Efecto de la microestructura en la deformación y fractura de aceros de fase dual

dc.contributor.advisorRodríguez Baracaldo, Rodolfo
dc.contributor.advisorMujica Roncery, Lais
dc.contributor.authorAvendaño Rodríguez, Diego Fernando
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001611741&lang=esspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=BvF7X2AAAAAJ&hl=esspa
dc.contributor.orcidAvendaño Rodríguez, Diego Fernando [0000000343656635]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Diego-Avendano-Rodriguezspa
dc.contributor.researchgroupInnovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)spa
dc.date.accessioned2023-02-09T15:01:43Z
dc.date.available2023-02-09T15:01:43Z
dc.date.issued2023
dc.descriptionilustraciones, graficasspa
dc.description.abstractEsta investigación tiene como objetivo evaluar la evolución del daño y los mecanismos de fractura microestructurales asociados a ensayos de tracción uniaxial (UTT), uniaxial cíclica (CTT), propagación de grietas y energía de fractura, relacionados con la fracción en volumen y la distribución de martensita en un acero comercial de fase dual (DP). En primer lugar, mediante la implementación de tratamientos térmicos intercríticos se crearon diferentes fracciones en volumen de martensita (MVF) en el material en estado de entrega. Se realizaron nanoindentaciones para evaluar las propiedades mecánicas de la ferrita y la martensita. A continuación, se caracterizaron los mecanismos de daño utilizando micrografías SEM obtenidas de muestras UTT y CCT. Se determinó la resistencia de los materiales a la propagación de grietas y la energía asociada a la formación de las superficies de fractura. Finalmente, se determinó de forma cualitativa el efecto de la deformación y la propagación de grietas en la microestructura empleando SEM-EBSD. Se observó que el tipo de carga aplicada influye en el comportamiento mecánico de los aceros DP. Bajo la condición de carga CCT, los aceros exhiben una menor ductilidad y resistencia que bajo carga UTT. Además, una tasa más rápida de progresión del daño dúctil a tensión se encuentra correlaciona con un mayor MVF. Por otra parte, el MVF y la orientación de los granos de martensita con respecto a la dirección de la carga afectan significativamente el flujo de plástico de ferrita. La decohesión de las interfaces ferrita-ferrita y ferrita-martensita son los principales mecanismos de nucleación de micro vacíos. Los mapas de Kernel muestran que la densidad de dislocaciones es relativamente alta en los límites de grano, particularmente cerca de los granos de martensita. Por lo tanto, el desarrollo de mecanismos de fractura se atribuye a la energía de deformación de la microestructura. Finalmente, se observó que la energía necesaria para producir superficies de fractura y la tortuosidad de grieta aumenta a medida que aumenta el MVF. Por el contrario, la tasa de crecimiento de grietas se reduce con el aumento del contenido de martensita. (Texto tomado de la fuente)spa
dc.description.abstractThis research aims to study the evolution of damage and microstructural fracture mechanisms related to uniaxial tensile (UTT), cyclic uniaxial tensile test (CTT), crack growth, and fracture energy associated with martensite distribution and volume fraction in commercial dual-phase steel (DP). Steels with different martensite volume fractions (MVF) were produced in the as-received material using intercritical heat treatments. In addition, nanoindentations were performed to evaluate the mechanical properties of ferrite and martensite. Damage mechanisms were identified using UTT and CCT samples SEM images. The material resistance to crack growth and the associated surface fracture formation energy were determined. Finally, the deformation and crack growth effect on microstructure were qualitatively determined using SEM-EBSD. It was found that the type of applied load influences the mechanical behavior of DP steels. Steels exhibit less ductility and strength when subjected to CCT loading than when subjected to UTT loading. In addition, a faster rate of ductile damage progression in tension is correlated with a greater MVF. MVF and martensite grains orientation concerning the load direction significantly affects the ferrite plastic flow. The ferrite-ferrite and ferrite-martensite interface decohesion are the primary mechanisms of void nucleation. According to Kernel maps, dislocation density is relatively high at grain boundaries, particularly close to martensite grains. Therefore, the development of fracture mechanisms is attributed to the microstructure strain energy. Finally, it was observed that the energy needed to produce fracture surfaces and crack tortuosity rises as MVF increases. In contrast, the crack growth rate reduces with the increase of MVF.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaIngeniería de Materiales y Proceso de Manufacturaspa
dc.format.extentxxviii, 299 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83400
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesR. Rana and S. B. Singh, “Dual-phase steels,” in Automotive steels: design, metallurgy, processing, and applications, Duxford, United Kingdom: Woodhead Publishing, 2017, pp. 169–209.spa
dc.relation.referencesD. Llewellyn and R. C. Hudd, “Low-carbon strip steels,” in Steels metallurgy and applications, Oxford, England: Butterworth-Heinemann, 1998, pp. 71–76.spa
dc.relation.referencesE. W. Williams and L. K. Davies, “Recent Developments in annealing,” ISI Special Report, vol. 79, 1963.spa
dc.relation.referencesY. Weng, H. Dong, and Y. Gan, “Innovative Steels for Low Carbon Economy,” in Advanced Steels, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 9–10.spa
dc.relation.referencesB. Cantor, P. Grant, and C. Johnston, “Impact Loading,” in Automotive engineering: lightweight, functional, and novel materials, New York: Taylor & Francis, 2008, pp. 63–70.spa
dc.relation.referencesS. Hayami and T. Furukawa, “A family of high-strength, cold rolled steels,” in Proceedings of Micro Alloying 75’, Union Carbide Corp., 1977, pp. 311–321.spa
dc.relation.referencesN. Fonstein, “Effect of Structure on Mechanical Properties of Dual-Phase Steels,” in Advanced High Strength Sheet Steels, East Chicago, IN, USA: Springer, 2015, pp. 67–181.spa
dc.relation.referencesC. Nikhare, P. D. Hodgson, and M. Weiss, “Necking and fracture of advanced high strength steels,” Materials Science and Engineering: A, vol. 528, no. 6, pp. 3010–3013, Mar. 2011.spa
dc.relation.referencesZ. Jiang, Z. Guan, and J. Lian, “Effects of microstructural variables on the deformation behaviour of dual-phase steel,” Materials Science and Engineering: A, vol. 190, no. 1–2, pp. 55–64, Jan. 1995.spa
dc.relation.referencesR. Song, D. Ponge, and D. Raabe, “Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing,” Acta Mater, vol. 53, no. 18, pp. 4881–4892, Oct. 2005.spa
dc.relation.referencesM. Calcagnotto, D. Ponge, and D. Raabe, “Effect of grain refinement to 1μm on strength and toughness of dual-phase steels,” Materials Science and Engineering: A, vol. 527, no. 29–30, pp. 7832–7840, Nov. 2010.spa
dc.relation.referencesC. C. Tasan et al., “An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design,” Annu Rev Mater Res, vol. 45, pp. 391–431, Jul. 2015.spa
dc.relation.referencesG. Avramovic-Cingara, Y. Ososkov, M. K. Jain, and D. S. Wilkinson, “Effect of martensite distribution on damage behaviour in DP600 dual phase steels,” Materials Science and Engineering A, vol. 516, no. 1–2, pp. 7–16, Aug. 2009.spa
dc.relation.referencesR. G. Davies, “Influence of martensite composition and content on the properties of dual phase steels,” Metallurgical Transactions A, vol. 9, no. 5, pp. 671–679, May 1978.spa
dc.relation.referencesR. Idris and Y. Prawoto, “Influence of ferrite fraction within martensite matrix on fatigue crack propagation: An experimental verification with dual phase steel,” Materials Science and Engineering: A, vol. 552, pp. 547–554, Aug. 2012.spa
dc.relation.referencesA. Kumar, S. B. Singh, and K. K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels,” Materials Science and Engineering: A, vol. 474, no. 1–2, pp. 270–282, Feb. 2008.spa
dc.relation.referencesM. Tayanç, A. Aytaç, and A. Bayram, “The effect of carbon content on fatigue strength of dual-phase steels,” Mater Des, vol. 28, no. 6, pp. 1827–1835, Jan. 2007.spa
dc.relation.referencesM. Calcagnotto, D. Ponge, and D. Raabe, “On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels,” Metall Mater Trans A Phys Metall Mater Sci, vol. 43, no. 1, pp. 37–46, 2012.spa
dc.relation.referencesL. Zhou, D. Zhang, and Y. Liu, “Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels,” International Journal of Minerals, Metallurgy, and Materials, vol. 21, no. 8, pp. 755–765, Aug. 2014.spa
dc.relation.referencesI. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, “Properties of controlled-rolled steels,” in Thermomechanical processing of high-strength low-alloy steels, London; Boston: Butterworths, 1988, pp. 98–99, 186–193.spa
dc.relation.referencesA. Haldar, “Effects of Microalloying in Multi Phase Steels for Car Body Manufacture,” in Microstructure and Texture in Steels and Other Materials, London: Springer London, 2009, pp. 146, 150–162.spa
dc.relation.referencesV. Ginzburg, “Multiphase Steels,” in Metallurgical design of flat rolled steels, New York: Marcel Dekker, 2005, pp. 601–614.spa
dc.relation.referencesM. Chiaberge, “High Mn TWIP Steels for Automotive Applications,” in New trends and developments in automotive system engineering, Rijeka: Intech, 2011, pp. 101–128.spa
dc.relation.referencesG. Krauss, “Low-Carbon Steels,” in Steels processing, structure, and performance, 2nd ed., Materials Park, Ohio: ASM International, 2015, pp. 250–256.spa
dc.relation.referencesM. S. Rashid, “Dual Phase Steels,” Annual Review of Materials Science, vol. 11, no. 1, pp. 245–266, 1981.spa
dc.relation.referencesE. Pereloma and D. Edmonds, “Phase transformations in high strength steels,” in Phase transformations in steel. Diffusionless transformations, high strength steels, modelling and advances analytical techniques, vol. 2, Cambridge: Woodhead, 2012, pp. 151–212.spa
dc.relation.referencesH. Bhadeshia and Robert Honeycombe, “Thermomechanical Treatment of Steels,” in Steels: microstructure and properties, 4th ed., Oxford, United Kingdom: Butterworth-Heinemann, 2017, pp. 287–288.spa
dc.relation.referencesT. Nanda, V. Singh, V. Singh, A. Chakraborty, and S. Sharma, “Third generation of advanced high-strength steels: Processing routes and properties,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 233, no. 2, pp. 209–238, Feb. 2019.spa
dc.relation.referencesM. Y. Demeri, “Dual-Phase Steels,” in Advanced high-strength steels: science, technology, and applications, Materials Park, Ohio: ASM International, 2013, pp. 95–106.spa
dc.relation.referencesM. Calcagnotto, D. Ponge, and D. Raabe, “Microstructure Control during Fabrication of Ultrafine Grained Dual-phase Steel: Characterization and Effect of Intercritical Annealing Parameters,” ISIJ International, vol. 52, no. 5, pp. 874–883, May 2012.spa
dc.relation.referencesJ. Zhang, H. Di, Y. Deng, and R. D. K. Misra, “Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel,” Materials Science and Engineering: A, vol. 627, pp. 230–240, Mar. 2015.spa
dc.relation.referencesF. Zhang, A. Ruimi, P. C. Wo, and D. P. Field, “Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior,” Materials Science and Engineering A, vol. 659, pp. 93–103, Apr. 2016.spa
dc.relation.referencesJ. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, “Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels,” Acta Mater, vol. 59, no. 11, pp. 4387–4394, Jun. 2011.spa
dc.relation.referencesA. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, “Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size,” Metallurgical and Materials Transactions A, vol. 43, no. 10, pp. 3850–3869, May 2012.spa
dc.relation.referencesA. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, and W. Bleck, “Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels,” Int J Plast, vol. 43, pp. 128–152, Apr. 2013.spa
dc.relation.referencesV. Tarigopula, O. S. Hopperstad, M. Langseth, and A. H. Clausen, “Elastic-plastic behaviour of dual-phase, high-strength steel under strain-path changes,” European Journal of Mechanics - A/Solids, vol. 27, no. 5, pp. 764–782, Sep. 2008.spa
dc.relation.referencesJ. B. Seol, J. E. Jung, Y. W. Jang, and C. G. Park, “Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/-martensite dual-phase Fe-Mn-C steels,” Acta Mater, vol. 61, no. 2, pp. 558–578, Jan. 2013.spa
dc.relation.referencesS. A. Etesami, M. H. Enayati, and A. G. Kalashami, “Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing,” Materials Science and Engineering A, vol. 682, pp. 296–303, 2017, doi: 10.1016/j.msea.2016.09.112.spa
dc.relation.referencesV. L. de la Concepción, H. N. Lorusso, and H. G. Svoboda, “Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels,” Procedia Materials Science, vol. 8, pp. 1047–1056, 2015.spa
dc.relation.referencesN. Terao and B. Cauwe, “Influence of additional elements (Mo, Nb, Ta and B) on the mechanical properties of high-manganese dual-phase steels,” J Mater Sci, vol. 23, no. 5, pp. 1769–1778, 1988.spa
dc.relation.referencesS. A. Etesami, M. H. Enayati, A. Taherizadeh, and B. Sadeghian, “The Influence of Volume Fraction of Martensite and Ferrite Grain Size on Ultimate Tensile Strength and Maximum Uniform True Strain of Dual Phase Steel,” Transactions of the Indian Institute of Metals, vol. 69, no. 8, pp. 1605–1612, 2016.spa
dc.relation.referencesJ. Drumond, O. Girina, J. F. da Silva Filho, N. Fonstein, and C. A. S. de Oliveira, “Effect of Silicon Content on the Microstructure and Mechanical Properties of Dual-Phase Steels,” Metallography, Microstructure, and Analysis, vol. 1, no. 5, pp. 217–223, 2012.spa
dc.relation.referencesC. Philippot et al., “Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels,” Metall Mater Trans A Phys Metall Mater Sci, vol. 49, no. 1, pp. 66–77, Jan. 2018.spa
dc.relation.referencesP. Tsipouridis, E. Werner, C. Krempaszky, and E. Tragl, “Formability of high strength dual-phase steels,” Steel Res Int, vol. 77, no. 9–10, pp. 654–667, 2006, doi: 10.1002/srin.200606444.spa
dc.relation.referencesJ. F. da Silva Filho et al., “Effect of Cr additions on ferrite recrystallization and austenite formation in dual-phase steels heat treated in the intercritical temperature range,” Materials Research, vol. 19, no. 1, pp. 258–266, Jan. 2016.spa
dc.relation.referencesS. Goto, C. Kami, and S. Kawamura, “Effect of alloying elements and hot-rolling conditions on microstructure of bainitic-ferrite/martensite dual phase steel with high toughness,” Materials Science and Engineering: A, vol. 648, pp. 436–442, Nov. 2015.spa
dc.relation.referencesA. Ghatei Kalashami, A. Kermanpur, A. Najafizadeh, and Y. Mazaheri, “Effect of Nb on Microstructures and Mechanical Properties of an Ultrafine-Grained Dual Phase Steel,” J Mater Eng Perform, vol. 24, no. 8, pp. 3008–3017, 2015.spa
dc.relation.referencesB. Verlinden, J. Driver, I. Samajdar, and R. D. Doherty, “Thermo-Mechanical Processing of Steel,” in Thermo-mechanical processing of metallic materials, Amsterdam: The Netherlands: Elsevier, 2007, pp. 417–419.spa
dc.relation.referencesN. Gorain, M. G. Walunj, M. K. Soni, and B. R. Kumar, “Effect of continuous annealing process on various structure parameters of martensite of dual-phase steels,” Archives of Civil and Mechanical Engineering, vol. 20, no. 1, Mar. 2020.spa
dc.relation.referencesJ. Zhao and Z. Jiang, “Thermomechanical processing of advanced high strength steels,” Prog Mater Sci, vol. 94, pp. 174–242, 2018.spa
dc.relation.referencesE. Pereloma and D. Edmonds, “Fundamentals of ferrite formation in steels,” in Phase transformations in steel. Fundamentals and diffusion-controlled transformations, vol. 1, Cambridge: Woodhead Pub., 2012, pp. 187–224.spa
dc.relation.referencesS. Nikkhah, H. Mirzadeh, and M. Zamani, “Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing,” Mater Chem Phys, vol. 230, pp. 1–8, May 2019.spa
dc.relation.referencesH. Farivar, S. Richter, M. Hans, A. Schwedt, U. Prahl, and W. Bleck, “Experimental quantification of carbon gradients in martensite and its multi-scale effects in a DP steel,” Materials Science and Engineering A, vol. 718, no. January, pp. 250–259, 2018.spa
dc.relation.referencesY. Mazaheri, A. Kermanpur, A. Najafizadeh, and A. G. Kalashami, “Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures,” Metall Mater Trans A Phys Metall Mater Sci, vol. 47, no. 3, pp. 1040–1051, Mar. 2016.spa
dc.relation.referencesD. Z. Yang, E. L. Brown, D. K. Matlock, and G. Krauss, “Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel,” Metallurgical Transactions A, vol. 16, no. 8, pp. 1385–1392, 1985.spa
dc.relation.referencesH. K. Zeytin, C. Kubilay, and H. Aydin, “Investigation of dual phase transformation of commercial low alloy steels: Effect of holding time at low inter-critical annealing temperatures,” Mater Lett, vol. 62, no. 17–18, pp. 2651–2653, Jun. 2008.spa
dc.relation.referencesS. M. C. van Bohemen and J. Sietsma, “Martensite formation in partially and fully austenitic plain carbon steels,” Metall Mater Trans A Phys Metall Mater Sci, vol. 40, no. 5, pp. 1059–1068, 2009.spa
dc.relation.referencesE. Ahmad, T. Manzoor, K. L. Ali, and J. I. Akhter, “Effect of Microvoid Formation on the Tensile Properties of Dual-Phase Steel,” J Mater Eng Perform, vol. 9, no. 3, pp. 306–310, 2000.spa
dc.relation.referencesA. Govik, R. Rentmeester, and L. Nilsson, “A study of the unloading behaviour of dual phase steel,” Materials Science and Engineering: A, vol. 602, pp. 119–126, Apr. 2014.spa
dc.relation.referencesG. F. van der Voort, “Etching isothermally treated steels,” Heat Treating Progress, vol. 1, no. 2, pp. 25–32, 2001.spa
dc.relation.referencesD. Terada, G. Ikeda, M. H. Park, A. Shibata, and N. Tsuji, “Reason for high strength and good ductility in dual phase steels composed of soft ferrite and hard martensite,” IOP Conf Ser Mater Sci Eng, vol. 219, no. 1, p. 012008, Aug. 2017.spa
dc.relation.referencesH. R. Pakzaman and S. S. G. Banadkouki, “Effect of Ferrite and Martensite Hardening Variation on Mechanism of Void Formation in Low-Alloy Dual-Phase Steel,” Metallography, Microstructure, and Analysis, vol. 10, no. 5, pp. 610–626, Oct. 2021.spa
dc.relation.referencesB. Anbarlooie, J. Kadkhodapour, H. Hosseini Toudeshky, and S. Schmauder, “Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue,” in Handbook of Mechanics of Materials, Springer Singapore, 2018, pp. 1–30. doi: 10.1007/978-981-10-6855-3_70-1.spa
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, “Evaluation of fracture micromechanisms in a fine-grained dual phase steel during uniaxial tensile deformation,” Steel Res Int, vol. 85, no. 9, pp. 1386–1392, 2014.spa
dc.relation.referencesG. Avramovic-Cingara, Ch. A. R. Saleh, M. K. Jain, and D. S. Wilkinson, “Void Nucleation and Growth in Dual-Phase Steel 600 during Uniaxial Tensile Testing,” Metallurgical and Materials Transactions A, vol. 40, no. 13, pp. 3117–3127, Dec. 2009.spa
dc.relation.referencesD. L. Steinbrunner, D. K. Matlock, and G. Krauss, “Void formation during tensile testing of dual phase steels,” Metallurgical Transactions A, vol. 19, no. 3, pp. 579–589, Mar. 1988.spa
dc.relation.referencesH. Ashrafi, M. Shamanian, R. Emadi, and E. Ghassemali, “Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension,” Acta Metallurgica Sinica (English Letters), vol. 33, no. 2, pp. 299–306, Feb. 2020.spa
dc.relation.referencesM. Jafari, S. Ziaei-Rad, N. Saeidi, and M. Jamshidian, “Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation,” Materials Science and Engineering A, vol. 670, pp. 57–67, Jul. 2016.spa
dc.relation.referencesE. E. Aşık, E. S. Perdahcıoğlu, and A. H. van den Boogaard, “Microscopic investigation of damage mechanisms and anisotropic evolution of damage in DP600,” Materials Science and Engineering A, vol. 739, pp. 348–356, Jan. 2019.spa
dc.relation.referencesC. Du, J. P. M. Hoefnagels, R. Vaes, and M. G. D. Geers, “Plasticity of lath martensite by sliding of substructure boundaries,” Scr Mater, vol. 120, pp. 37–40, Jul. 2016.spa
dc.relation.referencesY. Mazaheri, A. H. Jahanara, M. Sheikhi, and A. G. Kalashami, “High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing,” Materials Science and Engineering A, vol. 761, Jul. 2019.spa
dc.relation.referencesM. Mazinani and W. J. Poole, “Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel,” Metallurgical and Materials Transactions A, vol. 38, no. 2, pp. 328–339, Mar. 2007.spa
dc.relation.referencesC. F. Kusche et al., “Efficient characterization tools for deformation-induced damage at different scales,” Production Engineering, vol. 14, no. 1, pp. 95–104, Feb. 2020.spa
dc.relation.referencesK. Isik, G. Gerstein, T. Clausmeyer, F. Nürnberger, A. E. Tekkaya, and H. J. Maier, “Evaluation of Void Nucleation and Development during Plastic Deformation of Dual-Phase Steel DP600,” Steel Res Int, vol. 87, no. 12, pp. 1583–1591, Dec. 2016.spa
dc.relation.referencesH. Toda et al., “Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography,” Acta Mater, vol. 126, pp. 401–412, Mar. 2017.spa
dc.relation.referencesH. Toda et al., “Corrigendum to ‘Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography,’” Acta Mater, vol. 133, p. 441, 2017.spa
dc.relation.referencesJ. Lemaitre and J. Dufailly, “Damage measurements,” Eng Fract Mech, vol. 28, no. 5–6, pp. 643–661, 1987.spa
dc.relation.referencesP. Zhao, Y. Sun, J. Jiao, and G. Fang, “Correlation between acoustic emission detection and microstructural characterization for damage evolution,” Eng Fract Mech, vol. 230, May 2020.spa
dc.relation.referencesN. Bonora, A. Ruggiero, D. Gentile, and S. de Meo, “Practical Applicability and Limitations of the Elastic Modulus Degradation Technique for Damage Measurements in Ductile Metals,” Strain, vol. 47, no. 3, pp. 241–254, Jun. 2011.spa
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “A critical assessment of indentation-based ductile damage quantification,” Acta Mater, vol. 57, no. 17, pp. 4957–4966, 2009.spa
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “Indentation-based damage quantification revisited,” Scr Mater, vol. 63, no. 3, pp. 316–319, 2010.spa
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution,” Acta Mater, vol. 60, no. 8, pp. 3581–3589, 2012.spa
dc.relation.referencesM. Alves, J. Yu, and N. Jones, “On the elastic modulus degradation in continuum damage mechanics,” Comput. Struct., vol. 76, no. 6, pp. 703–712, 2000.spa
dc.relation.referencesL. Sun and R. H. Wagoner, “Complex unloading behavior: Nature of the deformation and its consistent constitutive representation,” Int J Plast, vol. 27, no. 7, pp. 1126–1144, 2011.spa
dc.relation.referencesS. P. Tsiloufas and R. L. Plaut, “Ductile Fracture Characterization for Medium Carbon Steel Using Continuum Damage Mechanics,” Materials Sciences and Applications, vol. 03, no. 11, pp. 745–755, Nov. 2012.spa
dc.relation.referencesK. Ichinose, K. Fukuda, K. Gomi, K. Taniuchi, and M. Sano, “Yield Strength in Relation to Cyclic Loading,” J Test Eval, vol. 29, no. 6, pp. 529–534, 2001.spa
dc.relation.referencesJ. Lemaitre, “A Continuous Damage Mechanics Model for Ductile Fracture,” J Eng Mater Technol, vol. 107, no. January 1985, pp. 83–89, 1985.spa
dc.relation.referencesW. Zhang and Y. Cai, “Basis of Isotropic Damage Mechanics,” in Continuum Damage Mechanics and Numerical Applications, Berlin, Heidelberg: Springer, 2010, pp. 59–134.spa
dc.relation.referencesM. Yang, Y. Akiyama, and T. Sasaki, “Evaluation of change in material properties due to plastic deformation,” J Mater Process Technol, vol. 151, no. 1–3, pp. 232–236, Sep. 2004.spa
dc.relation.referencesT. Altan and A. E. Tekkaya, “Forming of Advanced High-Strength Steels (AHSS),” in Sheet metal forming: Process and applications, Materials Park, Ohio: ASM International, 2012, pp. 108–132.spa
dc.relation.referencesY. X. Zhu, Y. L. Liu, H. Yang, and H. P. Li, “Development and application of the material constitutive model in springback prediction of cold-bending,” Mater Des, vol. 42, pp. 245–258, 2012.spa
dc.relation.referencesH. Kim, C. Kim, F. Barlat, E. Pavlina, and M. G. Lee, “Nonlinear elastic behaviors of low and high strength steels in unloading and reloading,” Materials Science and Engineering A, vol. 562, pp. 161–171, Feb. 2013.spa
dc.relation.referencesH. Ghadbeigi, C. Pinna, S. Celotto, and J. R. Yates, “Local plastic strain evolution in a high strength dual-phase steel,” Mater. Sci. Eng. A, vol. 527, no. 18–19, pp. 5026–5032, 2010, doi: 10.1016/j.msea.2010.04.052.spa
dc.relation.referencesM. Erdogan and S. Tekeli, “The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure,” Mater Des, vol. 23, no. 7, pp. 597–604, 2002.spa
dc.relation.referencesJ. Kadkhodapour, A. Butz, and S. Ziaei Rad, “Mechanisms of void formation during tensile testing in a commercial, dual-phase steel,” Acta Mater, vol. 59, no. 7, pp. 2575–2588, Apr. 2011.spa
dc.relation.referencesC. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, and A. Bareggi, “Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels,” Acta Mater, vol. 59, no. 20, pp. 7564–7573, Dec. 2011.spa
dc.relation.referencesE. Plancher, K. Qu, N. H. Vonk, M. B. Gorji, T. Tancogne-Dejean, and C. C. Tasan, “Tracking Microstructure Evolution in Complex Biaxial Strain Paths: A Bulge Test Methodology for the Scanning Electron Microscope,” Exp Mech, vol. 60, no. 1, pp. 35–50, Jan. 2020.spa
dc.relation.referencesF. Abbassi, S. Mistou, and A. Zghal, “Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests,” Mater Des, vol. 49, pp. 638–646, 2013, doi: 10.1016/j.matdes.2013.02.020.spa
dc.relation.referencesP. J. Zhao, Z. H. Chen, and C. F. Dong, “Experimental and numerical analysis of micromechanical damage for DP600 steel in fine-blanking process,” J Mater Process Technol, vol. 236, pp. 16–25, 2016, doi: 10.1016/j.jmatprotec.2016.05.002.spa
dc.relation.referencesJ. H. Kim, M. G. Lee, D. Kim, D. K. Matlock, and R. H. Wagoner, “Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique,” Materials Science and Engineering A, vol. 527, no. 27–28, pp. 7353–7363, 2010.spa
dc.relation.referencesF. Hisker, R. Thiessen, and T. Heller, “Influence of microstructure on damage in Advanced High Strength Steels,” in Materials Science Forum, 2012, vol. 706–709, pp. 925–930.spa
dc.relation.referencesM. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, “Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging,” Acta Mater, vol. 59, no. 2, pp. 658–670, Jan. 2011.spa
dc.relation.referencesE. Hug, M. Martinez, and J. Chottin, “Temperature and stress state influence on void evolution in a high-strength dual-phase steel,” Materials Science and Engineering A, vol. 626, pp. 286–295, 2015.spa
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, M. R. Forouzan, and F. Barlat, “Damage mechanism and modeling of void nucleation process in a ferrite–martensite dual phase steel,” Eng Fract Mech, vol. 127, pp. 97–103, Sep. 2014.spa
dc.relation.referencesE. Maire, O. Bouaziz, M. di Michiel, and C. Verdu, “Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography,” Acta Mater, vol. 56, no. 18, pp. 4954–4964, Oct. 2008.spa
dc.relation.referencesN. K. Balliger, “Advances in the physical metallurgy and applications of steels,” The Metals Society, pp. 73–83, 1982.spa
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, M. R. Forouzan, S. Mohseni mofidi, and F. Barlat, “Examination and modeling of void growth kinetics in modern high strength dual phase steels during uniaxial tensile deformation,” Mater Chem Phys, vol. 172, pp. 54–61, Apr. 2016.spa
dc.relation.referencesE. Ahmad, T. Manzoor, M. M. A. Ziai, and N. Hussain, “Effect of martensite morphology on tensile deformation of dual-phase steel,” J Mater Eng Perform, vol. 21, no. 3, pp. 382–387, 2012.spa
dc.relation.referencesC. C. Tasan, J. P. M. Hoefnagels, and M. G. D. Geers, “Microstructural banding effects clarified through micrographic digital image correlation,” Scr Mater, vol. 62, no. 11, pp. 835–838, Jun. 2010.spa
dc.relation.referencesO. R. Jardim, W. P. Longo, and K. K. Chawla, “Fracture behavior of a tempered dual phase steel,” Metallography, vol. 17, no. 2, pp. 123–130, May 1984.spa
dc.relation.referencesS. Kim and S. Lee, “Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels,” Metallurgical and Materials Transactions A, vol. 31, no. 7, pp. 1753–1760, Jul. 2000.spa
dc.relation.referencesK. Perzyński, Ł. Madej, J. Wang, R. Kuziak, and P. D. Hodgson, “Numerical Investigation of Influence of the Martensite Volume Fraction on DP Steels Fracture Behavior on the Basis of Digital Material Representation Model,” Metallurgical and Materials Transactions A, vol. 45, no. 13, pp. 5852–5865, Oct. 2014.spa
dc.relation.referencesA. Saai, O. S. Hopperstad, Y. Granbom, and O.-G. Lademo, “Influence of Volume Fraction and Distribution of Martensite Phase on the Strain Localization in Dual Phase Steels,” Procedia Materials Science, vol. 3, pp. 900–905, 2014.spa
dc.relation.referencesT. L. Anderson, “Elastic–Plastic Fracture Mechanics,” in Fracture Mechanics: Fundamental and Applications, 4 ed., Boca Raton, FL: CRC Press/Taylor & Francis Group, 2017, pp. 109–180.spa
dc.relation.referencesH. Hernández and E. Espejo, “Mecánica de fractura,” in Mecánica de fractura y análisis de falla, Bogotá: Universidad Nacional de Colombia, 2002, pp. 14–62.spa
dc.relation.referencesX. K. Zhu and J. A. Joyce, “Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization,” Eng Fract Mech, vol. 85, pp. 1–46, 2012.spa
dc.relation.referencesJ. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” J Appl Mech, pp. 379–386, 1968.spa
dc.relation.referencesGonzález-Velázquez Jorge Luis, “Mecánica de fractura elastoplástica,” in Mecánica de fractura, 2nd ed., México: Limusa S. A., 2004, pp. 83–111.spa
dc.relation.referencesASTM-E1820, Standard Test Method for Measurement of Fracture Toughness. ASTM International, 2017.spa
dc.relation.referencesA. N. Tkach, N. M. Fonshteln, V. N. Simin’kovich, A. N. Bortsov, and Y. N. Lenets, “Fatigue crack growth in a dual-phase ferritic-martensitic steel,” Khimicheskaya Mekhanika Materialov, vol. 20, no. 5, pp. 448–453, 1985.spa
dc.relation.referencesW. Mosselman, “The influence of the martensite content on the fatigue crack growth rate in TRIP and Dual Phase steels,” Master of Science Thesis, Delft University of Technology, 2007.spa
dc.relation.referencesM. Mochizuki, M. Kohara, H. Shimanuki, Y. Hagiwara, and M. Toyoda, “Crack Initiation and Propagation in Ferrite/Martensite Dual-Phase Steel with Microscopic Heterogeneity by Fracture Toughness Tests,” Zairyo, vol. 52, no. 8, pp. 932–938, 2003.spa
dc.relation.referencesG. Lúcio de Faria, L. B. Godefroid, I. P. Nunes, and J. Carlos de Lacerda, “Effect of martensite volume fraction on the mechanical behavior of an UNS S41003 dual-phase stainless steel,” Materials Science and Engineering A, vol. 797, Oct. 2020.spa
dc.relation.referencesX. Qi et al., “Fracture toughness behavior of low-C medium-Mn high-strength steel with submicron-scale laminated microstructure of tempered martensite and reversed austenite,” J Mater Sci, vol. 54, no. 18, pp. 12095–12105, Sep. 2019.spa
dc.relation.referencesS. Suresh, “Fatigue crack growth in ductile solids,” in Fatigue of materials, Cambridge, New York: Cambridge University Press, 1998, pp. 331–382.spa
dc.relation.referencesPook L., “The Cracked Situation,” in Metal Fatigue: What It Is, Why It Matters, Dordrecht, The Netherlands: Springer, 2007, pp. 101–133.spa
dc.relation.referencesArana J. L. and González J. J., “Fatiga de Materiales. Aplicación de la Mecánica de Fractura,” in Mecánica de Fractura, Bilbao: Universidad del País Vasco, 2002, pp. 181–192.spa
dc.relation.referencesPerez N., “Fatigue Crack Growth,” in Fracture Mechanics, 2nd ed., AG Switzerland: Springer, 2017, pp. 327–361.spa
dc.relation.referencesM. Sarwar and R. Priestner, “Fatigue Crack Propagation Behavior in Dual-Phase Steel,” J Mater Eng Perform, vol. 8, no. 2, pp. 245–251, Apr. 1999.spa
dc.relation.referencesM. Sarwar, E. Ahmad, N. Hussain, B. Ahmad, and T. Manzoor, “Crack Path Morphology in Dual-Phase Steel,” J Mater Eng Perform, vol. 15, no. 3, pp. 352–354, Jun. 2006.spa
dc.relation.referencesV. B. Dutta, S. Suresh, and R. O. Ritchie, “Fatigue crack propagation in dual-phase steels: Effects of ferritic-martensitic microstructures on crack path morphology,” Metallurgical Transactions A, vol. 15, no. 6, pp. 1193–1207, Jun. 1984.spa
dc.relation.referencesI. Bartz, A. M. Bernshtein, and K. Dietrich, “Qualitative explanation of failure low-alloy steels,” 1987.spa
dc.relation.referencesS. Li, Y. Kang, and S. Kuang, “Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels,” Materials Science and Engineering: A, vol. 612, pp. 153–161, Aug. 2014.spa
dc.relation.referencesK. Sudhakar and E. Dwarakadasa, “A study on fatigue crack growth in dual phase martensitic steel in air environment,” Bulletin of Materials Science, vol. 23, no. 3, pp. 193–199, 2000.spa
dc.relation.referencesA. Bag, K. K. Ray, and E. S. Dwarakadasa, “Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels,” Metallurgical and Materials Transactions A, vol. 30, no. 5, pp. 1193–1202, 1999.spa
dc.relation.referencesD. Avendaño-Rodríguez, J. D. Granados, E. Espejo-Mora, L. Mujica-Roncery, and R. Rodríguez-Baracaldo, “Fracture mechanisms in dual-phase steel: Influence of martensite volume fraction and ferrite grain size,” Journal of Engineering Science and Technology Review, vol. 11, no. 6, pp. 174–181, 2018.spa
dc.relation.referencesA. Bag, K. K. Ray, and E. S. Dwarakadasa, “Influence of Martensite Content and Morphology on the Toughness and Fatigue Behavior of High-Martensite Dual-Phase Steels,” Metallurgical and Materials Transactions A, vol. 32, no. 9, pp. 2207–2217, 2001.spa
dc.relation.referencesS. Kumar and W. A. Curtin, “Crack interaction with microstructure,” Materials Today, vol. 10, no. 9, pp. 34–44, 2007.spa
dc.relation.referencesJ. Shi and M. A. Zikry, “Grain-boundary interactions and orientation effects on crack behavior in polycrystalline aggregates,” Int J Solids Struct, vol. 46, no. 21, pp. 3914–3925, 2009.spa
dc.relation.referencesJ. Schijve, “Fatigue as a Phenomenon in the Material,” in Fatigue of structures and materials, Dordrecht, Netherlands: Springer, 2009, pp. 13–59.spa
dc.relation.referencesLothar Engel and Hermann Klingele, “Mechanical fracture,” in An atlas of metal damage: Surface examination by scanning electron microscope, Holland: Wolfe Science, 1981, pp. 84–97.spa
dc.relation.referencesD. Montgomery, “Experiments with a single factor: the analysis of variance,” in Design and analysis of experiments, 10th ed., Hoboken (New Jersey): Wiley, 2021, pp. 55–114.spa
dc.relation.referencesASTM-E8/E8M − 16aϵ1, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, 2016.spa
dc.relation.referencesASTM-E466, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International, 2015.spa
dc.relation.referencesASTM-E647, Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International, 2015.spa
dc.relation.referencesY. Lu, H. Yu, X. Cai, Y. Rong, and R. D. Sisson, “Martensite lattice parameter measured by modern X-ray diffraction in Fe-C alloy,” in 23rd International Federation of Heat Treatment and Surface Engineering Congress, IFHTSE 2016, 2016, no. April.spa
dc.relation.referencesJuan José Murillo-Barraza, Diego Fernando Avendaño-Rodríguez, and William Alfonso Suárez-Ortiz, “Identificación automática de fases de la microestructura de aceros de fase dual a partir del procesamiento digital de imágenes,” Trabajo de grado, Fundación Universidad de América, Bogotá D.C., 2020. Accessed: May 05, 2022. [Online]. Available: https://hdl.handle.net/20.500.11839/8217spa
dc.relation.referencesASTM-E112, Standard Test Methods for Determining Average Grain Size. ASTM International, 2013. doi: 10.1520/E0112-13.spa
dc.relation.referencesASTM-E1382, Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis. ASTM International, 2015.spa
dc.relation.referencesW. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J Mater Res, vol. 7, no. 06, pp. 1564–1583, 1992.spa
dc.relation.referencesW. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J Mater Res, vol. 19, no. 01, pp. 3–20, 2004, doi: 10.1557/jmr.2004.19.1.3.spa
dc.relation.referencesK. K. Alaneme, “Fracture Toughness (K1C) evaluation for dual phase medium carbon low alloy steels using circumferential notched tensile (CNT) specimens,” Materials Research, vol. 14, no. 2, pp. 155–160, 2011.spa
dc.relation.referencesE. Lucon, “Spreadsheet-Based Software for the Analysis of Unloading Compliance Fracture Toughness Tests in Accordance with ASTM E1820,” 2022.spa
dc.relation.referencesDavid Parks and Lallit Anand, “Fracture Toughness Testing and Residual Load-Carrying Capacity of a Structure,” 2004.spa
dc.relation.referencesL. M. Plaza, “Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials The Determination of Uncertainties in Plane Strain Fracture Toughness (KIC ) Testing,” 2000.spa
dc.relation.referencesJ. A. Ávila, V. Lima, C. O. F. T. Ruchert, P. R. Mei, and A. J. Ramirez, “Guide for recommended practices to perform crack tip opening displacement tests in high strength low alloy steels,” Soldagem e Inspecao, vol. 21, no. 3, pp. 290–302, Jul. 2016.spa
dc.relation.referencesM. R. Spiegel, R. A. Srinivasan, and J. J. Schiller, “Analysis of Variance,” in Schaum’s outline of probability and statistics, 4 ed., New York: McGraw-Hill - Schaum, 2013, pp. 314–347.spa
dc.relation.referencesS. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrika, vol. 52, no. 3, pp. 591–611, 1965.spa
dc.relation.referencesBartlett M. S., “Properties of Sufficiency and Statistical Tests,” Proc R Soc Lond A Math Phys Sci, vol. 160, no. 901, pp. 268–282, 1937.spa
dc.relation.referencesG. W. Snedecor and W. G. Cochran, “Analysis of Variance: The Random Effects Model,” in Statistical methods, 8th ed., Ames, Iowa: Iowa State Univ. Press., 1989, pp. 251–253.spa
dc.relation.referencesK. K. Yuen, “The two-sample trimmed t for unequal population variances,” Biometrika, vol. 61, no. 1, pp. 165–170, 1974.spa
dc.relation.referencesRand R. Wilcox, “Comparing Two Groups,” in Introduction to robust estimation and hypothesis testing, 4th ed., London, United Kingdom: Academic Press, 2022, pp. 166–187.spa
dc.relation.referencesH. J. Keselman, A. R. Othman, R. R. Wilcox, and K. Fradette, “The New and Improved Two-Sample t Test,” Psychol Sci, vol. 15, no. 1, pp. 47–51, 2004.spa
dc.relation.referencesASTM-E1245, Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis. ASTM International, 2003.spa
dc.relation.referencesT. K. Roy, B. Bhattacharya, C. Ghosh, and S. K. Ajmani, “Microstructure Engineering of High-Performance Steels,” in Advanced High Strength Steel: Processing and Applications, 1 ed., Singapore: Springer Nature, 2018, pp. 11–19.spa
dc.relation.referencesH. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi, “Correlation of Tensile Properties and Strain Hardening Behavior with Martensite Volume Fraction in Dual-Phase Steels,” Transactions of the Indian Institute of Metals, vol. 70, no. 6, pp. 1575–1584, Aug. 2017.spa
dc.relation.referencesY. Mazaheri, A. Kermanpur, and A. Najafizadeh, “Nanoindentation study of ferrite-martensite dual phase steels developed by a new thermomechanical processing,” Materials Science and Engineering A, vol. 639, pp. 8–14, 2015.spa
dc.relation.referencesASTM-E646, Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials. ASTM International, 2016.spa
dc.relation.referencesW. G. Johnston and J. J. Gilman, “Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals,” J Appl Phys, vol. 30, no. 2, pp. 129–144, 1959.spa
dc.relation.referencesL. Y. Wang et al., “Strain hardening behaviour of as-quenched and tempered martensite,” Acta Mater, vol. 199, pp. 613–632, Oct. 2020.spa
dc.relation.referencesD. Das and P. P. Chattopadhyay, “Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel,” J Mater Sci, vol. 44, no. 11, pp. 2957–2965, Jun. 2009.spa
dc.relation.referencesH. Seyedrezai, A. K. Pilkey, and J. D. Boyd, “Effect of pre-IC annealing treatments on the final microstructure and work hardening behavior of a dual-phase steel,” Materials Science and Engineering A, vol. 594, pp. 178–188, Jan. 2014.spa
dc.relation.referencesH. Seyedrezai, “Thermo-Mechanical Processing of Dual-Phase Steels and Its Effects on the Work Hardening Behaviour,” Queen’s University Kingston, 2014. [Online]. Available: http://hdl.handle.net/1974/12677spa
dc.relation.referencesX. Xue, J. Liao, G. Vincze, A. B. Pereira, and F. Barlat, “Experimental assessment of nonlinear elastic behaviour of dual-phase steels and application to springback prediction,” Int J Mech Sci, vol. 117, pp. 1–15, 2016.spa
dc.relation.referencesS. F. Lajarin, C. P. Nikhare, and P. V. P. Marcondes, “Dependence of plastic strain and microstructure on elastic modulus reduction in advanced high-strength steels,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 2, Feb. 2018.spa
dc.relation.referencesJ. Samei, L. Zhou, J. Kang, and D. S. Wilkinson, “Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels,” Int J Plast, vol. 117, pp. 58–70, Jun. 2019.spa
dc.relation.referencesM. Delincé, P. J. Jacques, and T. Pardoen, “Separation of size-dependent strengthening contributions in fine-grained Dual Phase steels by nanoindentation,” Acta Mater, vol. 54, no. 12, pp. 3395–3404, 2006.spa
dc.relation.referencesM. D. Taylor et al., “Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels,” Materials Science and Engineering A, vol. 597, pp. 431–439, 2014.spa
dc.relation.referencesA. H. Jahanara, Y. Mazaheri, and M. Sheikhi, “Correlation of ferrite and martensite micromechanical behavior with mechanical properties of ultrafine grained dual phase steels,” Materials Science and Engineering A, vol. 764, Sep. 2019.spa
dc.relation.referencesR. M. Rahimi and D. F. Bahr, “Individual phase deformation and flow correlation to macroscopic constitutive properties of DP1180 steel,” Materials Science and Engineering A, vol. 756, pp. 328–335, May 2019.spa
dc.relation.referencesF. Zhang, A. Ruimi, and D. P. Field, “Phase Identification of Dual-Phase (DP980) Steels by Electron Backscatter Diffraction and Nanoindentation Techniques,” Microscopy and Microanalysis, vol. 22, no. 1, pp. 99–107, 2016.spa
dc.relation.referencesK. Ismail, A. Perlade, P. J. Jacques, T. Pardoen, and L. Brassart, “Impact of second phase morphology and orientation on the plastic behavior of dual-phase steels,” Int J Plast, vol. 118, pp. 130–146, 2019.spa
dc.relation.referencesK. Ismail, A. Perlade, P. J. Jacques, and T. Pardoen, “Outstanding cracking resistance of fibrous dual phase steels,” Acta Mater, vol. 207, Apr. 2021.spa
dc.relation.referencesA. Laureys, T. Depover, R. Petrov, and K. Verbeken, “Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD,” Mater Charact, vol. 112, pp. 169–179, 2016.spa
dc.relation.referencesS. Li, C. Guo, L. Hao, Y. Kang, and Y. An, “In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests,” Materials Science and Engineering A, vol. 759, pp. 624–632, Jun. 2019.spa
dc.relation.referencesB. Jeong, R. Gauvin, and S. Yue, “EBSD Study of Martensite in a Dual Phase Steel,” Microscopy and Microanalysis, vol. 8, no. S02, pp. 700–701, 2002.spa
dc.relation.referencesP. T. Pinard, A. Schwedt, A. Ramazani, U. Prahl, and S. Richter, “Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements,” Microscopy and Microanalysis, vol. 19, no. 4, pp. 996–1006, 2013.spa
dc.relation.referencesJ. Y. Kang, S. J. Park, and M. B. Moon, “Phase analysis on dual-phase steel using band slope of electron backscatter diffraction pattern.,” Microsc Microanal, vol. 19 Suppl 5, pp. 13–6, 2013.spa
dc.relation.referencesB. Y. Jeong, M. Ryou, C. Lee, and M. H. Kim, “A Study on the Surface Characteristics of Dual Phase Steel by Electron Backscatter Diffraction (EBSD) Technique,” Transactions on Electrical and Electronic Materials, vol. 15, no. 1, pp. 20–23, 2014.spa
dc.relation.referencesS. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, and P. van Houtte, “EBSD study of the substructure development with cold deformation of dual phase steel,” Materials Science and Engineering: A, vol. 527, no. 4–5, pp. 947–953, Feb. 2010.spa
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, “EBSD Study of Damage Mechanisms in a High-Strength Ferrite-Martensite Dual-Phase Steel,” J Mater Eng Perform, vol. 24, no. 1, pp. 53–58, Oct. 2014.spa
dc.relation.referencesJ. Moerman, P. R. Triguero, C. Tasan, and P. van Liempt, “Evaluation of Geometrically Necessary Dislocations Density (GNDD) near Phase Boundaries in Dual Phase Steels by Means of EBSD,” Materials Science Forum, vol. 702–703, pp. 485–488, 2011.spa
dc.relation.referencesS. Ogata, T. Mayama, Y. Mine, and K. Takashima, “Effect of microstructural evolution on deformation behaviour of pre-strained dual-phase steel,” Materials Science and Engineering A, vol. 689, no. February, pp. 353–365, 2017.spa
dc.relation.referencesN. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, “EBSD study of micromechanisms involved in high deformation ability of DP steels,” Mater Des, vol. 87, pp. 130–137, Dec. 2015.spa
dc.relation.referencesA. Ramazani, M. Spähn, a. Schwedt, and a. Aretz, “Characterization of failure initiation in DP600 steel by combined in-situ bending test and EBSD measurements,” in Emc2012, 2012, vol. 52, pp. 1–2.spa
dc.relation.referencesA. S. Keh, “Work hardening and deformation sub-structure in iron single crystals deformed in tension at 298°k,” Philosophical Magazine, vol. 12, no. 115, pp. 9–30, 1965, doi: 10.1080/14786436508224942.spa
dc.relation.referencesM. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, “Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD,” Materials Science and Engineering A, vol. 527, no. 10–11, pp. 2738–2746, 2010.spa
dc.relation.referencesC. Pérez-Velásquez, D. Avendaño-Rodríguez, C. Narvaez-Tovar, L. M. Roncery, and R. Rodriguez-Baracaldo, “Fatigue Crack Growth and Fracture Toughness in a Dual Phase Steel: Effect of Increasing Martensite Volume Fraction,” International Journal of Automotive and Mechanical Engineering, vol. 17, no. 3, pp. 8086–8095, 2020.spa
dc.relation.referencesJ. K. Shang, J. L. Tzou, and R. O. Ritchie, “Role of Crack Tip Shielding in the Initiation and Growth of Long and Small Fatigue Cracks in Composite Microstructures,” Metallurgical Transactions A, vol. 18, no. 9, pp. 1613–1627, 1987.spa
dc.relation.referencesJ. Wasén and B. Karlsson, “Influence of prestrain and ageing on near-threshold fatigue crack growth in fine-grained dual-phase steels,” Int J Fatigue, vol. 11, no. 6, pp. 395–405, 1989.spa
dc.relation.referencesJ. L. Tzou and R. O. Ritchie, “Fatigue crack propagation in a dual-phase plain-carbon steel,” Scripta Metallurgica, vol. 19, no. 6, pp. 751–755, 1985.spa
dc.relation.referencesL. Sun, S. Li, Q. Zang, and Z. Wang, “Dependence of fatigue crack closure behavior on volume fraction of martensite in dual-phase steels,” Scripta Metallurgica et Materialia, vol. 32, no. 4, pp. 517–521, 1995.spa
dc.relation.referencesÉdgar Espejo Mora and Héctor Hernández Albañil, “Fallas por fractura y fractografía,” in Análisis de fallas de estructuras y elementos mecánicos, Bogotá D.C.: Universidad Nacional de Colombia, 2017, pp. 101–168.spa
dc.relation.referencesS. Li, Y. Kang, G. Zhu, and S. Kuang, “Microstructure and fatigue crack growth behavior in tungsten inert gas welded DP780 dual-phase steel,” Mater Des, vol. 85, pp. 180–189, Nov. 2015.spa
dc.relation.referencesĽ. Ambriško and L. Pešek, “The crack growth resistance of thin steel sheets under eccentric tension,” Sādhanā, vol. 43, no. 2, pp. 1–8, 2018.spa
dc.relation.referencesN. Yurioka, “Weldability of modern high strength steels,” in First United States--Japan Symposium on Advances in Welding Metallurgy, 1990, vol. 6, pp. 79–100.spa
dc.relation.referencesN. Yurioka, “Comparison of preheat predictive methods,” Welding in the World, vol. 48, no. 1, pp. 21–27, 2004.spa
dc.relation.referencesI. A. Soomro, S. R. Pedapati, and M. Awang, “Optimization of postweld tempering pulse parameters for maximum load bearing and failure energy absorption in dual phase (DP590) steel resistance spot welds,” Materials Science and Engineering A, vol. 803, Jan. 2021.spa
dc.relation.referencesC. Tian and C. Kirchlechner, “The fracture toughness of martensite islands in dual-phase DP800 steel,” J Mater Res, vol. 36, no. 12, pp. 2495–2504, Jun. 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.ddc670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosasspa
dc.subject.lembSteel - specificationseng
dc.subject.lembACERO-ESPECIFICACIONESspa
dc.subject.lembTRATAMIENTO TERMICO DEL ACEROspa
dc.subject.lembSteel - Heat treatmenteng
dc.subject.proposalAceros de fase dualspa
dc.subject.proposalEvolución de dañospa
dc.subject.proposalMecanismos de fracturaspa
dc.subject.proposalVolumen en fracción de martensitaspa
dc.subject.proposalPropagación de grietasspa
dc.subject.proposalEnergía de fracturaspa
dc.subject.proposalDual-phase steelseng
dc.subject.proposalDamage evolutioneng
dc.subject.proposalFracture mechanismseng
dc.subject.proposalMartensite volume fractioneng
dc.subject.proposalCrack growtheng
dc.subject.proposalFracture energyeng
dc.titleEfecto de la microestructura en la deformación y fractura de aceros de fase dualspa
dc.title.translatedEffect of microstructure on deformation and fracture of dual phase steelseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79857524.2022.pdf
Tamaño:
28.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: