=111. | spa |
dc.relation.references | Bittelli, Marco, Roberto Valentino, Fiorenzo Salvatorelli, and Paola Rossi Pisa. (2012). “Monitoring Soil-Water and Displacement Conditions Leading to Landslide Occurrence in Partially Saturated Clays.” Geomorphology 173–174: 161–73. https://doi.org/10.1016/j.geomorph.2012.06.006. | spa |
dc.relation.references | Bodin, Xavier, Jean Michel Krysiecki, Philippe Schoeneich, Olivier Le Roux, Lionel Lorier, Thomas Echelard, Michel Peyron, and Andrea Walpersdorf. (2016). “The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps).” Permafrost and Periglacial Processes 223 (March 2014): 209–23. https://doi.org/10.1002/ppp.1887. | spa |
dc.relation.references | Bulmer, M. H., D. N. Petley, W. Murphy, and F. Mantovani. (2006). “Detecting Slope Deformation Using Two-Pass Differential Interferometry: Implications for Landslide Studies on Earth and Other Planetary Bodies.” Journal of Geophysical Research E: Planets 111 (E6): 1–10. https://doi.org/10.1029/2005JE002593. | spa |
dc.relation.references | Butera, M. Kristine. (2015). Remote Sensing of Wetlands. Digest - International Geoscience and Remote Sensing Symposium (IGARSS). Vol. 1. https://doi.org/10.1201/b18210. | spa |
dc.relation.references | Calvello, Michele, Ricardo Neiva D’Orsi, Luca Piciullo, Nelson Paes, Marcelo Magalhaes, and Willy Alvarenga Lacerda. (2014). “The Rio de Janeiro Early Warning System for Rainfall-Induced Landslides: Analysis of Performance for the Years 2010-2013.” International Journal of Disaster Risk Reduction 12: 3–15. https://doi.org/10.1016/j.ijdrr.2014.10.005. | spa |
dc.relation.references | Calvet, Agustín. (2022). “Interferometría Diferencial SAR Para Detectar Deformacion Cortical Por Actividad Sísmica.” Universidad Nacional de La Plata. | spa |
dc.relation.references | Canada Centre for Remote Sensing-Globesar program. (2000). “Material Educativo Para Teledetección Mediante Radares.” In Material Educativo Para Teledeteccion Mediante Radares, edited by Canada Centre for Remote Sensing-Globesar program, 966. Ottawa: Canada Centre for Remote Sensing-Globesar program. | spa |
dc.relation.references | Carvajal P., J.H. (Servicio Geológico Colombiano). (2012). Propuesta Estandarización de La Cartografía Geomorfológica En Colombia. Propuesta de Estandarización de La Cartografía Geomorfológica En Colombia. 1st ed. Bogota. https://doi.org/10.32685/9789589952825. | spa |
dc.relation.references | Casagli, N., P. Farina, D. Leva, G. Nico, and D. Tarchi. (2003). “Ground-Based SAR Interferometry as a Tool for Landslide Monitoring during Emergencies.” IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477) 4 (C): 2924–26. https://doi.org/10.1109/IGARSS.2003.1294633. | spa |
dc.relation.references | Catani, Filippo, Paolo Farina, Sandro Moretti, Giovanni Nico, and Tazio Strozzi. (2005). “On the Application of SAR Interferometry to Geomorphological Studies: Estimation of Landform Attributes and Mass Movements.” Geomorphology 66 (1-4 SPEC. ISS.): 119–31. https://doi.org/10.1016/j.geomorph.2004.08.012. | spa |
dc.relation.references | Chae, Byung Gon, Hyuck Jin Park, Filippo Catani, Alessandro Simoni, and Matteo Berti. (2017). “Landslide Prediction, Monitoring and Early Warning: A Concise Review of State-of-the-Art.” Geosciences Journal 21 (6): 1033–70. https://doi.org/10.1007/s12303-017-0034-4. | spa |
dc.relation.references | Chandra, M. (2008). “ANALYSIS OF ATMOSPHERIC PROPAGATION EFFECTS IN TERRASAR – X IMAGES German Aerospace Center ( DLR ) Microwave and Radar Institute Oberpfaffenhofen , Germany Chemnitz University of Technology Dept . of Microwave Eng . and Photonics.” Analysis, 533–36. | spa |
dc.relation.references | Chavéz, Jorge Lira. (2010). Tratamiento Digital de Imágenes Multiespectrales. Edited by Universidad Nacional Autónoma de México. 2nd ed. Ciudad de México: Universidad Nacional Autónoma de México. | spa |
dc.relation.references | Chen, C W, and H A Zebker. (2002). “Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models.” IEEE Transactions on Geoscience and Remote Sensing 40 (8): 1709–19. https://doi.org/10.1109/TGRS.2002.802453. | spa |
dc.relation.references | Chen, Curtis W, and Howard A Zebker. (2001). “Two-Dimensional Phase Unwrapping with Use of Statistical Models for Cost Functions in Nonlinear Optimization.” Journal of the Optical Society of America A 18 (2): 338–51. https://doi.org/10.1364/JOSAA.18.000338. | spa |
dc.relation.references | Chen, Curtis, and Howard Zebker. (2001). “Network Approaches to Two-Dimensional Phase Unwrapping: Intractability and Two New Algorithms: Erratum.” Journal of The Optical Society of America A-Optics Image Science and Vision - J OPT SOC AM A-OPT IMAGE SCI 18 (May). https://doi.org/10.1364/JOSAA.18.001192. | spa |
dc.relation.references | Chen, Fulong, Hui Lin, and Xianzhi Hu. (2014). “Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-Band ALOS PALSAR and X-Band TerraSAR: A Case Study of Hong Kong, China.” Remote Sensing 6 (2): 1564–86. https://doi.org/10.3390/rs6021564. | spa |
dc.relation.references | Chen, Yu, Dominique Remy, Jean-Luc Froger, Aline Peltier, Nicolas Villeneuve, José Darrozes, Hugo Perfettini, and Sylvain Bonvalot. (2017). “Long-Term Ground Displacement Observations Using InSAR and GNSS at Piton de La Fournaise Volcano between 2009 and 2014.” Remote Sensing of Environment 194: 230–47. https://doi.org/10.1016/j.rse.2017.03.038. | spa |
dc.relation.references | Ciampalini, Andrea, Francesca Cigna, Chiara Del Ventisette, Sandro Moretti, Vincenzo Liguori, and Nicola Casagli. (2012). “Integrated Geomorphological Mapping in the North-Western Sector of Agrigento (Italy).” Journal of Maps. https://doi.org/10.1080/17445647.2012.680775. | spa |
dc.relation.references | Colesanti, Carlo, Alessandro Ferretti, Claudio Prati, and Fabio Rocca. 2003. “Monitoring Landslides and Tectonic Motions with the Permanent Scatterers Technique.” Engineering Geology 68 (1–2): 3–14. https://doi.org/10.1016/S0013-7952(02)00195-3. | spa |
dc.relation.references | Comisión Europea y Agencia Espacial Europea. (2024a). Copernicus. Misión Sentinel-1. https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/data-products. Recuperado el 01 de febrero de 2024. | spa |
dc.relation.references | Comisión Europea y Agencia Espacial Europea. (2024b). Copernicus https://sentiwiki.copernicus.eu/web/s1-mission. Recuperado el 01 de febrero de 2024. | spa |
dc.relation.references | Correa, Nixon. (2020). “InSAR-workflow-to-displacements-estimating-in-SNAP-toolbox”. https://www.researchgate.net/profile/Nixon-Alexander-Correa-Munoz/publication/337290340/figure/fig1/AS:865041402318848@1583253350705/InSAR-workflow-to-displacements-estimating-in-SNAP-toolbox.ppm. Recuperado el 15 de abril. | spa |
dc.relation.references | Crosetto, Michele, Oriol Monserrat, María Cuevas-González, Núria Devanthéry, and Bruno Crippa. (2016). “Persistent Scatterer Interferometry: A Review.” ISPRS Journal of Photogrammetry and Remote Sensing 115: 78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011. | spa |
dc.relation.references | Cuadra, Dante Edin. (2013). “Teoría de La Geografía : Reflexiones En Torno a La Identidad de La Disciplina.”Perspectiva Geográfica 18 (2): 325–46. | spa |
dc.relation.references | Currie N, Martin E, Dyer F (Georgia Institute of Technology). (1975). “Radar Foliage Penetration Measurements at Millimeter Wavelenghts.” Report Documentation Page of Technology., no. December. | spa |
dc.relation.references | Dekker, Fons. (1997). “Radarsat Geology Handbook.” Radarsat International. | spa |
dc.relation.references | Delacourt, Christophe, Daniel Raucoules, Stéphane Le Mouélic, Claudie Carnee, Denis Feurer, Pascal Allemand, and Marc Cruchet. (2009). “Observation of a Large Landslide on La Reunion Island Using Differential Sar Interferometry (JERS and Radarsat) and Correlation of Optical (Spot5 and Aerial) Images.” Sensors 9 (1): 616–30. https://doi.org/10.3390/s90100616. | spa |
dc.relation.references | Departamento nacional de planeación (DNP). (2007). “Cartilla Ambiental. Colombia Visión 2019.” Bogotá. | spa |
dc.relation.references | Departamento Nacional de Planeación (DNP). (2010). Lineamientos Para La Formulación Del Programa Nacional De Observación De La Tierra Que Incluya El Diseño De Un Programa Satelital Colombiano. Documentos CONPES. Vol. 3683. Colombia: DNP. (Departamento Nacional de Planeacion). https://www.cce.gov.co/sites/default/files/adjutnos_basic_page/Documento Conpes 3683 CCE.pdf. | spa |
dc.relation.references | Departamento of Crystallography adn Estructural Biology. (CSIC). (s.f.). “Dispersión y difracción. Ley de Bragg”. http://www.xtal.iqfr.csic.es/Cristalografia/parte_05_5.html (Recuperado el 5 de marzo). | spa |
dc.relation.references | Devanthéry, Núria, Michele Crosetto, María Cuevas-González, Oriol Monserrat, Anna Barra, and Bruno Crippa. (2016). “Deformation Monitoring Using Persistent Scatterer Interferometry and Sentinel-1 SAR Data.” Procedia Computer Science 100: 1121–26. https://doi.org/10.1016/j.procs.2016.09.263. | spa |
dc.relation.references | Domínguez-Calle, Efraín, Sergio Lozano-Báez, Domínguez-Calle Efraín, Lozano-Báez Sergio, Efraín Domínguez-Calle, Sergio Lozano-Báez, Domínguez-Calle Efraín, and Lozano-Báez Sergio. (2014). “Estado Del Arte de Los Sistemas de Alerta Temprana En Colombia / State of the Art of the Early Warning System in Colombia.” Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales VO - 38, no. 148: 321. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edssci&AN=edssci.S0370.39082014000300007&lang=es&site=eds-live. | spa |
dc.relation.references | Dwivedi, R., A. B. Narayan, A. Tiwari, O. Dikshit, and A. K. Singh. (2016). “Multi-Temporal SAR Interferometry for Landslide Monitoring.” In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41:55–58. https://doi.org/10.5194/isprsarchives-XLI-B8-55-2016. | spa |
dc.relation.references | Earth Online. (2007). “TerraSAR-X/TanDEM-X full archive and tasking”. https://earth.esa.int/eogateway/catalog/terrasar-x-tandem-x-full-archive-and-tasking. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Earth Online. (2007,2008 y 2010). “About COSMO-SkyMed”. https://earth.esa.int/eogateway/missions/cosmo-skymed#data-section. Recuperado el 01 de febrero de 2024. | spa |
dc.relation.references | Earth Online. (2018). “PAZ Full Archive and New Tasking”. https://earth.esa.int/eogateway/catalog/paz-full-archive-and-new-tasking. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Eoportal. (13 de junio de 2012). “RISAT-1 (Radar Imaging Satélite-1)” https://directory.eoportal.org/web/eoportal/satellite-missions/r/risat-1#y25lM123eHerb. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Eoportal. (septiembre 23 de 2013). “PAZ SAR satellite mission of Spain”. https://directory.eoportal.org/web/eoportal/satellite-missions/p/paz. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Earth Observing System (SEPTIEMBRE 26 DE 2022). “NASA’s earth observing system Project science office”. https://eospso.nasa.gov/content/nasas-earth-observing-system-project-science-office. Recuperado el 3 de mayo de 2021. | spa |
dc.relation.references | Earth Observing System (s.f.). “Missions: Earth Observing System (EOS). https://eospso.nasa.gov/mission-category/3. Recuperado el 3 de mayo. | spa |
dc.relation.references | El espectador, redacción. (01 de noviembre 2022). “Colombia perdería cada año $4.3 billones por los efectos del cambio climático”. https://www.elespectador.com/ambiente/colombia-perderia-cada-ano-43-billones-por-los-efectos-del-cambio-climatico/ | spa |
dc.relation.references | El Tiempo. Redacción. (Junio 14 de 2005). “El uvo, una ciudad de hierro bajo tierra”. https://www.eltiempo.com/archivo/documento/MAM-1694297. Recuperado el 10 de febrero. | spa |
dc.relation.references | Ermini, L., and N. Casagli. (2003). “Prediction of the Behaviour of Landslide Dams Using a Geomorphological Dimensionless Index.” Earth Surface Processes and Landforms 28 (1): 31–47. https://doi.org/10.1002/esp.424. | spa |
dc.relation.references | European Environment Agency. (2021). “CORINE Land Cover - User Manual.” Copernicus Land Monitoring Service 1.0 (European Environment Agency/European Topic Centre Urban Land and Soil): 128. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata%0Ahttps://land.copernicus.eu/pan-european/corine-land-cover/clc2018%0Ahttps://land.copernicus.eu/pan-european/corine-land-cover/clc2018%0Ahttps://land.copernicus.eu/pan-europea. | spa |
dc.relation.references | Felicísimo, Angel. (1994). “Modelos Digitales Del Terreno: Introducción y Aplicaciones a Las Ciencias Ambientales.” Oviedo: Universidad de Oviedo, 118. http://www.etsimo.uniovi.es/~feli. | spa |
dc.relation.references | Ferretti, Alessandro, Andrea Monti-guarnieri, Claudio Prati, and Fabio Rocca. (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19), Part B. Esa. | spa |
dc.relation.references | Ferretti, Alessandro, Andrea Monti-guarnieri, Claudio Prati, Fabio Rocca, and Didier (CNES) Massonnet. (2007). “InSAR Processing: A Mathematical Approach (Part C).” InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, 120–234. | spa |
dc.relation.references | Fischer, Luise. (2014). “Geography and Enlightenment in the German States , c . 1690 – c . 1815.” University of Edinburgh. | spa |
dc.relation.references | Florez, Antonio. (2003). Colombia: Evolucion de Sus Relieves y Modelados. Edited by Unibiblios; Universidad Nacional de Colombia. Bogotá. | spa |
dc.relation.references | Flórez, Antonio.( 2009). “Lecturas de Geografía.” In Lecturas En Teoría de La Geografía, edited by Jhon Williams Montoya G, 1st ed., 371. Centro Editorial, Facultad Ciencias Humanas. | spa |
dc.relation.references | Francisco, Gomez P. (1993). “Geografia, Actividad Empresarial y Medio Ambiente.” In III Encuentro De Geografia Euskal Herria - Catalunya, edited by Roser Majoral moline and Dolores Sanchez Aguilera, 1st ed. Barcelona: UNIVERSITAT DE BARCELONA. https://doi.org/T8H7-99W-UGGQ. | spa |
dc.relation.references | Frigerio, Simone, Luca Schenato, Giulia Bossi, Marco Cavalli, Matteo Mantovani, Gianluca Marcato, and Alessandro Pasuto. (2014). “A Web-Based Platform for Automatic and Continuous Landslide Monitoring: The Rotolon (Eastern Italian Alps) Case Study.” Computers and Geosciences 63: 96–105. https://doi.org/10.1016/j.cageo.2013.10.015. | spa |
dc.relation.references | Fruneau, B, J Achache, and C Delacourt. (1996). “Observation and Modelling of the Saint-Étienne-de-Tinée Landslide Using SAR Interferometry.” Tectonophysics 265 (3–4): 181–90. https://doi.org/http://dx.doi.org/10.1016/S0040-1951(96)00047-9. | spa |
dc.relation.references | Fu, Haiqiang, Jianjun Zhu, Changcheng Wang, Huiqiang Wang, and Rong Zhao. (2017). “Underlying Topography Estimation over Forest Areas Using High-Resolution P-Band Single-Baseline PolInSAR Data.” Remote Sensing 9 (4). https://doi.org/10.3390/rs9040363. | spa |
dc.relation.references | Funning, Gareth J., Roland Bürgmann, Alessandro Ferretti, Fabrizio Novali, and Alfio Fumagalli. (2007). “Creep on the Rodgers Creek Fault, Northern San Francisco Bay Area from a 10 Year PS-InSAR Dataset.” Geophysical Research Letters. https://doi.org/10.1029/2007GL030836. | spa |
dc.relation.references | Gao, Mingliang, Huili Gong, Beibei Chen, Chaofan Zhou, Wenfeng Chen, Yue Liang, Min Shi, and Yuan Si. (2016). “InSAR Time-Series Investigation of Long-Term Ground Displacement at Beijing Capital International Airport, China.” Tectonophysics 691: 271–81. https://doi.org/10.1016/j.tecto.2016.10.016. | spa |
dc.relation.references | Garcia, Gustavo A., and Tobias Leyva-Pinto. (2023). “Aplicación de Las Técnicas de Fotogrametría Aérea Con UAV e Interferometría de Radar de Apertura Sintética ( InSAR ) Para La Caracterización , Identificación y Monitoreo de Movimientos En Masa En La Vía Principal Del Municipio de La Palma ,.” Sergio Arboleda. | spa |
dc.relation.references | Gischig, V., S. Loew, A. Kos, J. R. Moore, H. Raetzo, and F. Lemy. (2009). “Identification of Active Release Planes Using Ground-Based Differential InSAR at the Randa Rock Slope Instability, Switzerland.” Natural Hazards and Earth System Science. https://doi.org/10.5194/nhess-9-2027-2009. | spa |
dc.relation.references | Gobierno de Canada. (2020). Agencia Espacial de Canadá. https://www.asc-csa.gc.ca/eng/satellites/radarsat/access-to-data/default.asp (Recuperado el 16 de enero de 2021). | spa |
dc.relation.references | Goldstein, R. M., and H. A. Zebker. (1988). “Interferometric Radar Measurement of Ocean Surface Currents.” Nature. | spa |
dc.relation.references | Gómez, J., Schobbenhaus, C. & Montes, N.E., compiladores. (2019). “Geological Map of South America 2019. Escala 1:5 000 000.” Bogota, Sao Paolo, Paris. https://www2.sgc.gov.co/ProgramasDeInvestigacion/Geociencias/Paginas/GMSA.aspx. | spa |
dc.relation.references | Global Ecosystem Dynamics Investigation. (GEDI). (s.f.). “Investigación sobre dinámica de ecosistemas globales (GEDI) Medición láser de alta resolución de los bosques y la topografía de la Tierra desde la Estación Espacial Internacional (ISS)” https://gedi.umd.edu/. Recuperado el 10 de julio de 2021. | spa |
dc.relation.references | Graham, Leroy C. (1974). “Synthetic Interferometer Radar For Topographic Mapping.” Proceedings of the IEEE 62 (6): 763–68. https://doi.org/10.1109/PROC.1974.9516. | spa |
dc.relation.references | Group on Earth Observations. (2015). https://earthobservations.org/. Recuperado el 28 de octubre. Para mayor información se puede consultar el Plan de acción de GEOSS 10 años. | spa |
dc.relation.references | Group on Earth Observations. (2021). “Sobre Geoss”. https://earthobservations.org/geoss.php. Recuperado el 3 de mayo. | spa |
dc.relation.references | Guo, Huadong. (2000). “Spaceborne and Airborne SAR for Target Detection and Flood Monitoring.” Photogrammetric Engineering and Remote Sensing 66: 611–17. | spa |
dc.relation.references | Hajduch, Guillaume, M Bourbigot, Harald Johnsen, and Riccardo Piantanida. (2023). “Sentinel-1 Product Specification.” | spa |
dc.relation.references | Hall, Andrew, Rachael F. Thomas, and Skye Wassens. (2019). “Mapping the Maximum Inundation Extent of Lowland Intermittent Riverine Wetland Depressions Using LiDAR.” Remote Sensing of Environment 233 (August): 111376. https://doi.org/10.1016/j.rse.2019.111376. | spa |
dc.relation.references | Hamadi, Alia, Pierre Borderies, Clement Albinet, Thierry Koleck, Ludovic Villard, Dinh Ho Tong Minh, Thuy Le Toan, and Benoit Burban. (2015). “Temporal Coherence of Tropical Forests at P-Band: Dry and Rainy Seasons.” IEEE Geoscience and Remote Sensing Letters 12 (3): 557–61. https://doi.org/10.1109/LGRS.2014.2350513. | spa |
dc.relation.references | Hannsen, Ramon F. (2006). Radar Interferometry. Edited by Michael ( Nasa Jet propulsion laboratory/Pasadena.CA.USA). Abrams, U.K) Curran, Paul ( University of Southampton, Department of Geography, Southampton, Australia) Dekker, Arnold (CSIRO, Land and Water Division, Canberra, The Netherlands) Jong, Steven De (Wageningen University and Research Center, Center for Geoinformation, Wageningen, and Switzerland) Schaepman, Michael (ETH, Zurich. 2nd ed. Dordrecht: Kluwer academic publishers. | spa |
dc.relation.references | Hartwig, Marcos E., Waldir R. Paradella, and José C. Mura. (2013). “Detection and Monitoring of Surface Motions in Active Open Pit Iron Mine in the Amazon Region, Using Persistent Scatterer Interferometry with TerraSAR-X Satellite Data.” Remote Sensing 5 (9): 4719–34. https://doi.org/10.3390/rs5094719. | spa |
dc.relation.references | Herrera, Alvaro. (1975). “Proyecto Radargrametrico Del Amazonas, Sus Metas y Su Proyeccion En La Economia Nacional.” Sociedad Geográfica de Colombia XXVI (78): 451–68. | spa |
dc.relation.references | Highland, Lynn M., and Peter Bobrowsky. (2008). “The Landslide Handbook - A Guide to Understanding Landslides.” US Geological Survey Circular, no. 1325: 1–147. https://doi.org/10.3133/cir1325. | spa |
dc.relation.references | Ho Tong Minh, Dinh, Thuy Le Toan, Fabio Rocca, Stefano Tebaldini, Mauro Mariotti D’Alessandro, and Ludovic Villard. (2014). “Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass.” IEEE Transactions on Geoscience and Remote Sensing 52 (2): 967–79. https://doi.org/10.1109/TGRS.2013.2246170. | spa |
dc.relation.references | Hölbling, Daniel, Petra Füreder, Francesco Antolini, Francesca Cigna, Nicola Casagli, and Stefan Lang. (2012). “A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories.” Remote Sensing 4 (5): 1310–36. https://doi.org/10.3390/rs4051310. | spa |
dc.relation.references | Hu, J., X.L. Ding, Z.W. Li, L. Zhang, J.J. Zhu, Q. Sun, and G.J. Gao. (2016). “Vertical and Horizontal Displacements of Los Angeles from InSAR and GPS Time Series Analysis: Resolving Tectonic and Anthropogenic Motions.” Journal of Geodynamics 99: 27–38. https://doi.org/10.1016/j.jog.2016.05.003. | spa |
dc.relation.references | Hungr, Oldrich, Serge Leroueil, and Luciano Picarelli. (2014). “The Varnes Classification of Landslide Types, an Update.” Landslides 11 (2): 167–94. https://doi.org/10.1007/s10346-013-0436-y. | spa |
dc.relation.references | Instalación Satelital de Alaska. (2021). Centro de Archivo Activo Distribuido. https://asf.alaska.edu/information/general/custom-processing/ | spa |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2010). Sistemas Morfogénicos Del Territorio Colombiano. Escala 1: 500.000. | spa |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2015). “Atlas Climatológico de Colombia - Interactivo.” Edited by Meteorología y Estudios Ambientales Instituto de Hidrología, IDEAM, and UPME. Bogotá : IDEAM. 2015. http://atlas.ideam.gov.co/presentacion/. | spa |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) (s.f.). “Pronóstico de la amenaza diaria por deslizamientos”. http://www.pronosticosyalertas.gov.co/web/pronosticos-y-alertas/pronostico-de-la-amenaza-diaria-por-deslizamientos | spa |
dc.relation.references | Instituto de Mereorología y Estudio Ambientales (IDEAM). (s.f.) “Pronóstico de alertas tempranas”. http://www.ideam.gov.co/web/pronosticos-y-alertas/alertas. Recuperado el 27 de septiembre de 2021. | spa |
dc.relation.references | Instituto de Mereorología y Estudio Ambientales (IDEAM). (2019). “Consulta pronósticos y alerta”. http://www.pronosticosyalertas.gov.co/alertabig-portlet/html/alertabig/view.jsp. Recuperado el 07 de febrero de2019. | spa |
dc.relation.references | Instituto de Mereorología y Estudio Ambientales (IDEAM). (2017). Mapa Climatológico de Colombia. Bogotá. https://www.ideam.gov.co/sites/default/files/temas/tiempo-y clima/documentos/atlas/ATLAS-CLIMATOLOGICO-DE-COLOMBIA.pdf | spa |
dc.relation.references | Instituto Geográfico Agustín Codazzi (IGAC). (2010). “Reporte No 5 de áreas afectadas por inundaciones”.http://igac.gov.co/wps/wcm/connect/1ccddd8047d080648d34cd23e186de1d/Reporte+No.+5+de+areas+afectadas+por+inundaciones+2010+%E2%80%93+2011.pdf?MOD=AJPERES. Recuperado el 30 de abril de 2021. | spa |
dc.relation.references | Instituto Geográfico Agustín Codazzi (IGAC). (2017). “Elaboración De Cartografía Geomorfológica Aplicada a Levantamientos De Suelos a Partir De Técnicas Análogas.” | spa |
dc.relation.references | Instituto Geográfico Agustín Codazzi (IGAC). (2009). “Áreas de Aplicación de Las Tecnologías de de Sensores Remotos Prioritarias Para El País.” Análisis Geográficos, no. 40: 75–95. | spa |
dc.relation.references | Intrieri, Emanuele, Giovanni Gigli, Francesco Mugnai, Riccardo Fanti, and Nicola Casagli. (2012). “Design and Implementation of a Landslide Early Warning System.” Engineering Geology 147–148: 124–36. https://doi.org/10.1016/j.enggeo.2012.07.017. | spa |
dc.relation.references | Jackson, Scott. (1995). “Delineating Bordering Vegetated Wetlands under the Massachusetts Wetlands Protection Act. A Handbook.” Environmental Protection, 92. | spa |
dc.relation.references | Japan Aerospace Exploration Agency (JAXA). (2014). “ASF’s Radiometric Terrain Correction Project”. https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/. Recuperado el 10 de abril de 2021. | spa |
dc.relation.references | Japan Aerospace Exploration Agency. (febrero 18 de 2020). “Advanced Land Observing Satellite-2 "DAICHI-2" (ALOS-2)". https://global.jaxa.jp/projects/sat/alos2/. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Japan Aerospace Exploration Agency. (2024). “Advanced Land Observing Satellite-4 (ALOS-4)”. https://www.eorc.jaxa.jp/ALOS/en/alos-4/a4_about_e.htm. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Jebur, Mustafa Neamah, Biswajeet Pradhan, and Mahyat Shafapour Tehrany. (2014). “Detection of Vertical Slope Movement in Highly Vegetated Tropical Area of Gunung Pass Landslide, Malaysia, Using L-Band InSAR Technique.” Geosciences Journal 18 (1): 61–68. https://doi.org/10.1007/s12303-013-0053-8. | spa |
dc.relation.references | Jebur, Mustafa Neamah, Biswajeet Pradhan, and Mahyat Shafapour Tehrany. (2015). “Using ALOS PALSAR Derived High-Resolution DInSAR to Detect Slow-Moving Landslides in Tropical Forest: Cameron Highlands, Malaysia.” Geomatics, Natural Hazards and Risk 6 (8): 741–59. https://doi.org/10.1080/19475705.2013.860407. | spa |
dc.relation.references | Jensen, John R. (2014). Remote Sensing of the Environment: An Earth Resource Perspective Second Edition. Pearson Education Limited,Harlow, England. Vol. 1. | spa |
dc.relation.references | Jesús, Garcia H., and Jordi J Mallorquí. (2011). Procesado DInSAR a Alta Resolucion Con Imagenes Con Diferencias de Doppler Grandes. | spa |
dc.relation.references | Jo, Min-Jeong, Hyung-Sup Jung, Joong-Sun Won, and Paul Lundgren. 2015. “Measurement of Three-Dimensional Surface Deformation by Cosmo-SkyMed X-Band Radar Interferometry: Application to the March 2011 Kamoamoa Fissure Eruption, Kīlauea Volcano, Hawai’i.” Remote Sensing of Environment 169 (November): 176–91. https://doi.org/10.1016/j.rse.2015.08.003. | spa |
dc.relation.references | Jørgensen, T.M., S.T. Jepsen, H.S. Sørensen, A.K. di Gennaro, and S.R. Kristensen. (2015). “Back Scattering Interferometry Revisited – A Theoretical and Experimental Investigation.” Sensors and Actuators B: Chemical 220 (December): 1328–37. https://doi.org/10.1016/j.snb.2015.06.121. | spa |
dc.relation.references | Kang, Ya, Zhong Lu, Chaoying Zhao, Yuankun Xu, Jin woo Kim, and Alan J. Gallegos. (2021). “InSAR Monitoring of Creeping Landslides in Mountainous Regions: A Case Study in Eldorado National Forest, California.” Remote Sensing of Environment 258: 1–53. https://doi.org/10.1016/j.rse.2021.112400. | spa |
dc.relation.references | Kervyn, François. (2001). “Modelling Topography with SAR Interferometry: Illustrations of a Favourable and Less Favourable Environment.” Computers and Geosciences 27 (9): 1039–50. https://doi.org/10.1016/S0098-3004(00)00158-8. | spa |
dc.relation.references | Kosztra, B, G Büttner, G Hazeu, and S Arnold. (2017). “Updated CLC Illustrated Nomenclature Guidelines.” Final Report by European Environmental Agency, no. 3436. | spa |
dc.relation.references | Kumar, Lalit. Mutanga, Onisimo. (2018). Google Earth Engine Applications. Remote Sensing Special Issue. Vol. 38. http://adsabs.harvard.edu/abs/2012AGUFM.U31A..04G. | spa |
dc.relation.references | Kumar, Vijay, and Gopalan Venkataraman. (2011). “SAR Interferometric Coherence Analysis for Snow Cover Mapping in the Western Himalayan Region.” International Journal of Digital Earth 4 (1): 78–90. https://doi.org/10.1080/17538940903521591. | spa |
dc.relation.references | LaRocque, Armand, Chafika Phiri, Brigitte Leblon, Francesco Pirotti, Kevin Connor, and Alan Hanson. (2020). “Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR Data in Southern New Brunswick, Canada.” Remote Sensing 12 (13): 1–30. https://doi.org/10.3390/rs12132095. | spa |
dc.relation.references | Lateltin, Olivier, Christoph Haemmig, Hugo Raetzo, and Christophe Bonnard. (2005). “Landslide Risk Management in Switzerland.” Landslides 2 (4): 313–20. https://doi.org/10.1007/s10346-005-0018-8. | spa |
dc.relation.references | Lavell, Allan, Elizabeth Mansilla, and David Smith. (2003). “La Gestión Local Del Riesgo. Nociones y Precisiones En Torno Al Concepto y La Práctica.” Cepredenac-Pnud, 101. http://www.desenredando.org/public/libros/2006/ges_loc_riesg/gestion_riesgo_espanol.pdf. | spa |
dc.relation.references | Leiva, O., H. Moya Berbeo, G. Trejos González, and J. Carvajal. (2012). “Metodológica Sistemática Para La Generación De Mapas Geomorfológicos Analíticos Aplicados a La Zonificación De Amenaza Por Movimientos En Masa Escala 1:100.000.” Servicio Geológico Colombiano, 88. | spa |
dc.relation.references | Leva, Davide, Giovanni Nico, Dario Tarchi, and Joaquim Fortuny-Guasch. (2003). “Temporal Analysis of a Landslide by Means of a Ground-Based SAR Interferometer.” IEEE Transactions on Geoscience and Remote Sensing 41 (4 PART I): 745–52. https://doi.org/10.1109/TGRS.2003.808902. | spa |
dc.relation.references | Lian, Cheng, Zhigang Zeng, Wei Yao, and Huiming Tang. (2015). “Multiple Neural Networks Switched Prediction for Landslide Displacement.” Engineering Geology 186: 91–99. https://doi.org/10.1016/j.enggeo.2014.11.014. | spa |
dc.relation.references | Liu, Peng, Zhenhong Li, Trevor Hoey, Cem Kincal, Jingfa Zhang, Qiming Zeng, and Jan-Peter Peter Muller. (2012). “Using Advanced InSAR Time Series Techniques to Monitor Landslide Movements in Badong of the Three Gorges Region, China.” International Journal of Applied Earth Observation and Geoinformation 21 (1): 253–64. https://doi.org/10.1016/j.jag.2011.10.010. | spa |
dc.relation.references | Lyell, Charles. (1833). Principles of Geology: An Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation. Edited by ALBEMARLE-STREET. JOHN MURRAY. Principles of Geology: An Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation. 1st ed. LONDON: London,J. Murray,1830-1833. https://doi.org/10.1017/CBO9780511701559. | spa |
dc.relation.references | Manual de búsqueda de datos ASF SAR. (s.f.). https://docs.asf.alaska.edu/vertex/sbas/ Recuperado el 01 de enero de 2024. | spa |
dc.relation.references | M. Vöge, R. Frauenfelder, K. Ekseth, M.K. Arora, A. Bhattacharya, and R.K. Bhasin. (2015). “The Use of SAR Interferometry for Landslide Mapping in the Indian Himalayas.” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL (7/W3): 857–63. http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/857/2015/isprsarchives-XL-7-W3-857-2015.pdf. | spa |
dc.relation.references | Marcato, G., M. Mantovani, A. Pasuto, L. Zabuski, and L. Borgatti. (2012). “Monitoring, Numerical Modelling and Hazard Mitigation of the Moscardo Landslide (Eastern Italian Alps).” Engineering Geology 128: 95–107. https://doi.org/10.1016/j.enggeo.2011.09.014. | spa |
dc.relation.references | Martínez Rubiano, Martha Teresa. (2009). “Los Geógrafos y La Teoría de Riesgos y Desastres Ambientales.” Perspectiva Geográfica 14: 241–63. | spa |
dc.relation.references | Martire, Diego Di, Serena Tessitore, Domenico Brancato, Maria Grazia Ciminelli, Salvatore Costabile, Mario Costantini, Gian Vito Graziano, Federico Minati, Massimo Ramondini, and Domenico Calcaterra. (2016). “Landslide Detection Integrated System (LaDIS) Based on in-Situ and Satellite SAR Interferometry Measurements.” CATENA 137 (February): 406–21. https://doi.org/10.1016/j.catena.2015.10.002. | spa |
dc.relation.references | Massonnet, Didier, and Thierry Rabaute. (1993). “Radar Interferometry: Limits and Potential.” IEEE Transactions on Geoscience and Remote Sensing 31 (2): 455–64. https://doi.org/10.1109/36.214922. | spa |
dc.relation.references | Mayorga, Tannia, and Gabriel Platzeck. (2015). “Aplicación de Interferometría Diferencial de Radar de Apertura Sintética (DInSAR) Como Una Herramienta Para Detectar Deslizamientos En Una Región de Los Andes En Ecuador,” no. August: 1-24. | spa |
dc.relation.references | Mayorga Torres, Tannia Margarita. (2013). “Determinación de La Deformación Del Terreno Por Movimientos En Masa Usando Interferometría SAR (Radar de Apertura Sintética).” | spa |
dc.relation.references | Mei, S., V. Poncos, and C. Froese. (2008). “Mapping Millimetre-Scale Ground Deformation over the Underground Coal Mines in the Frank Slide Area, Alberta, Canada, Using Spaceborne InSAR Technology.” Canadian Journal of Remote Sensing 34 (1–2): 113–34. https://doi.org/10.5589/m08-019. | spa |
dc.relation.references | Mendoza, Alejandra, Humberto González, Jorge Buelvas, and Sandra Liliana Martínez Rueda. (2016). Guía Para La Implementación de Sistemas de Alerta Temprana. | spa |
dc.relation.references | Metzger, Sabrina, and Sigurjón Jónsson. (2014). “Plate Boundary Deformation in North Iceland during 1992–2009 Revealed by InSAR Time-Series Analysis and GPS.” Tectonophysics 634: 127–38. https://doi.org/10.1016/j.tecto.2014.07.027. | spa |
dc.relation.references | Mondini, Alessandro C., Michele Santangelo, Margherita Rocchetti, Enrica Rossetto, Andrea Manconi, and Oriol Monserrat. (2019). “Sentinel-1 SAR Amplitude Imagery for Rapid Landslide Detection.” Remote Sensing 11 (7): 1–25. https://doi.org/10.3390/rs11070760. | spa |
dc.relation.references | Monterroso-Tobar, Mario Fernando, Jhon Makario Londoño-Bonilla, and Sergey Sansonov. 2018. “Estimación Del Retroceso Glaciar En Los Volcanes Nevado Del Ruiz, Tolima y Santa Isabel, Colombia a Través de Imágenes Ópticas y Din-SAR.” Dyna 85 (206): 329–37. https://doi.org/10.15446/dyna.v85n206.66570. | spa |
dc.relation.references | Monterroso, Fernando. (2019). “DEVELOPMENT AND APPLICATION OF INNOVATIVE REMOTE SENSING TECHNIQUES FOR SYSTEMATIC PROCESSING OF INTERFEROMETRIC SAR DATA.” UNIVERSITA’ DEGLI STUDI DI NAPOLI “PARTHENOPE.” | spa |
dc.relation.references | Monterroso T., Mario Fernando. (2016). “Estimación Del Retroceso Glaciar En El Parque Nacional Natural De Los Nevados -Pnnn- a Través Del Uso De Imágenes Ópticas E Interferometría Diferencial -Dinsar-. (2010-2015).” | spa |
dc.relation.references | Moreira, J, M Schwäbisch, C Wimmer, M Rombach, and J Mura. (2001). “Surface and Ground Topography Determination in Tropical Rainforest Areas Using Airborne Interferometric SAR.” Photogrammetric Week, 167–73. | spa |
dc.relation.references | Motagh, Mahdi, Roghayeh Shamshiri, Mahmud Haghshenas Haghighi, Hans-Ulrich Wetzel, Bahman Akbari, Hossein Nahavandchi, Sigrid Roessner, and Siavash Arabi. (2017). “Quantifying Groundwater Exploitation Induced Subsidence in the Rafsanjan Plain, Southeastern Iran, Using InSAR Time-Series and in Situ Measurements.” Engineering Geology 218: 134–51. https://doi.org/10.1016/j.enggeo.2017.01.011. | spa |
dc.relation.references | Mott, Harold. (2007). Remote Sensing with Polarimetric Radar. 1st ed. New Jersey: John Wiley & Sons Inc. | spa |
dc.relation.references | NASA, and USGS. (2004). “InSAR Workshop Summary Report,” 1–65. | spa |
dc.relation.references | Nashashibi, Adib Y., Kama Sarabandi, Shadi Oveisgharan, M. Craig Dobson, Wayne S. Walker, and E. Burke. (2004). “Millimeter-Wave Measurements of Foliage Attenuation and Ground Reflectivity of Tree Stands at Nadir Incidence.” IEEE Transactions on Antennas and Propagation 52 (5): 1211–22. https://doi.org/10.1109/TAP.2004.827250. | spa |
dc.relation.references | Nathanson, Fred E, J Patrick Reilly, and Marvin N Cohen. (1991). Radar Design Principles Signal Processing and the Environment. 2nd ed. New Jersey: SciTech Publishing, Inc. | spa |
dc.relation.references | NATO/OTAN. (2004). “Radar Polarimetry and Interferometry.” In Radar Polarimetry and Interferometry, Sensors an, 326. Brussels: Sensors and Electronics Technology Panel. | spa |
dc.relation.references | National Centers For Envioronmental Information. (s.f.). “Global Forecast System (GFS)”. https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs. Recuperado el 3 de mayo, 2021. | spa |
dc.relation.references | Neeff, Till, Luciano Vieira Dutra, João Roberto Dos Santos, Corina Da Costa Freitas, and Luciana Spinelli Araujo. (2005). “Tropical Forest Measurement by Interferometric Height Modeling and P-Band Radar Backscatter.” Forest Science 51 (6): 585–94. | spa |
dc.relation.references | Novellino, A., F. Cigna, A. Sowter, M. Ramondini, and D. Calcaterra. (2017). “Exploitation of the Intermittent SBAS (ISBAS) Algorithm with COSMO-SkyMed Data for Landslide Inventory Mapping in North-Western Sicily, Italy.” Geomorphology 280: 153–66. https://doi.org/10.1016/j.geomorph.2016.12.009. | spa |
dc.relation.references | Novotný, Jan. (2013). “Varnes Landslide Classification (1978) (Powerpoint).” In Charles University in Prague, Faculty of Science, Czech Republic, 1–25. http://www.geology.cz/projekt681900/vyukove-materialy/2_Varnes_landslide_classification.pdf. | spa |
dc.relation.references | Oh, Hyun Joo, and Biswajeet Pradhan. (2011). “Application of a Neuro-Fuzzy Model to Landslide-Susceptibility Mapping for Shallow Landslides in a Tropical Hilly Area.” Computers and Geosciences 37 (9): 1264–76. https://doi.org/10.1016/j.cageo.2010.10.012. | spa |
dc.relation.references | Okeke, Francis Ifeanyi. (2006). “InSAR Operational and Processing Steps for DEM Generation.” FIG Regional Conference, 1–13. | spa |
dc.relation.references | Olaya, V. (s.f.). “Fuentes principales de datos espaciales”. En: Sistemas de información geográfica. http://volaya.github.io/libro-sig/chapters/Fuentes_datos.html | spa |
dc.relation.references | Oliveros, Maria Paz Fernandez. (2009). “Determinación de Movimientos Verticales Del Terreno Mediante Técnicas de Interferometría Radar DInSAR.” Universidad de Granada. | spa |
dc.relation.references | Ordóñez Cencerrado, Amanda Arlensiú. (2015). “Universidad Complutense de Madrid.” Universidad Complutense de Madrid. | spa |
dc.relation.references | Organización de la Naciones Unidas para la Alimentación y la Agricultura (FAO). (2016). Sistema Global de Información y Alerta Temprana (GIEWS). http://www.fao.org/policy-support/tools-and-publications/resources-details/es/c/449296/ | spa |
dc.relation.references | Osmanoğlu, Batuhan, Filiz Sunar, Shimon Wdowinski, and Enrique Cabral-Cano. (2016). “Time Series Analysis of InSAR Data: Methods and Trends.” ISPRS Journal of Photogrammetry and Remote Sensing 115: 90–102. https://doi.org/10.1016/j.isprsjprs.2015.10.003. | spa |
dc.relation.references | P. Borderies, C. Albinet, P. Dubois-Fernandez, . Rocca, S. Tebaldini, D. Ho Tong Minh, C. Prati, T. Le Toan, L. Villard, T. Koleck. (2013). TROPISCAT - Final Report Esa Contract 20403. | spa |
dc.relation.references | Pedone, C. (2000). “EL TRABAJO DE CAMPO Y LOS MÉTODOS CUALITATIVOS. Necesidad de nuevas reflexiones desde las geografías latinoamericanas”. En: Scripta Nova. Revista Electrónica de Geografía y Ciencias Sociales. Universidad de Barcelona. Nº 57, 1 de febrero. https://www.ub.edu/geocrit/sn-57.htm | spa |
dc.relation.references | Pekel, Jean-François, Andrew Cottam, Noel Gorelick, and Alan S Belward. (2016). “High-Resolution Mapping of Global Surface Water and Its Long-Term Changes.” Nature 540 (7633): 418–22. https://doi.org/10.1038/nature20584. | spa |
dc.relation.references | Peyret, M., Y. Djamour, M. Rizza, J.-F. F. Ritz, J.-E. E. Hurtrez, M.A. a. Goudarzi, H. Nankali, J. Chéry, K. Le Dortz, and F. Uri. (2008). “Monitoring of the Large Slow Kahrod Landslide in Alborz Mountain Range (Iran) by GPS and SAR Interferometry.” Engineering Geology 100 (3–4): 131–41. https://doi.org/10.1016/j.enggeo.2008.02.013. | spa |
dc.relation.references | Ponziani, Francesco, Pierpaolo Ciuffi, Benedikt Bayer, Nicola Berni, Silvia Franceschini, and Alessandro Simoni. (2023). “Regional-Scale InSAR Investigation and Landslide Early Warning Thresholds in Umbria, Italy.” Engineering Geology 327 (September 2022): 107352. https://doi.org/10.1016/j.enggeo.2023.107352. | spa |
dc.relation.references | Portal oficial del Estado de Argentina. (2021). Comisión Nacional de Actividades Espaciales. Portal de Información Geoespacial. https://catalogos.conae.gov.ar/catalogo/catalogoSatSaocomInfo.html (Recuperado el 16 de enero). | spa |
dc.relation.references | Portal oficial del Estado de Argentina. (2020). “Misiones satelitales SAOCOM” https://www.argentina.gob.ar/ciencia/conae/misiones-espaciales/saocom. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Portal oficial del Estado de Argentina. (s.f.). “Catálogo SAOCOM 1A Información General” https://catalogos.conae.gov.ar/catalogo/catalogoSatSaocomInfo.html. Recuperado el 16 de enero de 2021. | spa |
dc.relation.references | Portal Gestión del Riesgo. (s.f.). Sistema de Alerta temprana. http://portal.gestiondelriesgo.gov.co/Paginas/SAT.aspx. Recuperado el 3 de mayo de 2021. | spa |
dc.relation.references | Quantum. (s.f.). Sistema de observatorio de la Tierra. https://www.quantum.com/es/resources/customer-success/nasas-earth-observing-system-eos/ | spa |
dc.relation.references | Radartutorial. eu. (2020). “Ondas y Rangos de Frecuencia”. https://www.radartutorial.eu/07.waves/Ondas%20y%20Rangos%20de%20Frecuencia.es.html . Recuperado el 17 de marzo. Fuente original. | spa |
dc.relation.references | Radiant Earth. (s.f.). https://www.radiant.earth/. Recuperado el 10 de julio de 2021. | spa |
dc.relation.references | Ramírez, Blanca Rebeca. (2007). “La Geografía Regional : Tradiciones y Perspectivas Contemporáneas Regional Geography : Traditions and Contemporary Perspectives.” Investigaciones Geográficas,Boletín Del Instituto de Geografía, UNAM 64 (Mx): 116–33. https://doi.org/10.1016/S1295-926X(02)00026-6. | spa |
dc.relation.references | Rhoads, Bruce L. (2004). “Whither Physical Geography?” Annals of the Association of American Geographers 94 (4): 748–55. https://doi.org/10.1111/j.1467-8306.2004.00431.x. | spa |
dc.relation.references | Riedel, B., and a. Walther. (2008). “InSAR Processing for the Recognition of Landslides.” Advances in Geosciences 14: 189–94. https://doi.org/10.5194/adgeo-14-189-2008. | spa |
dc.relation.references | Robertson, Kim G., Omar Jaramillo, Miguel A. Castiblanco, and Instituto de Hidrología Meteorología y Estudios Ambientales. (2013). “Guía Metodológica Para La Elaboración De Mapas Geomorfológicos a Escala 1:100.000.” Instituto de Hidrología, Meteorología y Estudios Ambintales - IDEAM, 88. http://fs03eja1.cormagdalena.com.co/nuevaweb/Niveles/Definiciones.pdf. | spa |
dc.relation.references | Rodríguez Castiblanco, Edgar Alexander. Sandoval Ramírez, Jesús Hernando. Medina Bello, Enif .(SGC). (2017). Guía Metodológica Para La Zonificación de Amenaza Por Movimientos En Masa Escala 1: 25.000. Guía Metodológica Para La Zonificación de Amenaza Por Movimientos En Masa Escala 1: 25.000. Servicio Geológico Colombiano. https://doi.org/10.32685/9789585978225. | spa |
dc.relation.references | Rojas, Nicolás Sáenz. (2022). “Estimación de Biomasa Aérea Del Bosque Seco Tropical En El Norte Del Tolima a Partir de Imágenes Del Sensor Óptico Sentinel 2 y de Radar Sentinel 1.” Sergio Arboleda. | spa |
dc.relation.references | Rott, H., and T. Nagler. (2006). “The Contribution of Radar Interferometry to the Assessment of Landslide Hazards.” Advances in Space Research 37 (4): 710–19. https://doi.org/10.1016/j.asr.2005.06.059. | spa |
dc.relation.references | Roy, Priyom, Tapas R. Martha, Kirti Khanna, Nirmala Jain, and K. Vinod Kumar. (2022). “Time and Path Prediction of Landslides Using InSAR and Flow Model.” Remote Sensing of Environment 271 (December 2021): 112899. https://doi.org/10.1016/j.rse.2022.112899. | spa |
dc.relation.references | Sala, Maria. (2010). “Geomorfologia Actual : Guia Conceptual , Tematica y Bibliografica.” Revista Geografía 6: 218–20. http://www.raco.cat/index.php/RevistaGeografia/article/viewFile/45984/56810. | spa |
dc.relation.references | Samsonov, Sergey, Antoine Dille, Olivier Dewitte, François Kervyn, and Nicolas d’Oreye. (2020). “Satellite Interferometry for Mapping Surface Deformation Time Series in One, Two and Three Dimensions: A New Method Illustrated on a Slow-Moving Landslide.” Engineering Geology 266 (September 2019): 105471. https://doi.org/10.1016/j.enggeo.2019.105471. | spa |
dc.relation.references | Sarmap. (2007). “The SAR - -Guidebook Examples Based on SARscape.” In , 265. | spa |
dc.relation.references | Schaufler, Stefan, Bernhard Bauer-Marschallinger, Simon Hochstöger, and Wolfgang Wagner. (2018). “Modelling and Correcting Azimuthal Anisotropy in Sentinel-1 Backscatter Data.” Remote Sensing Letters 9 (8): 799–808. https://doi.org/10.1080/2150704X.2018.1480071. | spa |
dc.relation.references | Satpf.jp. (s.f.). https://satpf.jp/spf_atl/assets/img/files/735_band_en.png | spa |
dc.relation.references | Step Forum, ESA. (junio, 2017). “What is different of dinsar and insar”. http://forum.step.esa.int/t/what-is-different-of-dinsar-and-insar/6104. Recuperado el 5 de febrero de 2018 | spa |
dc.relation.references | Step Forum, ESA. (agosto de 2017). “Difference between vertical and LOS displacement”. https://forum.step.esa.int/t/difference-between-vertical-and-los-displacement/6704/40 | spa |
dc.relation.references | Step Forum ESA. (noviembre de 2018). “Effect of polarization on interferometric products”. https://forum.step.esa.int/t/effect-of-polarization-on-interferometric-products/12630 . Recuperado el 10 de febrero de 2019. | spa |
dc.relation.references | Step Forum, ESA. (enero-diciembre, 2018). “Phase unwrapping to vertical displacement”. https://forum.step.esa.int/t/phase-unwrapping-to-vertical-displacement/8521 | spa |
dc.relation.references | Servicio Geológico Colombiano (SGC). (2007). ¿Qué es GeoRED? http://geored2.sgc.gov.co/Paginas/default.aspx. Recuperado el 07 de febrero de 2018. | spa |
dc.relation.references | Servicio Geológico Colombiano. (2015). “Informe Técnico de Actividad de Los Volcanes Nevado Del Huila,Puracé, y Sotará Durante El Año 2014.” Bogotá: Servicio Geológico Colombiano. | spa |
dc.relation.references | Servicio Geológico Colombiano. (2017). Las Amenazas Por Movimientos En Masa de Colombia. Una Visión a Escala 1:100.000. 1st ed. Bogota: Servicio Geologico Colombiano. https://srvags.sgc.gov.co/Archivos_Geoportal/Manuales/Libro_MNMM.pdf. | spa |
dc.relation.references | Servicio Geológico Colombiano. (SGC). (2022). “Mapa Nacional de Amenaza Relativa”. https://www2.sgc.gov.co/ProgramasDeInvestigacion/geoamenazas/Paginas/Proyecto-Mapa-Nacional-de-Amenaza-Relativa.aspx | spa |
dc.relation.references | Sillerico, E., M. Marchamalo, J. G. Rejas, and R. Martínez. (2010). “La Técnica DInSAR: Bases y Aplicación a La Medición de Subsidencias Del Terreno En La Construcción.” Informes de La Construcción 62 (519): 47–53. https://doi.org/10.3989/ic.09.063. | spa |
dc.relation.references | Singh, Lalan P., C. J. Van Westen, P. K.Champati Ray, and P. Pasquali. (2005). “Accuracy Assessment of InSAR Derived Input Maps for Landslide Susceptibility Analysis: A Case Study from the Swiss Alps.” Landslides 2 (3): 221–28. https://doi.org/10.1007/s10346-005-0059-z. | spa |
dc.relation.references | Singhroy, Vern, P. J. Alasset, Réjean Couture, and Valentin Poneos. (2007). “InSAR Monitoring of Landslides on Permafrost Terrain in Canada.” In International Geoscience and Remote Sensing Symposium (IGARSS), 2451–54. https://doi.org/10.1109/IGARSS.2007.4423338. | spa |
dc.relation.references | Singleton, A., Z. Li, T. Hoey, and J. P. Muller. (2014). “Evaluating Sub-Pixel Offset Techniques as an Alternative to D-InSAR for Monitoring Episodic Landslide Movements in Vegetated Terrain.” Remote Sensing of Environment 147: 133–44. https://doi.org/10.1016/j.rse.2014.03.003. | spa |
dc.relation.references | Sistema de Información de Movimientos en Masa (SIMMA). (2023) https://simma.sgc.gov.co/ | spa |
dc.relation.references | Sociedad Lationoamericana de Percepción Remota (Selper). (s.f.). “Enseñanza de la interpretación de imágenes de Radar”. http://www.selper.org.co/capitulo_colombia/papers/Educacion-en-Geomatica/ED4-Ensenanza-de-la-interpretacion-de-Imagenes-de-radar.pdf. Recuperado el 30 de abril, 2015. | spa |
dc.relation.references | Smalley, Ian, and Slobodan B. Markovic. (2018). “Four Loess Pioneers: Charles Lyell, F. von Richthofen, V.A. Obruchev, L.S. Berg.” Quaternary International 469: 4–10. https://doi.org/10.1016/j.quaint.2016.07.031. | spa |
dc.relation.references | Smith, Laurence C. (2002). “Emerging Applications of Interferometric Synthetic Aperture Radar (InSAR) in Geomorphology and Hydrology.” Annals of the Association of American Geographers 92 (3): 385–98. https://doi.org/10.1111/1467-8306.00295. | spa |
dc.relation.references | Squarzoni, C., C. Delacourt, and P. Allemand. (2003). “Nine Years of Spatial and Temporal Evolution of the La Valette Landslide Observed by SAR Interferometry.” Engineering Geology 68 (1–2): 53–66. https://doi.org/10.1016/S0013-7952(02)00198-9. | spa |
dc.relation.references | Strozzi, Tazio, Christian Ambrosi, and Hugo Raetzo. (2013). “Interpretation of Aerial Photographs and Satellite SAR Interferometry for the Inventory of Landslides.” Remote Sensing 5 (5): 2554–70. https://doi.org/10.3390/rs5052554. | spa |
dc.relation.references | Strozzi, Tazio, Paolo Farina, Alessandro Corsini, Christian Ambrosi, Manfred Thüring, Johannes Zilger, Andreas Wiesmann, Urs Wegmüller, and Charles Werner. (2005). “Survey and Monitoring of Landslide Displacements by Means of L-Band Satellite SAR Interferometry.” Landslides 2 (3): 193–201. https://doi.org/10.1007/s10346-005-0003-2. | spa |
dc.relation.references | Tantianuparp, Peraya, Xuguo Shi, Lu Zhang, Timo Balz, and Mingsheng Liao. (2013). “Characterization of Landslide Deformations in Three Gorges Area Using Multiple InSAR Data Stacks.” Remote Sensing 5 (6): 2704–19. https://doi.org/10.3390/rs5062704. | spa |
dc.relation.references | Tarchi, Dario, Nicola Casagli, Riccardo Fanti, David D. Leva, Guido Luzi, Alessandro Pasuto, Massimiliano Pieraccini, and Sandro Silvano. (2003). “Landslide Monitoring by Using Ground-Based SAR Interferometry: An Example of Application to the Tessina Landslide in Italy.” Engineering Geology 68 (1–2): 15–30. https://doi.org/10.1016/S0013-7952(02)00196-5. | spa |
dc.relation.references | Telezpacio. (2014). “La constellació cosmoskymed radar dalta resolució”. http://es.slideshare.net/ICGCat/la-constellaci-cosmoskymed-radar-dalta-resoluci-continutat-i-llions-apreses-33407921. Recuperado el 30 de octubre de 2015. Fuente original. | spa |
dc.relation.references | The European Space Agency. (agosto 3 de 2022). “Mission ends for Copernicus Sentinel 1B satellite”. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite. Recuperado el 01 de febrero de 2024. | spa |
dc.relation.references | The European Space Agency. (agosto 4 de 2022). “Viaje en órbita asegurado para Sentinel-1C”. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Ride_into_orbit_secured_for_Sentinel-1C. Recuperado el 15 de marzo de 2022. | spa |
dc.relation.references | Todoradares. (2012). “Polaridad de la onda y montaje del detector”. https://www.todoradares.com/informacion-sobre-polaridad-de-la-onda/. Recuperado el 20 de enero de 2023. | spa |
dc.relation.references | Tofani, Veronica, Federico Raspini, Filippo Catani, and Nicola Casagli. (2013). “Persistent Scatterer Interferometry (Psi) Technique for Landslide Characterization and Monitoring.” Remote Sensing 5 (3): 1045–65. | spa |
dc.relation.references | Tong, Xiaopeng, and David Schmidt. (2016). “Active Movement of the Cascade Landslide Complex in Washington from a Coherence-Based InSAR Time Series Method.” Remote Sensing of Environment 186: 405–15. https://doi.org/10.1016/j.rse.2016.09.008. | spa |
dc.relation.references | Touzi, Ridha, Armand Lopes, Jérôme Bruniquel, and Paris W. Vachon. (1999). “Coherence Estimation for SAR Imagery.” IEEE Transactions on Geoscience and Remote Sensing 37 (1 PART 1): 135–49. https://doi.org/10.1109/36.739146. | spa |
dc.relation.references | Ulloa, Carlos, Erasmo Rodríguez, and Gloria Inés Rodríguez. (2003). “Geología de La Plancha 172 Paz de Río. Escala 1:100.000.” Geología De La Plancha 172 Paz De Río, 111. | spa |
dc.relation.references | Unión Nacional de Gestión del Riesgo (UNGR). (s.f.). “Glosario_de Términos_de la Gestion_del_Riesgo de Desastres”. http://portal.gestiondelriesgo.gov.co/Paginas/Glosario_Terminos_Gestion_del_Riesgo.aspx. Recuperado el 30 de octubre de 2015. | spa |
dc.relation.references | Unidad Nacional para la Gestión del Riesgo. (UNGR) (2014). Sistema Nacional de Información para la Gestión del Riesgo de Desastres. http://www.gestiondelriesgo.gov.co/snigrd/pagina.aspx?id=79 . Recuperado el 26 de septiembre de 2015. | spa |
dc.relation.references | Unidad Nacional de Gestión del Riesgo (UNGR). (2021). Sistema de Alerta Temprana. http://portal.gestiondelriesgo.gov.co/Paginas/SAT.aspx. Recuperado el 3 de mayo de 2023. | spa |
dc.relation.references | United Nations Department of Humanitarian Affairs. (1992). “Internationally Agreed Glossary of Basic Terms Related to Disaster Management.” United Nations, no. December 1992: 81. | spa |
dc.relation.references | Usai, Stefania. (1997). “The Use of Man-Made Features for Long Time Scale INSAR.” In International Geoscience and Remote Sensing Symposium, Singapore, 3–8 August 1997 4: 1542–44. https://doi.org/10.1109/IGARSS.1997.608936. | spa |
dc.relation.references | Vargas Cuervo, Germán. (1992). “Methodologie Pour l’etablissement de Cartes de Sensibilité Aux Mouvements de Terrain, Fondé Sur l’utilisation d’un Couple Stéréographique SPOT-XS/LANDSAT-TM.” Universite De Paris Vi Pierre Et Marie Curie. | spa |
dc.relation.references | Vargas Cuervo, Germán. (1995). “Developpement de Methodes de Cartographie Des Mouvements de Masse et de Zonage de l’Alea Dans Les Andes de La Colombie.” | spa |
dc.relation.references | Vargas Cuervo, Germán. (1999). Guía Técnica Para La Zonificación de La Susceptibilidad y La Amenaza Por Movimientos En Masa. Edited by Cooperación Colombo-Alemana (GTZ). 1st ed. Villavicencio. | spa |
dc.relation.references | Varnes, David J. (1978). “Slope Movements Types and Processes. In: Schuster R.L., y Krizek R.J. (Ed.). Landslides Analysis and Control. Washington D. C, National Academy Press, Transportation Research Board Special Report, 176, 9-33 P.” Special Report 176: Landslides: Analysis and Control. https://doi.org/In Special report 176: Landslides: Analysis and Control, Transportation Research Board, Washington, D.C. | spa |
dc.relation.references | Ventura, Guido, Giuseppe Vilardo, and Carlo Terranova. (2013). “Landslide Science and Practice.” In Landslide Science and Practice, 2:147–51. https://doi.org/10.1007/978-3-642-31445-2. | spa |
dc.relation.references | Walstra, J, N Dixon, and J H Chandler. (2007). “Historical Aerial Photographs for Landslide Assessment: Two Case Histories.” Quarterly Journal of Engineering Geology and Hydrogeology 40 (4): 315–32. https://doi.org/10.1144/1470-9236/07-011. | spa |
dc.relation.references | Wang, Xianmin, and Ruiqing Niu. (2010). “Landslide Intelligent Prediction Using Object-Oriented Method.” Soil Dynamics and Earthquake Engineering 30 (12): 1478–86. https://doi.org/10.1016/j.soildyn.2010.06.017. | spa |
dc.relation.references | Wang, Xun Chun, Yue Zhang, Xing Ge Jiang, and Peng Zhang. (2011). “A Dynamic Prediction Method of Deep Mining Subsidence Combines D-InSAR Technique.” In Procedia Environmental Sciences, 10:2533–39. https://doi.org/10.1016/j.proenv.2011.09.394. | spa |
dc.relation.references | Wilches, L H M, and M A C Chávez. (2005). Interpretación Visual de Imágenes de Sensores Remotos y Su Aplicación En Levantamientos de Cobertura y Uso de La Tierra. Instituto Geográfico Agustín Codazzi. https://books.google.com.co/books?id=sazktwAACAAJ. | spa |
dc.relation.references | World Health Organization. Global Early Warner andr Responses Sistem. (2023). https://www.who.int/emergencies/surveillance/early-warning-alert-and-response-system-ewars. Recuperado el 3 de mayo. | spa |
dc.relation.references | Wu, Qiusheng. (2017). GIS and Remote Sensing Applications in Wetland Mapping and Monitoring. Comprehensive Geographic Information Systems. Vol. 3. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10460-9. | spa |
dc.relation.references | Zalite, Karlis, and Kaupo Voormansik. (2016). “Differential and Persistent Scatterer SAR Interferometry.” | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.subject.ddc | 550 - Ciencias de la tierra | spa |
dc.subject.ddc | 900 - Geografía e historia | spa |
dc.subject.lemb | Geotectónica | spa |
dc.subject.lemb | Geology, structural | eng |
dc.subject.proposal | Interferometría diferencial de radar | spa |
dc.subject.proposal | DiNSAR | eng |
dc.subject.proposal | sistemas de alerta temprana | spa |
dc.subject.proposal | fenómenos de remoción en masa | spa |
dc.subject.wikidata | Geografía y Sistemas de Información Geográfica | spa |
dc.title | Evaluación de la interferometría diferencial de radar en el estudio de fenómenos de remoción en masa y su uso en alertas tempranas | spa |
dc.title.translated | Assessment of differential radar interferometry in the study of mass movement phenomena and its use in early warning systems | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación (MINCIENCIAS) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 9726852_2025.pdf
- Tamaño:
- 12.75 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Geografía
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: