Identificación y análisis funcional de determinantes asociados a los mecanismos de acción de la cepa de BAFE IBUN 2755 en el biocontrol de Burkholderia glumae en plantas de arroz
| dc.contributor.advisor | Uribe Vélez, Daniel | spa | 
| dc.contributor.advisor | López Carrascal, Camilo Ernesto | spa | 
| dc.contributor.author | Pedraza Herrera, Luz Adriana | spa | 
| dc.contributor.researchgroup | Microbiología Agrícola | spa | 
| dc.date.accessioned | 2025-10-31T15:09:12Z | |
| dc.date.available | 2025-10-31T15:09:12Z | |
| dc.date.issued | 2025-10-23 | |
| dc.description | ilustraciones, diagramas, fotografías | spa | 
| dc.description.abstract | Bacillus velezensis IBUN 2755 es una cepa biocontroladora de Burkholderia glumae en plantas de arroz. Este trabajo buscó determinar el mecanismo de acción de la cepa IBUN 2755 contra dicho patógeno. El genoma de la cepa fue secuenciado encontrando 214 genes asociados a biocontrol y el 16,8% del tamaño del genoma dedicado a compuestos antimicrobianos. Ensayos de transformación dirigidos a mutar el gen sfp revelaron la recalcitrancia a la transformación genética la cepa IBUN 26755 y en consecuencia una estrategia de mutagénesis aleatoria por irradiación con luz UV fue desarrollada. Un tamizaje funcional de los mutantes mostró que células y sobrenadante de la cepa 130B (mutante de IBUN 2755), carecen de actividad antagónica contra B. glumae. Además, este mutante presenta una biopelícula cuya arquitectura difiere de la cepa silvestre y es incapaz inducir resistencia en plántulas de arroz. En contraste, la cepa IBUN 2755 silvestre induce la sobreexpresión del gen Npr1 y reprime el gen Ospr10 en plántulas expuestas a la biomasa o a los compuestos orgánicos volátiles, lo que conduce a la disminución de la incidencia de la enfermedad. Además, el mutante 130B deja de producir algunos compuestos de tipo surfactina en comparación con la cepa silvestre. El genoma del mutante 130B muestra una mutación en el gen spo0A que podría explicar el fenotipo de esta cepa. Así, los principales mecanismos de acción de la cepa IBUN 2755 contra B. glumae son la producción de compuestos tipo surfactinas y la inducción de resistencia sistémica por contacto y la producción de compuestos orgánicos volátiles. (Texto tomado de la fuente). | spa | 
| dc.description.abstract | Bacillus velezensis IBUN 2755 is a biocontrol strain of Burkholderia glumae in rice plants. This work sought to determine the mechanism of action of the IBUN 2755 strain against the said pathogen. The genome of the strain was sequenced, finding 214 genes associated with biocontrol and 16,7% of the genome size dedicated to antimicrobial compounds. Transformation assays aimed of designed to mutate the sfp gene, revealed recalcitrance to the genetic transformation of IBUN 2755 strain. Consequently, a strategy of random mutagenesis by irradiation with UV light was developed. A functional screen of the mutants showed that strain 130B (mutant of IBUN 2755 strain) lacks biomass and culture supernatant antagonistic activity against B. glumae. This mutant presents a biofilm whose architecture differs from the wild strain and cannot control B. glumae disease and induce resistance in rice seedlings. In contrast, the wild-type IBUN 2755 strain induces overexpression of the Npr1 gene and represses the Ospr10 gene in seedlings exposed to biomass or volatile organic compounds, leading to decreased disease incidence. In addition, the 130B mutant fails to produce some surfactin-like compounds compared to the wild-type strain. The 130B mutant genome shows an insertion in the spo0A gene that could explain the phenotype of this strain. Thus, the main mechanisms of action of the IBUN 2755 strain against B. glumae are the production of surfactin-like compounds and the induction of systemic resistance by contact, and volatile organic compounds production (VOC) | eng | 
| dc.description.degreelevel | Doctorado | spa | 
| dc.description.degreename | Doctor en Ciencias Agrarias | spa | 
| dc.description.notes | Texto en inglés | spa | 
| dc.description.researcharea | Fitopatología | spa | 
| dc.description.sponsorship | Convocatoria 757 de 2016 Doctorados Nacionales de MINCIENCIAS | spa | 
| dc.format.extent | xxiii, 202 páginas | spa | 
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa | 
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa | 
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa | 
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89090 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa | 
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa | 
| dc.publisher.department | Escuela de Posgrados | spa | 
| dc.publisher.faculty | Facultad de Ciencias Agrarias | spa | 
| dc.publisher.place | Bogotá, Colombia | spa | 
| dc.publisher.program | Bogotá - Ciencias Agrarias - Doctorado en Ciencias Agrarias | spa | 
| dc.relation.indexed | Agrosavia | spa | 
| dc.relation.indexed | Agrovoc | spa | 
| dc.relation.references | Abd El Daim, I. A., Häggblom, P., Karlsson, M., Stenström, E., & Timmusk, S. (2015). PaeniBacillus polymyxa A26 Sfp-type PPTase inactivation limits bacterial antagonism against Fusarium graminearum but not of F. culmorum in kernel assay. Frontiers in plant science, 6, 368. https://doi.org/10.3389/fpls.2015.00368 Ahimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and microbial technology, 27(10), 749–754. https://doi.org/10.1016/s0141-0229(00)00295-7 Ahmed, E., & Holmström, S. J. (2014). Siderophores in environmental research: roles and applications. Microbial biotechnology, 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117 Ait Kaki, A., Smargiasso, N., Ongena, M., Kara Ali, M., Moula, N., De Pauw, E., & Kacem Chaouche, N. (2020). Characterization of New Fengycin Cyclic Lipopeptide Variants Produced by Bacillus amyloliquefaciens (ET) Originating from a Salt Lake of Eastern Algeria. Current microbiology, 77(3), 443–451. https://do | |
| dc.relation.references | Ahimou, F., Jacques, P., & Deleu, M. (2000). Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and microbial technology, 27(10), 749–754. https://doi.org/10.1016/s0141-0229(00)00295-7 | |
| dc.relation.references | Ahmed, E., & Holmström, S. J. (2014). Siderophores in environmental research: roles and applications. Microbial biotechnology, 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117 | |
| dc.relation.references | Ait Kaki, A., Smargiasso, N., Ongena, M., Kara Ali, M., Moula, N., De Pauw, E., & Kacem Chaouche, N. (2020). Characterization of New Fengycin Cyclic Lipopeptide Variants Produced by Bacillus amyloliquefaciens (ET) Originating from a Salt Lake of Eastern Algeria. Current microbiology, 77(3), 443–451. https://doi.org/10.1007/s00284-019-01855-w | |
| dc.relation.references | Alcaraz, L. D., Moreno-Hagelsieb, G., Eguiarte, L. E., Souza, V., Herrera-Estrella, L., & Olmedo, G. (2010). Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC genomics, 11, 332. https://doi.org/10.1186/1471-2164-11-332 | |
| dc.relation.references | Aleti, G., Lehner, S., Bacher, M., Compant, S., Nikolic, B., Plesko, M., Schuhmacher, R., Sessitsch, A., & Brader, G. (2016). Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environmental microbiology, 18(8), 2634–2645. https://doi.org/10.1111/1462-2920.13405 | |
| dc.relation.references | Aleti, G., Sessitsch, A., & Brader, G. (2015). Genome mining: Prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Computational and structural biotechnology journal, 13, 192–203. https://doi.org/10.1016/j.csbj.2015.03.003 | |
| dc.relation.references | Allard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J. F., Garneau, D., Caudwell, L., Vlamakis, H., Bais, H. P., & Beauregard, P. B. (2016). Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors. mBio, 7(6), e01664-16. https://doi.org/10.1128/mBio.01664-16 | |
| dc.relation.references | Altenbuchner J. (2016). Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Applied and environmental microbiology, 82(17), 5421–5427. https://doi.org/10.1128/AEM.01453-16 | |
| dc.relation.references | Álvarez, Elizabeth; Latorre, Michael A.. (2017). Bacterial blight, caused by Burkholderia glumae, is attacking Brachiaria in Colombia: First report . In: APS Caribbean Division and the Latin American Phytopathological Society and The Mexican Society of Phytopathology in Mexico City, Mexico, July 19–23, 2015. Mexico, DF, MX. Vol.107 (S2): S2.1. https://doi.org/10.1094/PHYTO-107-2-S2.1 | |
| dc.relation.references | Anagnostopoulos, C., & Spizizen, J. (1961). Requirements for transformation in Bacillus subtilis. Journal of bacteriology, 81(5), 741–746. https://doi.org/10.1128/jb.81.5.741-746.1961 | |
| dc.relation.references | Anders, S., Cowling, W., Pareek, A., Gupta, K. J., Singla-Pareek, S. L., & Foyer, C. H. (2021). Gaining Acceptance of Novel Plant Breeding Technologies. Trends in plant science, 26(6), 575–587. https://doi.org/10.1016/j.tplants.2021.03.004 | |
| dc.relation.references | Andrić, S., Meyer, T., & Ongena, M. (2020). Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Frontiers in microbiology, 11, 1350. https://doi.org/10.3389/fmicb.2020.01350 | |
| dc.relation.references | Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial cell factories, 8, 63. https://doi.org/10.1186/1475-2859-8-63 | |
| dc.relation.references | Aron, A. T., Gentry, E. C., McPhail, K. L., Nothias, L. F., Nothias-Esposito, M., Bouslimani, A., Petras, D., Gauglitz, J. M., Sikora, N., Vargas, F., van der Hooft, J. J. J., Ernst, M., Kang, K. B., Aceves, C. M., Caraballo-Rodríguez, A. M., Koester, I., Weldon, K. C., Bertrand, S., Roullier, C., Sun, K., … Dorrestein, P. C. (2020). Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature protocols, 15(6), 1954–1991. https://doi.org/10.1038/s41596-020-0317-5 | |
| dc.relation.references | Aune, T. E., & Aachmann, F. L. (2010). Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Applied microbiology and biotechnology, 85(5), 1301–1313. https://doi.org/10.1007/s00253-009-2349-1 | |
| dc.relation.references | Bach, E., de Carvalho Fernandes, G., & Passaglia, L. M. P. (2016). How to transform a recalcitrant PaeniBacillus strain: From culture medium to restriction barrier. Journal of microbiological methods, 131, 135–143. https://doi.org/10.1016/j.mimet.2016.10.012 | |
| dc.relation.references | Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual review of plant biology, 57, 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159 | |
| dc.relation.references | Baptista, J. P., Teixeira, G. M., de Jesus, M. L. A., Bertê, R., Higashi, A., Mosela, M., da Silva, D. V., de Oliveira, J. P., Sanches, D. S., Brancher, J. D., Balbi-Peña, M. I., de Padua Pereira, U., & de Oliveira, A. G. (2022). Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP 4489. Scientific reports, 12(1), 17401. https://doi.org/10.1038/s41598-022-22380-0 | |
| dc.relation.references | Bartal, A., Huynh, T., Kecskeméti, A., Vörös, M., Kedves, O., Allaga, H., Varga, M., Kredics, L., Vágvölgyi, C., & Szekeres, A. (2023). Identifications of Surfactin-Type Biosurfactants Produced by Bacillus Species Isolated from Rhizosphere of Vegetables. Molecules (Basel, Switzerland), 28(3), 1172. https://doi.org/10.3390/molecules28031172 | |
| dc.relation.references | Belbahri, L., Chenari Bouket, A., Rekik, I., Alenezi, F. N., Vallat, A., Luptakova, L., Petrovova, E., Oszako, T., Cherrad, S., Vacher, S., & Rateb, M. E. (2017). Comparative Genomics of Bacillus amyloliquefaciens Strains Reveals a Core Genome with Traits for Habitat Adaptation and a Secondary Metabolites Rich Accessory Genome. Frontiers in microbiology, 8, 1438. https://doi.org/10.3389/fmicb.2017.01438 | |
| dc.relation.references | Ben, R., Mokni-Tlili, S., Nefzi, A., Jabnoun-Khiareddine, H., Mokni-Tlili, S., & Daami-Remadi M. (2016). Biocontrol of Fusarium Wilt and Growth Promotion of Tomato Plants Using Endophytic Bacteria Isolated from Solanum elaeagnifolium Stems. Journal og Phytopathology, 164 (10), 811 – 824. https://doi.org/10.1111/jph.12501 | |
| dc.relation.references | Benavides – Rodríguez, L. A. (2019). Selección de cepas nativas de bacterias aerobias formadoras de endospora como promotoras de crecimiento vegetal con énfasis en su capacidad antagonista contra Xanthomonas campestris pv. vitians del cultivo de lechuga. Tesis para optar por el título de Magister en Ciencias – Microbiología. Universidad Nacional de Colombia. Bogotá, Colombia. | |
| dc.relation.references | Beric, T., Kojic, M., Satnkovic, S., Topisirovic, L., Degrassi, G., Myers, M., Venturi, V., & Fira, D. (2012) Antimicrobial activity of Bacillus sp. Natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technology. Biotechnology, 50 (1), 25-31. | |
| dc.relation.references | Bie, X., Lu, Z., & Lu, F. (2009). Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. Journal of microbiological methods, 79(3), 272–278. https://doi.org/10.1016/j.mimet.2009.09.013 | |
| dc.relation.references | Blanco, D. (2012). Evaluación de Bacilos Aerobios Formadores de Endopsora (BAFEs) para el control biológico de Rhizoctonia solani Kuhn en el cultivo de papa criolla (Solanum tuberosum Grupo Phureja). Tesis para optar el título de M. Sc. En Microbiología. Universidad Nacional de Colombia. Universidad Nacional de Colombia. Sede Bogotá. | |
| dc.relation.references | Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic acids research, 47(W1), W81–W87. https://doi.org/10.1093/nar/gkz310 | |
| dc.relation.references | Blokesch M. (2016). Natural competence for transformation. Current biology : CB, 26(21), R1126–R1130. https://doi.org/10.1016/j.cub.2016.08.058 | |
| dc.relation.references | Bloudoff, K., Fage, C. D., Marahiel, M. A., & Schmeing, T. M. (2017). Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 95–100. https://doi.org/10.1073/pnas.1614191114 | |
| dc.relation.references | Borriss, R. (2011). Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20332-9_3 | |
| dc.relation.references | Bose J. L. (2016). Chemical and UV Mutagenesis. Methods in molecular biology (Clifton, N.J.), 1373, 111–115. https://doi.org/10.1007/7651_2014_190 | |
| dc.relation.references | Brigidi, P., Rossi, M., Matteuzzi, D. (2000). Transformation of Bacillus subtilis PB1424 by Electroporation. In: Eynard, N., Teissié, J. (eds) Electrotransformation of Bacteria. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04305-9_4 | |
| dc.relation.references | Brito, L. F., Irla, M., Walter, T., & Wendisch, V. F. (2017). Magnesium aminoclay-based transformation of PaeniBacillus riograndensis and PaeniBacillus polymyxa and development of tools for gene expression. Applied microbiology and biotechnology, 101(2), 735–747. https://doi.org/10.1007/s00253-016-7999-1 | |
| dc.relation.references | Burketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology advances, 33(6 Pt 2), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004 | |
| dc.relation.references | Burkett, S., Press, A., Mann, S. (1997). Synthesis, characterization and reactivity of layer inorganic-organic nanocomposites based on 2:1 trioctahedral phyllosilicates. Chemical. Mater., 9, 1071-1073 | |
| dc.relation.references | Cabezón, E., Ripoll-Rozada, J., Peña, A., de la Cruz, F., & Arechaga, I. (2015). Towards an integrated model of bacterial conjugation. FEMS microbiology reviews, 39(1), 81–95. https://doi.org/10.1111/1574-6976.12085 | |
| dc.relation.references | Cairns, L. S., Hobley, L., & Stanley-Wall, N. R. (2014). Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Molecular microbiology, 93(4), 587–598. https://doi.org/10.1111/mmi.12697 | |
| dc.relation.references | Carrasco, B., Cozar, M. C., Lurz, R., Alonso, J. C., & Ayora, S. (2004). Genetic recombination in Bacillus subtilis 168: contribution of Holliday junction processing functions in chromosome segregation. Journal of bacteriology, 186(17), 5557–5566. https://doi.org/10.1128/JB.186.17.5557-5566.2004 | |
| dc.relation.references | Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J., & Ongena, M. (2014). Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Molecular plant-microbe interactions: MPMI, 27(2), 87–100. https://doi.org/10.1094/MPMI-09-13-0262-R | |
| dc.relation.references | Challis, G. L., Ravel, J., & Townsend, C. A. (2000). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chemistry & biology, 7(3), 211–224. https://doi.org/10.1016/s1074-5521(00)00091-0 | |
| dc.relation.references | Chandler, S., Van Hese, N., Coutte, F., Jacques, P., Hofte, M., & De Veesschauwer, D. (2015). Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiological and molecular plant pathology. 91: 20-30. https://doi.org/10.1016/j.pmpp.2015.05.010 | |
| dc.relation.references | Chang, S., & Cohen, S. N. (1979). High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular & general genetics: MGG, 168(1), 111–115. https://doi.org/10.1007/BF00267940 | |
| dc.relation.references | Chassy, B., Mercenier, A., Flickinger, J. (1988). Transformación de bacterias por electroporación. Trends in Biotechnology. 6 (12), 303 – 309. https://doi.org/10.1016/0167-7799(88)90025-X | |
| dc.relation.references | Chaudhary, R., Nanda J., y Tran, D. (2003). Guía para identificar las limitaciones de campo en la produccion de arroz. Comité Internacional de Arroz. Organización de las Naciones Unidas para la agricultura y la alimentación. | |
| dc.relation.references | Chávez-Jacobo, V. (2018). El sistema de edición genética CRISPR/Cas y su uso como antimicrobiano específico. TIP. Revista especializada en ciencias químico-biológicas, 21 (2), e201825, | |
| dc.relation.references | Chen, F., Gao, Y., Chen, X., Yu, Z., & Li, X. (2013a). Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. International journal of molecular sciences, 14(9), 17477–17500. https://doi.org/10.3390/ijms140917477 | |
| dc.relation.references | Chen, L., Gu, W., Xu, H. Y., Yang, G. L., Shan, X. F., Chen, G., Kang, Y. H., Wang, C. F., & Qian, A. D. (2018). Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech, 8(5), 253. https://doi.org/10.1007/s13205-018-1270-7 | |
| dc.relation.references | Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature biotechnology, 25(9), 1007–1014. https://doi.org/10.1038/nbt1325 | |
| dc.relation.references | Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, J., & Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of biotechnology, 140(1-2), 27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011 | |
| dc.relation.references | Chen, X. H., Vater, J., Piel, J., Franke, P., Scholz, R., Schneider, K., Koumoutsi, A., Hitzeroth, G., Grammel, N., Strittmatter, A. W., Gottschalk, G., Süssmuth, R. D., & Borriss, R. (2006). Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. Journal of bacteriology, 188(11), 4024–4036. https://doi.org/10.1128/JB.00052-06 | |
| dc.relation.references | Chen, X., Lu, Y., Shan, M., Zhao, H., Lu, Z., & Lu, Y. (2022). A mini-review: mechanism of antimicrobial action and application of surfactin. World journal of microbiology & biotechnology, 38(8), 143. https://doi.org/10.1007/s11274-022-03323-3 | |
| dc.relation.references | Chen, Y., Gozzi, K., Yan, F., & Chai, Y. (2015). Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation. mBio, 6(3), e00392. https://doi.org/10.1128/mBio.00392-15 | |
| dc.relation.references | Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., & Guo, J. (2013b). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15(3), 848–864. http://doi.org/10.1111/j.1462-2920.2012.02860.x | |
| dc.relation.references | Cheng, J., Sagar, K., Yang, S., & Suh, J. (2016). Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv oryzae, the pathogen of rice bacterial blight disease. Journal of Applied Biological Chemistry, 59(2), 149-154. http://dx.doi.org/10.3839/jabc.2016.027 | |
| dc.relation.references | Chien, C. C., & Y. C. Chang. (1987) The susceptibility of rice plants at different growth stages and of 21 commercial rice varieties to Pseudomonas glumae. Journal of Agricultural Research. of China, 36 (3), 302-310. | |
| dc.relation.references | Chittora, D., Meena, M., Barupal, T., Sharma, K., Jain, T., Swapnil, P., Sharma, K. (2019). Conjugation. In: Vonk, J., & Shackelford, T. K. (2019). Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_274-1 | |
| dc.relation.references | Cho, H. S., Park, S. Y., Ryu, C. M., Kim, J. F., Kim, J. G., & Park, S. H. (2007). Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS microbiology ecology, 60(1), 14–23. https://doi.org/10.1111/j.1574-6941.2007.00280.x | |
| dc.relation.references | Choi, H. A., Lee, Y. C., Lee, J. Y., Shin, H. J., Han, H. K., & Kim, G. J. (2013). A simple bacterial transformation method using magnesium- and calcium-aminoclays. Journal of microbiological methods, 95(2), 97–101. https://doi.org/10.1016/j.mimet.2013.07.018 | |
| dc.relation.references | Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiological research, 164(5), 493–513. https://doi.org/10.1016/j.micres.2008.08.007 | |
| dc.relation.references | Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian journal of microbiology, 47(4), 289–297. https://doi.org/10.1007/s12088-007-0054-2 | |
| dc.relation.references | Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015b). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.00780 | |
| dc.relation.references | Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., & Hartmann, A. (2015a). Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani. Molecular plant-microbe interactions: MPMI, 28(9), 984–995. https://doi.org/10.1094/MPMI-03-15-0066-R | |
| dc.relation.references | Chung, E. J., Hossain, M. T., Khan, A., Kim, K. H., Jeon, C. O., & Chung, Y. R. (2015). Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice. The plant pathology journal, 31(2), 152–164. https://doi.org/10.5423/PPJ.OA.12.2014.0136 | |
| dc.relation.references | Claverys, J. P., Prudhomme, M., & Martin, B. (2006). Induction of competence regulons as a general response to stress in gram-positive bacteria. Annual review of microbiology, 60, 451–475. https://doi.org/10.1146/annurev.micro.60.080805.142139 | |
| dc.relation.references | Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology, 71(9), 4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005 | |
| dc.relation.references | Concordet, J. P., & Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic acids research, 46(W1), W242–W245. https://doi.org/10.1093/nar/gky354 | |
| dc.relation.references | Costa, J. (2019). Engenharia genética em probióticos para ativação do sistema de rna interferente (RNAi) em camarões: uma potencial aplicação no controle de doenças virais. Tese apresentada como parte dos requisitos para obtenção do grau de Doutor e Aquicultura. Universidade Federal do Rio Grande – FURG. Rio Grande, Brasil. | |
| dc.relation.references | Crump, N.S., Cother, E.J. & Ash, G.J. (1999). Clarifying the nomenclature in microbial weed control. Biocontrol Science and Technology, 9, 89–97. http://dx.doi.org/10.1080/09583159929947 | |
| dc.relation.references | Cruz Ramos, H., Hoffmann, T., Marino, M., Nedjari, H., Presecan-Siedel, E., Dreesen, O., Glaser, P., & Jahn, D. (2000). Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. Journal of bacteriology, 182(11), 3072–3080. https://doi.org/10.1128/JB.182.11.3072-3080.2000 | |
| dc.relation.references | Cui, Z., Zhu, B., Li, B., & Huang, S. (2016). Research status and prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. Rice Science, 23(3), 111-118. http://dx.doi.org/10.1016/j.rsci.2016.01.007 | |
| dc.relation.references | Daas, M. S., Acedo, J. Z., Rosana, A. R. R., Orata, F. D., Reiz, B., Zheng, J., Nateche, F., Case, R. J., Kebbouche-Gana, S., & Vederas, J. C. (2018). Bacillus amyloliquefaciens ssp. plantarum F11 isolated from Algerian salty lake as a source of biosurfactants and bioactive lipopeptides. FEMS microbiology letters, 365(1), 10.1093/femsle/fnx248. https://doi.org/10.1093/femsle/fnx248 | |
| dc.relation.references | Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., & Ongena, M. (2014). Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Analytical chemistry, 86(9), 4431–4438. https://doi.org/10.1021/ac500290s | |
| dc.relation.references | Degrassi, G., Devescovi, G., Kim, J., Hwang, I., & Venturi, V. (2008). Identification, characterization and regulation of two secreted polygalacturonases of the emerging rice pathogen Burkholderia glumae. FEMS microbiology ecology, 65(2), 251–262. https://doi.org/10.1111/j.1574-6941.2008.00516.x | |
| dc.relation.references | Dempwolff, F., Sanchez, S., & Kearns, D. B. (2020). TnFLX: a Third-Generation mariner-Based Transposon System for Bacillus subtilis. Applied and environmental microbiology, 86(10), e02893-19. https://doi.org/10.1128/AEM.02893-19 | |
| dc.relation.references | Devescovi, G., Bigirimana, J., Degrassi, G., Cabrio, L., LiPuma, J. J., Kim, J., Hwang, I., & Venturi, V. (2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Applied and environmental microbiology, 73(15), 4950–4958. https://doi.org/10.1128/AEM.00105-07 | |
| dc.relation.references | Di Conza, J. A., Power, P., & Gutkind, G. O. (2013). Intercambio de mecanismos de resistencia entrebacterias gram negativas. Revista Farmaceutica Reviews, 155, 57 – 69. | |
| dc.relation.references | Dimkić, I., Stanković, S., Nišavić, M., Petković, M., Ristivojević, P., Fira, D., & Berić, T. (2017). The Profile and Antimicrobial Activity of Bacillus Lipopeptide Extracts of Five Potential Biocontrol Strains. Frontiers in microbiology, 8, 925. https://doi.org/10.3389/fmicb.2017.00925 | |
| dc.relation.references | Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L., & Zhang, L. H. (2002). Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Applied and environmental microbiology, 68(4), 1754–1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002 | |
| dc.relation.references | Dower, W. J., Miller, J. F., & Ragsdale, C. W. (1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic acids research, 16(13), 6127–6145. https://doi.org/10.1093/nar/16.13.6127 | |
| dc.relation.references | Dunlap, C. A., Bowman, M. J., & Schisler, D. A. (2013). Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of Fusarium head blight. Biological Control, 64, 166– 175. https://doi.org/10.1016/j.biocontrol.2012.11.002 | |
| dc.relation.references | Dunlap, C. A., Kim, S. J., Kwon, S. W., & Rooney, A. P. (2016). Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International journal of systematic and evolutionary microbiology, 66(3), 1212–1217. https://doi.org/10.1099/ijsem.0.000858 | |
| dc.relation.references | Earl, A. M., Losick, R., & Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in Microbiology, 16(6), 269. http://doi.org/10.1016/j.tim.2008.03.004 | |
| dc.relation.references | Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Lüdtke, K. U., & Sahm, H. (1994). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology (Reading, England), 140 ( Pt 8), 1817–1828. https://doi.org/10.1099/13500872-140-8-1817 | |
| dc.relation.references | Erega, A., Stefanic, P., Dogsa, I., Danevčič, T., Simunovic, K., Klančnik, A., Smole Možina, S., & Mandic Mulec, I. (2021). Bacillaene Mediates the Inhibitory Effect of Bacillus subtilis on Campylobacter jejuni Biofilms. Applied and environmental microbiology, 87(12), e0295520. https://doi.org/10.1128/AEM.02955-20 | |
| dc.relation.references | Fan Haiyan, Ru Jinjiang, Zhang Yuanyuan, Wang Qi, Li Yan. (2017b). Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research http://dx.doi.org/10.1016/j.micres.2017.03.004 | |
| dc.relation.references | Fan, B., Blom, J., Klenk, H.-P., & Borriss, R. (2017a). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an ―Operational Group B. amyloliquefaciens‖ within the B. subtilis Species Complex. Frontiers in Microbiology, 8, 22. http://doi.org/10.3389/fmicb.2017.00022 | |
| dc.relation.references | Fan, B., Carvalhais, L. C., Becker, A., Fedoseyenko, D., von Wirén, N., & Borriss, R. (2012). Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC microbiology, 12, 116. https://doi.org/10.1186/1471-2180-12-116 | |
| dc.relation.references | FAO. 2022. https://www.fao.org/faostat/en/#data | |
| dc.relation.references | FEDEARROZ. (2016). IV CENSO NACIONAL ARROCERO 2016. Pp: 180. Disponible en: https://fedearroz.s3.amazonaws.com/media/documents/Libro_Censo_General.pdf | |
| dc.relation.references | FEDEARROZ. (2014). Discurso instalación del XXXIV. Congreso Nacional arrocero. En http://www.fedearroz.com.co/revistanew/arroz508. Pdf. Consulta: Septiembre, 2017. | |
| dc.relation.references | Fels, U., Gevaert, K., & Van Damme, P. (2020). Bacterial Genetic Engineering by Means of Recombineering for Reverse Genetics. Frontiers in microbiology, 11, 548410. https://doi.org/10.3389/fmicb.2020.548410 | |
| dc.relation.references | Feng, H., Zhang, N., Du, W., Zhang, H., Liu, Y., Fu, R., Shao, J., Zhang, G., Shen, Q., & Zhang, R. (2018). Identification of Chemotaxis Compounds in Root Exudates and Their Sensing Chemoreceptors in Plant-Growth-Promoting Rhizobacteria Bacillus amyloliquefaciens SQR9. Molecular plant-microbe interactions MPMI, 31(10), 995–1005. https://doi.org/10.1094/MPMI-01-18-0003-R | |
| dc.relation.references | Fernández, F.; Vergara, B.S.; Yapit, N.; Garcia, O. (1985). Crecimiento y etapas de desarrollo de la planta de arroz. In: TASCÓN, J.E.; GARCIA, D.E. (Ed). Arroz: investigación y producción. Cali: CIAT. p.83- 101. | |
| dc.relation.references | Fernández, S., Ayora, S., & Alonso, J. C. (2000). Bacillus subtilis homologous recombination: genes and products. Research in microbiology, 151(6), 481–486. https://doi.org/10.1016/s0923-2508(00)00165-0 | |
| dc.relation.references | Fernie, A. R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., Carroll, A. J., Saito, K., Fraser, P. D., & DeLuca, V. (2011). Recommendations for reporting metabolite data. The Plant cell, 23(7), 2477–2482. https://doi.org/10.1105/tpc.111.086272 | |
| dc.relation.references | Fetzner S. (2015). Quorum quenching enzymes. Journal of biotechnology, 201, 2–14. https://doi.org/10.1016/j.jbiotec.2014.09.001 | |
| dc.relation.references | Fickers, P. (2012). Antibiotic compounds from Bacillus: Why are they so Amazing?. American Journal of Biochemistry and Biotechnology, 8(1), 38-43. https://doi.org/10.3844/ajbbsp.2012.38.43 | |
| dc.relation.references | Flórez Zapata, N. M., & Uribe Vélez, D. (2011). Determinación de la Infección de Burkholderia glumae en Semillas de Variedades Comerciales Colombianas de Arroz. Revista Facultad Nacional de Agronomía - Medellín, 64(2), 6093-6104. | |
| dc.relation.references | Fory, P. A., Triplett, L., Ballen, C., Abello, J. F., Duitama, J., Aricapa, M. G., Prado, G. A., Correa, F., Hamilton, J., Leach, J. E., Tohme, J., & Mosquera, G. M. (2014). Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology, 104(5), 436–444. https://doi.org/10.1094/PHYTO-07-13-0186-R | |
| dc.relation.references | Foster, P. (1991). In Vivo Mutagenesis. Methods Enzymology, 204, 114- 115. | |
| dc.relation.references | Fritze, D. (2004). Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology, 94(11), 1245–1248. https://doi.org/10.1094/PHYTO.2004.94.11.1245 | |
| dc.relation.references | Fuchs, S. W., Jaskolla, T. W., Bochmann, S., Kötter, P., Wichelhaus, T., Karas, M., Stein, T., & Entian, K. D. (2011). Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Applied and environmental microbiology, 77(5), 1698–1707. https://doi.org/10.1128/AEM.01962-10 | |
| dc.relation.references | Gao, L., Guo, J., Fan, Y., Ma, Z., Lu, Z., Zhang, C., Zhao, H., & Bie, X. (2018). Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis. Microbial cell factories, 17(1), 84. https://doi.org/10.1186/s12934-018-0929-4 | |
| dc.relation.references | Gao, Z., Zhangf, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velenzensis ZSY-1 strain and antifungal activity its volatile compounds against Alternaria solani and Botrytis cinerea. Biological control, 105, 27-39. https://doi.org/10.1016/j.biocontrol.2016.11.007 | |
| dc.relation.references | Garge, S., & Naerurkar, S. (2017). Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatalysis and agricultural biotechnology, 9, 48-57. https://doi.org/10.1016/j.bcab.2016.11.004 | |
| dc.relation.references | Geng, W., Cao, M., Song, C., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y., Du, Y., & Wang, S. (2011). Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. Journal of bacteriology, 193(13), 3393–3394. https://doi.org/10.1128/JB.05058-11 | |
| dc.relation.references | Ghelardi, E., Salvetti, S., Ceragioli, M., Gueye, S. A., Celandroni, F., & Senesi, S. (2012). Contribution of surfactin and SwrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Applied and environmental microbiology, 78(18), 6540–6544. https://doi.org/10.1128/AEM.01341-12 | |
| dc.relation.references | Gómez-Ramírez, L. F., & Uribe-Vélez, D. (2021). Phosphorus Solubilizing and Mineralizing Bacillus spp. Contribute to Rice Growth Promotion Using Soil Amended with Rice Straw. Current microbiology, 78(3), 932–943. https://doi.org/10.1007/s00284-021-02354-7 | |
| dc.relation.references | Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., & Tiedje, J. M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International journal of systematic and evolutionary microbiology, 57(Pt 1), 81–91. https://doi.org/10.1099/ijs.0.64483-0 | |
| dc.relation.references | Gotor-Vila, A., Teixidó, N., Di Francesco, A., Usall, J., Ugolini, L., Torres, R., & Mari, M. (2017). Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food microbiology, 64, 219–225. https://doi.org/10.1016/j.fm.2017.01.006 | |
| dc.relation.references | Groot, M. N., Nieboer, F., & Abee, T. (2008). Enhanced transformation efficiency of recalcitrant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA. Applied and environmental microbiology, 74(24), 7817–7820. https://doi.org/10.1128/AEM.01932-08 | |
| dc.relation.references | Guérout-Fleury, A. M., Shazand, K., Frandsen, N., & Stragier, P. (1995). Antibiotic-resistance cassettes for Bacillus subtilis. Gene, 167(1-2), 335–336. https://doi.org/10.1016/0378-1119(95)00652-4 | |
| dc.relation.references | Guleria, S., Walia, A., Chauhan, A., & Shirkot, C. K. (2016). Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. International journal of food microbiology, 232, 134–143. https://doi.org/10.1016/j.ijfoodmicro.2016.05.030 | |
| dc.relation.references | Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y., & Ma, P. (2014). Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological research, 169(7-8), 533–540. https://doi.org/10.1016/j.micres.2013.12.001 | |
| dc.relation.references | Guoyan, Z., Yingfeng, A., Zabed, H., Qi, G., Yang, M., Jiao, Y., Li, W., Wenjing, S., & Xianghui, Q. (2019). Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications. Journal of microbiology and biotechnology, 29(2), 179–190. https://doi.org/10.4014/jmb.1807.06066 | |
| dc.relation.references | Gupta, R. S., Patel, S., Saini, N., & Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International journal of systematic and evolutionary microbiology, 70(11), 5753–5798. https://doi.org/10.1099/ijsem.0.004475 | |
| dc.relation.references | Hagen, S. J. (2017). Bacillus subtilis competence and sporulation: The final exam. In The Physical Microbe (pp. 7-1 to 7-9). Morgan & Claypool Publishers. https://doi.org/10.1088/978-1-6817-4529-9ch7 | |
| dc.relation.references | Ham, J. H., Melanson, R. A., & Rush, M. C. (2011). Burkholderia glumae: next major pathogen of rice?. Molecular plant pathology, 12(4), 329–339. https://doi.org/10.1111/j.1364-3703.2010.00676.x | |
| dc.relation.references | Hamid, R., Khan, M. A., Ahmad, M., Ahmad, M. M., Abdin, M. Z., Musarrat, J., & Javed, S. (2013). Chitinases: An update. Journal of pharmacy & bioallied sciences, 5(1), 21–29. https://doi.org/10.4103/0975-7406.106559 | |
| dc.relation.references | Hamoen, L. W., Venema, G., & Kuipers, O. P. (2003). Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology (Reading, England), 149(Pt 1), 9–17. https://doi.org/10.1099/mic.0.26003-0 | |
| dc.relation.references | Hamon, M. A., & Lazazzera, B. A. (2001). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Molecular microbiology, 42(5), 1199–1209. https://doi.org/10.1046/j.1365-2958.2001.02709.x | |
| dc.relation.references | Han, P., Ma, A., Ning, Y., Chen, Z., Liu, Y., Zhuo, L., Li, S., Jia, Y. (2023). Global gene-mining strategy for searching nonribosomal peptides as antimicrobial agents from microbial sources. LWT, 1809, 114708. https://doi.org/10.1016/j.lwt.2023.114708 | |
| dc.relation.references | Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of molecular biology, 166(4), 557–580. https://doi.org/10.1016/s0022-2836(83)80284-8 | |
| dc.relation.references | Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2008). Plant-driven selection of microbes. Plant Soil 321, 235–257. http://dx.doi.org/10.1007/s11104-008-9814-y | |
| dc.relation.references | Heinze, S., Kornberger, P., Grätz, C., Schwarz, W. H., Zverlov, V. V., & Liebl, W. (2018). Transmating: conjugative transfer of a new broad host range expression vector to various Bacillus species using a single protocol. BMC microbiology, 18(1), 56. https://doi.org/10.1186/s12866-018-1198-4 | |
| dc.relation.references | Hikichi, Y. (1993). Relationship between population dynamics of Pseudomonas glumae on rice plants and disease severity of bacterial grain rot of rice. Journal of Pesticide Science. 18, 319–324. https://doi.org/ 10.1584/jpestics.18.4_319 | |
| dc.relation.references | Hoang, V., Park, D., Lee, Y. (2017). Aminoclays for biological and environmental applications: An updated review. Chemical Engineering Journal. 336 (5), 757-772. https://doi.org/10.1016/j.cej.2017.12.052 | |
| dc.relation.references | Hopwood, D. A. (1981). Genetic studies with bacterial protoplasts. Annual review of microbiology, 35, 237–272. https://doi.org/10.1146/annurev.mi.35.100181.001321 | |
| dc.relation.references | Hou, S., Larsen, R. W., Boudko, D., Riley, C. W., Karatan, E., Zimmer, M., Ordal, G. W., & Alam, M. (2000). Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature, 403(6769), 540–544. https://doi.org/10.1038/35000570 | |
| dc.relation.references | Hou, Y., Xu, Y., Zhang, Y., Yu, L., Wang, L., & Huang, S. (2020). First Report of Bacterial Panicle Blight of Rice Caused by Burkholderia glumae in Southern China. Plant Disease, 104 (4). https://doi.org/10.1094/PDIS-09-19-1880-PDN | |
| dc.relation.references | Hu, G., Wang, Y., Blake, C., Nordgaard, M., Liu, X., Wang, B., & Kovács, Á. T. (2023). Parallel genetic adaptation of Bacillus subtilis to different plant species. Microbial genomics, 9(7), mgen001064. https://doi.org/10.1099/mgen.0.001064 | |
| dc.relation.references | Huang, daW., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44–57. https://doi.org/10.1038/nprot.2008.211 | |
| dc.relation.references | Huang, X., Chaparro, J., Reardon, K., Zhang, R., Shen, Q., & Vivanco, J. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92, 267-275. https://doi.org/10.1139/cjb-2013-0225 | |
| dc.relation.references | Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Molecular biology and evolution, 33(6), 1635–1638. https://doi.org/10.1093/molbev/msw046 | |
| dc.relation.references | Hur, G. H., Vickery, C. R., & Burkart, M. D. (2012). Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Natural product reports, 29(10), 1074–1098. https://doi.org/10.1039/c2np20025b | |
| dc.relation.references | Iatsenko, I., Yim, J. J., Schroeder, F. C., & Sommer, R. J. (2014). B. subtilis GS67 protects C. elegans from Gram-positive pathogens via fengycin-mediated microbial antagonism. Current biology: CB, 24(22), 2720–2727. https://doi.org/10.1016/j.cub.2014.09.055 | |
| dc.relation.references | Ikehata, H., & Ono, T. (2011). The mechanisms of UV mutagenesis. Journal of radiation research, 52(2), 115–125. https://doi.org/10.1269/jrr.10175 | |
| dc.relation.references | Jacques, P. (2011). Surfactin and Other Lipopeptides from Bacillus spp. In: Soberón-Chávez, G. (eds) Biosurfactants. Microbiology Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14490-5_3 | |
| dc.relation.references | Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T., & Hwang, I. (2003). Toxoflavin Produced by Burkholderia glumae Causing Rice Grain Rot Is Responsible for Inducing Bacterial Wilt in Many Field Crops. Plant disease, 87(8), 890–895. https://doi.org/10.1094/PDIS.2003.87.8.890 | |
| dc.relation.references | Jha, S., Kumar, C., & Modi, H. (2014). Microbial chitinases: Manifestation and prospective. Chapter In Book: Microbes in Process, Publisher: nova Science Publisher. Editors: Neelan garg and Abhinav Aeron. Hauppeauge. USA. ISBN: 9781631171277. | |
| dc.relation.references | Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology, 31(3), 233–239. https://doi.org/10.1038/nbt.2508 | |
| dc.relation.references | Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286 | |
| dc.relation.references | Juhas, M., & Ajioka, J. W. (2016). Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome. Journal of microbiological methods, 125, 1–7. https://doi.org/10.1016/j.mimet.2016.03.017 | |
| dc.relation.references | Jwa, N. S., Kumar Agrawal, G., Rakwal, R., Park, C. H., & Prasad Agrawal, V. (2001). Molecular cloning and characterization of a novel Jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochemical and biophysical research communications, 286(5), 973–983. https://doi.org/10.1006/bbrc.2001.5507 | |
| dc.relation.references | Kai M. (2020). Diversity and Distribution of Volatile Secondary Metabolites Throughout Bacillus subtilis Isolates. Frontiers in microbiology, 11, 559. https://doi.org/10.3389/fmicb.2020.00559 | |
| dc.relation.references | Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 11086–11091. https://doi.org/10.1073/pnas.0508882103 | |
| dc.relation.references | Kamilova, F., Okon, Y., deWeert,S.,and Hora,K. (2015). Commercialization of microbes: manufacturing,inoculation,best practice for objective field testing, and registration Principles of Plant Microbe Interactions. Microbes for Sustainable Agriculture, ed.B.Lugtenberg (Berlin: Springer.),319–327. | |
| dc.relation.references | Kandušer M., & Miklavčič D. (2009) Electroporation in Biological Cell and Tissue: An Overview. In: Electrotechnologies for Extraction from Food Plants and Biomaterials. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79374-0_1 | |
| dc.relation.references | Kang, Y., Kim, J., Kim, S., Kim, H., Lim, J. Y., Kim, M., Kwak, J., Moon, J. S., & Hwang, I. (2008). Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics, 8(1), 106–121. https://doi.org/10.1002/pmic.200700244 | |
| dc.relation.references | Kang, Y., Shen, M., Xia, D., Ye, X., Zhao, D., & Hu, J. (2017). Caution of intensified spread of antibiotic resistance genes by inadvertent introduction of beneficial bacteria into soil. Acta Agriculturae Sxandinavuca, 67 (6). https://doi.org/10.1080/09064710.2017.1314548 | |
| dc.relation.references | Karki, H. S. (2010). Physiological, biochemical and molecular characteristics associated with virulence of Burkholderia glumae: the major causative agent of bacterial panicle blight of rice. Thesis for Master of Science Plant Pathology and Crop Physiology. Lousiana State University and Agriculture and Mechanical College. EU. | |
| dc.relation.references | Karki, H. S., Shrestha, B. K., Han, J. W., Groth, D. E., Barphagha, I. K., Rush, M. C., Melanson, R. A., Kim, B. S., & Ham, J. H. (2012). Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae. PloS one, 7(9), e45376. https://doi.org/10.1371/journal.pone.0045376 | |
| dc.relation.references | Kayalvizhi, N., Rameshkumar, N., & Gunasekaran, P. (2016). Cloning and characterization of mersacidin like bacteriocin from Bacillus licheniformis MKU3 in Escherichia coli. Journal of food science and technology, 53(5), 2298–2306. https://doi.org/10.1007/s13197-016-2195-y | |
| dc.relation.references | Kearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular microbiology, 55(3), 739–749. https://doi.org/10.1111/j.1365-2958.2004.04440.x | |
| dc.relation.references | Kecskeméti, A., Bartal, A., Bóka, B., Kredics, L., Manczinger, L., Shine, K., Alharby, N. S., Khaled, J. M., Varga, M., Vágvölgyi, C., & Szekeres, A. (2018). High-Frequency Occurrence of Surfactin Monomethyl Isoforms in the Ferment Broth of a Bacillus subtilis Strain Revealed by Ion Trap Mass Spectrometry. Molecules (Basel, Switzerland), 23(9), 2224. https://doi.org/10.3390/molecules23092224 | |
| dc.relation.references | Kim, J., Kang, Y., Choi, O., Jeong, Y., Jeong, J. E., Lim, J. Y., Kim, M., Moon, J. S., Suga, H., & Hwang, I. (2007). Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Molecular microbiology, 64(1), 165–179. https://doi.org/10.1111/j.1365-2958.2007.05646.x | |
| dc.relation.references | Kim, N., Kim, J. J., Kim, I., Mannaa, M., Park, J., Kim, J., Lee, H. H., Lee, S. B., Park, D. S., Sul, W. J., & Seo, Y. S. (2020b). Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence. Molecular plant pathology, 21(8), 1055–1069. https://doi.org/10.1111/mpp.12966 | |
| dc.relation.references | Kim, Y. T., Kim, S. E., Lee, W. J., Fumei, Z., Cho, M. S., Moon, J. S., Oh, H. W., Park, H. Y., & Kim, S. U. (2020a). Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PloS one, 15(12), e0234177. https://doi.org/10.1371/journal.pone.0234177 | |
| dc.relation.references | Klausmann, P., Lilge, L., Aschern, M., Hennemann, K., Henkel, M., Hausmann, R., & Morabbi Heravi, K. (2021). Influence of B. subtilis 3NA mutations in spo0A and abrB on surfactin production in B. subtilis 168. Microbial cell factories, 20(1), 188. https://doi.org/10.1186/s12934-021-01679-z | |
| dc.relation.references | Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259 | |
| dc.relation.references | Konkol, M. A., Blair, K. M., & Kearns, D. B. (2013). Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. Journal of bacteriology, 195(18), 4085–4093. https://doi.org/10.1128/JB.00696-13 | |
| dc.relation.references | Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research, 27(5), 722–736. https://doi.org/10.1101/gr.215087.116 | |
| dc.relation.references | Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., & Borriss, R. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of bacteriology, 186(4), 1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004 | |
| dc.relation.references | Kovács, Á.T., Smits, W.K., Mirończuk, A.M. and Kuipers, O.P. (2009), Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environmental Microbiology, 11: 1911-1922. https://doi.org/10.1111/j.1462-2920.2009.01937.x | |
| dc.relation.references | Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054 | |
| dc.relation.references | Kurita, T. & Tabei, H. (1967). On the pathogenic bacterium of bacterial grain rot of rice. Annual Phytopathology Society. Japan. 33, 111. | |
| dc.relation.references | Lakhssassi, N., Baharlouei, A., Meksem, J., Hamilton-Brehm, S. D., Lightfoot, D. A., Meksem, K., & Liang, Y. (2020). EMS-Induced Mutagenesis of Clostridium carboxidivorans for Increased Atmospheric CO2 Reduction Efficiency and Solvent Production. Microorganisms, 8(8), 1239. https://doi.org/10.3390/microorganisms8081239 | |
| dc.relation.references | Latif, A., Iqbal, M., & Asgher, M. (2018). Ethyl Methane Sulfonate Chemical Mutagenesis of Bacillus subtilis for Enhanced Production of Protease. International Journal Organic and Medicinal, 5 (3), 555664 Chemistry. https://doi.org/10.19080/OMCIJ.2018.05.555664 | |
| dc.relation.references | Lee, C., Mannaa, M., Kim, N., Kim, J., Choi, Y., Kim, S. H., Jung, B., Lee, H. H., Lee, J., & Seo, Y. S. (2019). Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae. The plant pathology journal, 35(5), 445–458. https://doi.org/10.5423/PPJ.OA.04.2019.0124 | |
| dc.relation.references | Lemfack, M. C., Gohlke, B. O., Toguem, S. M. T., Preissner, S., Piechulla, B., & Preissner, R. (2018). mVOC 2.0: a database of microbial volatiles. Nucleic acids research, 46(D1), D1261–D1265. https://doi.org/10.1093/nar/gkx1016 | |
| dc.relation.references | Leontiadou, H., Mark, A. E., & Marrink, S. J. (2004). Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophysical journal, 86(4), 2156–2164. https://doi.org/10.1016/S0006-3495(04)74275-7 | |
| dc.relation.references | Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., & Zhang, R. (2014). Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Frontiers in microbiology, 5, 636. https://doi.org/10.3389/fmicb.2014.00636 | |
| dc.relation.references | Li, L., Wang, L., Liu, L., Hou, Y., Li, Q., & Huang, S. (2016a). Infection process of Burkholderia glumae before booting stage of rice. Journal of Phythopathology, 164 (10), 825 – 832. https://doi.org/10.1111/jph.12502 | |
| dc.relation.references | Li, Lu., & Wang, L, Meng L, Xuan, H., Huang, S. W., & Li, Q. (2017). Infection process of Burkholderia glumae in rice spikelets. Journal of Phytopathology, 165 (2), 123 -130. https://doi.org/10.1111/jph.12545 | |
| dc.relation.references | Li, S. B., Xu, S. R., Zhang, R. N., Liu, Y., & Zhou, R. C. (2016b). The Antibiosis Action and Rice-Induced Resistance, Mediated by a Lipopeptide from Bacillus amyloliquefaciens B014, in Controlling Rice Disease Caused by Xanthomonas oryzae pv. oryzae. Journal of microbiology and biotechnology, 26(4), 748–756. https://doi.org/10.4014/jmb.1510.10072 | |
| dc.relation.references | Li, Y., Gu, Y., Li, J., Xu, M., Wei, Q., & Wang, Y. (2015). Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in microbiology, 6, 883. https://doi.org/10.3389/fmicb.2015.00883 | |
| dc.relation.references | Li, Y., Li, X., Jia, D., Liu, J., Wang, J., Liu, A., Liu, Z., Guan, G., Liu, G., Luo, J., & Yin, H. (2020). Complete genome sequence and antimicrobial activity of Bacillus velezensis JT3-1, a microbial germicide isolated from yak feces. 3 Biotech, 10(5), 231. https://doi.org/10.1007/s13205-020-02235-z | |
| dc.relation.references | Liao, J. H., Chen, P. Y., Yang, Y. L., Kan, S. C., Hsieh, F. C., & Liu, Y. C. (2016). Clarification of the Antagonistic Effect of the Lipopeptides Produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via In Situ MALDI-TOF IMS Analysis. Molecules (Basel, Switzerland), 21(12), 1670. https://doi.org/10.3390/molecules21121670 | |
| dc.relation.references | Lim, J., Lee, T. H., Nahm, B. H., Choi, Y. D., Kim, M., & Hwang, I. (2009). Complete genome sequence of Burkholderia glumae BGR1. Journal of bacteriology, 191(11), 3758–3759. https://doi.org/10.1128/JB.00349-09 | |
| dc.relation.references | Liu, Z., Budiharjo, A., Wang, P., Shi, H., Fang, J., Borriss, R., Zhang, K., & Huang, X. (2013). The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Applied microbiology and biotechnology, 97(23), 10081–10090. https://doi.org/10.1007/s00253-013-5247-5 | |
| dc.relation.references | Lopez, D., Vlamakis, H. and Kolter, R. (2009), Generation of multiple cell types in Bacillus subtilis. FEMS Microbiology Reviews, 33: 152-163. https://doi.org/10.1111/j.1574-6976.2008.00148.x | |
| dc.relation.references | Lorenz, M. G., & Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiological reviews, 58(3), 563–602. https://doi.org/10.1128/mr.58.3.563-602.1994 | |
| dc.relation.references | MacFadyen, L. P., Chen, D., Vo, H. C., Liao, D., Sinotte, R., & Redfield, R. J. (2001). Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Molecular microbiology, 40(3), 700–707. https://doi.org/10.1046/j.1365-2958.2001.02419.x | |
| dc.relation.references | Maeda, Y., Kiba, A., Ohnishi, K. & Hikichi, Y. (2004). New method to detect oxolinic acid -resistant Burkholderia glumae infesting rice seeds using a mismatch amplification mutation assay polymerase chain reaction. Journal of General Plant Pathology, 70, 215–217. https://doi.org/10.1007/s10327-003-0114-3 | |
| dc.relation.references | Magno-Pérez-Bryan, M. C., Martínez-García, P. M., Hierrezuelo, J., Rodríguez-Palenzuela, P., Arrebola, E., Ramos, C., de Vicente, A., Pérez-García, A., & Romero, D. (2015). Comparative Genomics Within the Bacillus Genus Reveal the Singularities of Two Robust Bacillus amyloliquefaciens Biocontrol Strains. Molecular plant-microbe interactions: MPMI, 28(10), 1102–1116. https://doi.org/10.1094/MPMI-02-15-0023-R | |
| dc.relation.references | Mahdi, I., Fahsi, N., Hijri, M., & Sobeh, M. (2022). Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Frontiers in microbiology, 13, 999988. https://doi.org/10.3389/fmicb.2022.999988 | |
| dc.relation.references | Maier, B., Chen, I., Dubnau, D., & Sheetz, M. P. (2004). DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nature structural & molecular biology, 11(7), 643–649. https://doi.org/10.1038/nsmb783 | |
| dc.relation.references | Mandic-Mulec, I., & Prosser, J. (2011). Diversity of Endospore-forming Bacteria in Soil: Characterization and Driving Mechanisms. Chapter Book in: Logan N and De Vos. (2011). Endospore – forming soli bacteria. Soil Biology. 27. https://doi.org/10.1007/978-3-642-19577-8_2 | |
| dc.relation.references | Mardanova, A., Hadieva, G., Tafkilevich, M., Valerevna, I., Minnullina, L., Gadelevna, A., Mikhailovna, L., & Rashdiovna, M. (2017). Bacillus subtilis strains with activity antifungal against the phytopathogenic fungi. Agriculture Sciences,8 (1), 1-20. | |
| dc.relation.references | May, J. J., Wendrich, T. M., & Marahiel, M. A. (2001). The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. The Journal of biological chemistry, 276(10), 7209–7217. https://doi.org/10.1074/jbc.M009140200 | |
| dc.relation.references | McElroy, D., Rothenberg, M., Reece, K. S., & Wu, R. (1990). Characterization of the rice (Oryza sativa) actin gene family. Plant molecular biology, 15(2), 257–268. https://doi.org/10.1007/BF00036912 | |
| dc.relation.references | Meddeb-Mouelhi, F., Dulcey, C., & Beauregard, M. (2012). High transformation efficiency of Bacillus subtilis with integrative DNA using glycine betaine as osmoprotectant. Analytical biochemistry, 424(2), 127–129. https://doi.org/10.1016/j.ab.2012.01.032 | |
| dc.relation.references | Mi, H., Muruganujan, A., & Thomas, P. D. (2013). PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic acids research, 41(Database issue), D377–D386. https://doi.org/10.1093/nar/gks1118 | |
| dc.relation.references | Miguel-Arribas, A., Hao, J. A., Luque-Ortega, J. R., Ramachandran, G., Val-Calvo, J., Gago-Córdoba, C., González-Álvarez, D., Abia, D., Alfonso, C., Wu, L. J., & Meijer, W. (2017). The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation. Frontiers in microbiology, 8, 2138. https://doi.org/10.3389/fmicb.2017.02138 | |
| dc.relation.references | Miranda – Martínez, Y. L. (2022). Caracterización de los metabolites secundarios producidos por la cepa IBUN2755, involucrados en la actividad antimicrobiana y antifúngica contra patógenos de arroz. Tesis para optar por el título de magister en ciencias – Microbiología. Universidad Nacional de Colombia. Bogotá. Colombia. | |
| dc.relation.references | Mirończuk, A. M., Kovács, Á. T., & Kuipers, O. P. (2008). Induction of natural competence in Bacillus cereus ATCC14579. Microbial biotechnology, 1(3), 226–235. https://doi.org/10.1111/j.1751-7915.2008.00023.x | |
| dc.relation.references | Mitchell, A. M., Strobel, G. A., Moore, E., Robison, R., & Sears, J. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology (Reading, England), 156(Pt 1), 270–277. https://doi.org/10.1099/mic.0.032540-0 | |
| dc.relation.references | Mizobuchi, R., Sato, H., Fukuoka, S., Tanabata, T., Tsushima, S., Imbe, T., & Yano, M. (2013). Mapping a quantitative trait locus for resistance to bacterial grain rot in rice. Rice (New York, N.Y.), 6(1), 13. https://doi.org/10.1186/1939-8433-6-13 | |
| dc.relation.references | Mofid, M. R., Finking, R., Essen, L. O., & Marahiel, M. A. (2004). Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism. Biochemistry, 43(14), 4128–4136. https://doi.org/10.1021/bi036013h | |
| dc.relation.references | Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution, 60(2), 174–182. https://doi.org/10.1007/s00239-004-0046-3 | |
| dc.relation.references | Molina-Santiago, C., Pearson, J. R., Navarro, Y., Berlanga-Clavero, M. V., Caraballo-Rodriguez, A. M., Petras, D., García-Martín, M. L., Lamon, G., Haberstein, B., Cazorla, F. M., de Vicente, A., Loquet, A., Dorrestein, P. C., & Romero, D. (2019). The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nature communications, 10(1), 1919. https://doi.org/10.1038/s41467-019-09944-x | |
| dc.relation.references | Molinatto, G., Franzil, L., Steels, S., Puopolo, G., Pertot, I., & Ongena, M. (2017). Key Impact of an Uncommon Plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 Developmental Traits and Lipopeptide Production. Frontiers in Microbiology, 8, 17. http://doi.org/10.3389/fmicb.2017.00017 | |
| dc.relation.references | Mora, I., Cabrefiga, J., & Montesinos, E. (2015). Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria. PloS one, 10(5), e0127738. https://doi.org/10.1371/journal.pone.0127738 | |
| dc.relation.references | Mota, M. S., Gomes, C. B., Souza Júnior, I. T., & Moura, A. B. (2017). Bacterial selection for biological control of plant disease: criterion determination and validation. Brazilian journal of microbiology, 48(1), 62–70. https://doi.org/10.1016/j.bjm.2016.09.003 | |
| dc.relation.references | Nakai, T., Yamauchi, D., & Kubota, K. (2005). Enhancement of linear gramicidin expression from Bacillus brevis ATCC 8185 by casein peptide. Bioscience, biotechnology, and biochemistry, 69(4), 700–704. https://doi.org/10.1271/bbb.69.700 | |
| dc.relation.references | Nandakumar, R., Bollich, P.A., Shahjahan, A.K.M., Groth, D.E., & Rush, M.C. (2008). Association of soilborne Burkholderia gladioli with rice sheath rot and panicle blight symptoms. Canadian Journal Plant Pathology 30:148- 154. | |
| dc.relation.references | Nandakumar, R., Shahjahan, A.K.M., Yuan, X.L., Dickstein, E.R., Groth, D.E., Clark, C.A., Cartwright, R.D. and Rush, M.C. (2009). Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States. Plant Disease 93, 896-905. | |
| dc.relation.references | Neumann, E., Kakorin, S., & Toensing, K. (1999). Fundamentals of electroporative delivery of drugs and genes. Bioelectrochemistry and bioenergetics (Lausanne, Switzerland), 48(1), 3–16. https://doi.org/10.1016/s0302-4598(99)00008-2 | |
| dc.relation.references | Nie, P., Li, X., Wang, S., Guo, J., Zhao, H., & Niu, D. (2017). Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis. Frontiers in plant science, 8, 238. https://doi.org/10.3389/fpls.2017.00238 | |
| dc.relation.references | Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., & Ongena, M. (2012). Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS microbiology ecology, 79(1), 176–191. https://doi.org/10.1111/j.1574-6941.2011.01208.x | |
| dc.relation.references | Niu, D., Wang, X., Wang, Y., Song, X., Wang, J., Guo, J., & Zhao, H. (2016). Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochemical and biophysical research communications, 469(1), 120–125. https://doi.org/10.1016/j.bbrc.2015.11.081 | |
| dc.relation.references | Ohno, A., Ano, T., & Shoda, M. (1995). Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnology and bioengineering, 47(2), 209–214. https://doi.org/10.1002/bit.260470212 | |
| dc.relation.references | Olmos, J., & Paniagua-Michel, J. (2014). Bacillus subtilis a potential probiotic bacterium to formulated functional feeds for aquaculture. Journal of Microbial & Biochemical Technology, 6, 361-365. http://dx.doi.org/10.4172/1948-5948.1000169 | |
| dc.relation.references | Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology, 16(3), 115–125. https://doi.org/10.1016/j.tim.2007.12.009 | |
| dc.relation.references | Oren, A., & Garrity, G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. International journal of systematic and evolutionary microbiology, 71(10), 10.1099/ijsem.0.005056. https://doi.org/10.1099/ijsem.0.005056 | |
| dc.relation.references | Ortega, L., & Rojas, C. M. (2021). Bacterial Panicle Blight and Burkholderia glumae: From Pathogen Biology to Disease Control. Phytopathology, 111(5), 772–778. https://doi.org/10.1094/PHYTO-09-20-0401-RVW | |
| dc.relation.references | Ospina J y Aldana H. (2001). Enciclopedia Agropecuaria. Producción Agrícola. Terranova. Tomo I | |
| dc.relation.references | Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic acids research, 42(Database issue), D206–D214. https://doi.org/10.1093/nar/gkt1226 | |
| dc.relation.references | Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics (Oxford, England), 31(22), 3691–3693. https://doi.org/10.1093/bioinformatics/btv421 | |
| dc.relation.references | Pandin, C., Le Coq, D., Canette, A., Aymerich, S., & Briandet, R. (2017). Should the biofilm mode of life be taken into consideration for microbial biocontrol agents?. Microbial biotechnology, 10(4), 719–734. https://doi.org/10.1111/1751-7915.12693 | |
| dc.relation.references | Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P. É., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic acids research, 49(W1), W388–W396. https://doi.org/10.1093/nar/gkab382 | |
| dc.relation.references | Park, K., Park, Y., Ahamed, J., & Moon, S. (2016). Elicitation of induced systemic resistance of chili pepper by iturin A analogs derived from Bacillus vallismortis EXTN-1. Canadian journal of plant science, 96(4). https://doi.org/101139/CJPS-2015-0199 | |
| dc.relation.references | Parra-Peña., R. I., Florez, S., & Rodríguez. D. (2022). La competitividad de la cadena del arroz en Colombia. ANDI, pp: 304. | |
| dc.relation.references | Patil, A. J., Li, M., Dujardin, E., & Mann, S. (2007). Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks. Nano letters, 7(9), 2660–2665. https://doi.org/10.1021/nl071052q | |
| dc.relation.references | Patil, S., Bheemaraldi, M., Shivannavar, C., & Gaddad, S. (2014). Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. Journal of agriculture and veterinary science, 7, 63-68. https://doi.org/10.9790/2380-07916368 | |
| dc.relation.references | Pavlin, M., Leben, V. and Miklavciˇ c, D. (2007) Electroporation in dense cell suspension - Theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochimica et Biophysica Acta 1770, 12–23. | |
| dc.relation.references | Pedraza, L. A, López, C. E, & Uribe-Vélez, D. (2020). Mecanismos de acción de Bacillus spp. (Bacillaceae) contra microorganismos fitopátogenos durante su interacción con plantas. Acta Biológica Colombiana, 25(1), 112-125. https://doi.org/10.15446/abc.v25n1.75045 | |
| dc.relation.references | Pedraza, L. A., Bautista, J., & Uribe-Vélez, D. (2018). Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage. The plant pathology journal, 34(5), 393–402. https://doi.org/10.5423/PPJ.OA.02.2018.0030 | |
| dc.relation.references | Pedraza, L.A. (2015). Actividad biocontroladora de Bacterias Aerobias Formadoras de Endospora (BAFE) rizosfericas contra Burkholderia glumae en plantas de una variedad colombiana de arroz (Oryza sativa L.). Trabajo de Tesis para optar por el título de Magister en Ciencias – Microbiología. Universidad Nacional de Colombia. Sede Bogotá. | |
| dc.relation.references | Pedraza-Herrera, L.A., Barreto-Hernández, E., & Uribe-Veléz, D. In presentation. Genomic comparison of Bacillus amyloliquefaciens/B. velezensis with the biocontrol strain IBUN 2755 reveals the intimate interaction of B. velezensis with plants. | |
| dc.relation.references | Pedraza-Herrera, L.A., Bautista, J.P., Cruz-Ramírez, C.A., Uribe-Vélez, D. (2021). IBUN2755 Bacillus strain controls seedling root and bacterial panicle blight caused by Burkholderia glumae. Biol. Control. 153:104494. https://doi.org/10.1016/j.biocontrol.2020.104494 | |
| dc.relation.references | Perea Molina, P. A., Pedraza-Herrera, L. A., Beauregard, P. B., Uribe-Vélez, D. (2022). A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological control, 176, 105067. https://doi.org/10.1016/j.biocontrol.2022.105067. | |
| dc.relation.references | Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45 | |
| dc.relation.references | Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. (2009). Networking by small-molecule hormones in plant immunity. Nature chemical biology, 5(5), 308–316. https://doi.org/10.1038/nchembio.164 | |
| dc.relation.references | Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52, 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340 | |
| dc.relation.references | Pinson, S. R. M., Shahjahan, A. K. M., Rush, M. C., & Groth, D. E. (2010). Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Science, 50, 1287-1297. https://doi.org/10.2135/cropsci2008.07.0447 | |
| dc.relation.references | Prasad, B., Sharma, D., Kumar, P., Chandra, R- (2023). Biocontrol potential of Bacillus spp. for resilient and sustainable agricultural systems. Physiological and Molecular Plant Pathology, 102173. https://doi.org/10.1016/j.pmpp.2023.102173 | |
| dc.relation.references | Provvedi, R., & Dubnau, D. (1999). ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Molecular microbiology, 31(1), 271–280. https://doi.org/10.1046/j.1365-2958.1999.01170.x | |
| dc.relation.references | R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. | |
| dc.relation.references | Rahman, A., Uddin, W., & Wenner, N. G. (2015). Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Molecular plant pathology, 16(6), 546–558. https://doi.org/10.1111/mpp.12209 | |
| dc.relation.references | Rahmer, R., Morabbi Heravi, K., & Altenbuchner, J. (2015). Construction of a Super-Competent Bacillus subtilis 168 Using the P mtlA -comKS Inducible Cassette. Frontiers in microbiology, 6, 1431. https://doi.org/10.3389/fmicb.2015.01431 | |
| dc.relation.references | Rasmussen, T. B., & Givskov, M. (2006). Quorum sensing inhibitors: a bargain of effects. Microbiology (Reading, England), 152(Pt 4), 895–904. https://doi.org/10.1099/mic.0.28601-0 | |
| dc.relation.references | Richter, M., & Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19126–19131. https://doi.org/10.1073/pnas.0906412106 | |
| dc.relation.references | Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., & Peplies, J. (2016). JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics (Oxford, England), 32(6), 929–931. https://doi.org/10.1093/bioinformatics/btv681 | |
| dc.relation.references | Rodic, A., Blagojevic, B., Zdobnov, E., Djordjevic, M., & Djordjevic, M. (2017). Understanding key features of bacterial restriction-modification systems through quantitative modeling. BMC systems biology, 11(Suppl 1), 377. https://doi.org/10.1186/s12918-016-0377-x | |
| dc.relation.references | Rodríguez, J., Tonelli, M.L., Figueredo, M.S., Ibáñez, F., & Fabra, A. (2018). The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L. European Journal Plant Pathology, 152, 845–851. https://doi.org/10.1007/s10658-018-1524-6 | |
| dc.relation.references | Roh, J. Y., Liu, Q., Choi, J. Y., Wang, Y., Shim, H. J., Xu, H. G., Choi, G. J., Kim, J. C., & Je, Y. H. (2009). Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. Journal of microbiology and biotechnology, 19(10), 1223–1229. https://doi.org/10.4014/jmb.0902.065 | |
| dc.relation.references | Romero, D., Pérez-García, A., Veening, J. W., de Vicente, A., & Kuipers, O. P. (2006). Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation. Journal of microbiological methods, 66(3), 556–559. https://doi.org/10.1016/j.mimet.2006.01.005 | |
| dc.relation.references | Rosado, A., Duarte, G. F., & Seldin, L. (1994). Optimization of electroporation procedure to transform B. polymyxa SCE2 and other nitrogen-fixing Bacillus. Journal of Microbiological Methods, 19 (1), 1 – 11. https://doi.org/10.1016/0167-7012(94)90020-5 | |
| dc.relation.references | Rosier, A., Pomerleau, M., Beauregard, P. B., Samac, D. A., & Bais, H. P. (2023). Surfactin and Spo0A-Dependent Antagonism by Bacillus subtilis Strain UD1022 against Medicago sativa Phytopathogens. Plants (Basel, Switzerland), 12(5), 1007. https://doi.org/10.3390/plants12051007 | |
| dc.relation.references | Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant physiology, 148(3), 1547–1556. https://doi.org/10.1104/pp.108.127613 | |
| dc.relation.references | Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4927–4932. https://doi.org/10.1073/pnas.0730845100 | |
| dc.relation.references | Sayler, R.J., Cartwright, R.D. and Yang, Y.N. (2006) Genetic characterization and real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. (vol 90, pg 603, 2006). Plant Disease 91, 1050-1050 | |
| dc.relation.references | Schaad, N.W. (2008) Emerging plant pathogenic bacteria and global warming. In: Pseudomonas syringae Pathovars and Related Pathogens—Identification, Epidemiology and Genomics (Fatmi, M., Collmer, A., Iacobellis, N.S., Mansfield, J.W., Murillo, J., Schaad, N.W. and Ullrich, M. eds), pp. 369–379. New York, NY, USA: Springer. | |
| dc.relation.references | Schmid, R., Heuckeroth, S., Korf, A., Smirnov, A., Myers, O., Dyrlund, T. S., Bushuiev, R., Murray, K. J., Hoffmann, N., Lu, M., Sarvepalli, A., Zhang, Z., Fleischauer, M., Dührkop, K., Wesner, M., Hoogstra, S. J., Rudt, E., Mokshyna, O., Brungs, C., Ponomarov, K., … Pluskal, T. (2023). Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nature biotechnology, 41(4), 447–449. https://doi.org/10.1038/s41587-023-01690-2 | |
| dc.relation.references | Seemann, T. (2015). Snippy: fast bacterial variant calling from NGS reads. https://github.com/tseemann/snippy Visit | |
| dc.relation.references | Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 | |
| dc.relation.references | Seo, D. J., Lee, J. H., Song, Y. S., Park, R. D., & Jung, W. J. (2014). Expression patterns of chitinase and chitosanase produced from Bacillus cereus in suppression of phytopathogen. Microbial pathogenesis, 73, 31–36. https://doi.org/10.1016/j.micpath.2014.05.007 | |
| dc.relation.references | Seo, Y. S., Lim, J. Y., Park, J., Kim, S., Lee, H. H., Cheong, H., Kim, S. M., Moon, J. S., & Hwang, I. (2015). Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC genomics, 16(1), 349. https://doi.org/10.1186/s12864-015-1558-5 | |
| dc.relation.references | Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review, Biotechnology & Biotechnological Equipment, 31 (3), 1 – 14. https://doi.org/10.1080/13102818.2017.1286950 | |
| dc.relation.references | Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., Wang, K. (2011). Impact of high-temperature stress on rice plant and its traits related to tolerance. Journal of Agriculture Science, 149 (5), 545 – 556. https://doi.org/10.1017/S0021859611000360 | |
| dc.relation.references | She, Q., Hunter, E., Qin, Y., Nicolau, S., Zalis, E. A., Wang, H., Chen, Y., & Chai, Y. (2020). Negative Interplay between Biofilm Formation and Competence in the Environmental Strains of Bacillus subtilis. mSystems, 5(5), e00539-20. https://doi.org/10.1128/mSystems.00539-20 | |
| dc.relation.references | Shen, M., Chen, Z., Mao, X., Wang, L., Liang, J., Huo, Q., Yin, X., Qiu, J., & Sun, D. (2018). Two different restriction-modification systems for degrading exogenous DNA in PaeniBacillus polymyxa. Biochemical and biophysical research communications, 504(4), 927–932. https://doi.org/10.1016/j.bbrc.2018.09.016 | |
| dc.relation.references | Shew, A. M., Durand-Morat, A., Nalley, L. L., Zhou, X. G., Rojas, C., & Thoma, G. (2019). Warming increases Bacterial Panicle Blight (Burkholderia glumae) occurrences and impacts on USA rice production. Plos ONE, 14 (7), e0219199. https://doi.org/10.1371/journal.pone.0219199 | |
| dc.relation.references | Shibai, A., Takahashi, Y., Ishizawa, Y., Motooka, D., Nakamura, S., Ying, B. W., & Tsuru, S. (2017). Mutation accumulation under UV radiation in Escherichia coli. Scientific reports, 7(1), 14531. https://doi.org/10.1038/s41598-017-15008-1 | |
| dc.relation.references | Shrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N., & Ham, J. H. (2016). Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice. PloS one, 11(1), e0146764. https://doi.org/10.1371/journal.pone.0146764 | |
| dc.relation.references | Singh, P. K., Ramachandran, G., Durán-Alcalde, L., Alonso, C., Wu, L. J., & Meijer, W. J. (2012). Inhibition of Bacillus subtilis natural competence by a native, conjugative plasmid-encoded comK repressor protein. Environmental microbiology, 14(10), 2812–2825. https://doi.org/10.1111/j.1462-2920.2012.02819.x | |
| dc.relation.references | Singh, P. K., Ramachandran, G., Ramos-Ruiz, R., Peiró-Pastor, R., Abia, D., Wu, L. J., & Meijer, W. J. (2013). Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS genetics, 9(10), e1003892. https://doi.org/10.1371/journal.pgen.1003892 | |
| dc.relation.references | Skinnider, M. A., Merwin, N. J., Johnston, C. W., & Magarvey, N. A. (2017). PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic acids research, 45(W1), W49–W54. https://doi.org/10.1093/nar/gkx320 | |
| dc.relation.references | Smith, D. G. (1969). Bacteria with their coats off: spheroplasts, protoplasts and L-forms. Science progress, 57(226), 169–192. | |
| dc.relation.references | Spizizen J. (1958). Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America, 44(10), 1072–1078. https://doi.org/10.1073/pnas.44.10.1072 | |
| dc.relation.references | Stoll, A., Salvatierra-Martínez, R., González, M., & Araya, M. (2021). The Role of Surfactin Production by Bacillus velezensis on Colonization, Biofilm Formation on Tomato Root and Leaf Surfaces and Subsequent Protection (ISR) against Botrytis cinerea. Microorganisms, 9(11), 2251. https://doi.org/10.3390/microorganisms9112251 | |
| dc.relation.references | Stothard, P., Grant, J. R., & Van Domselaar, G. (2019). Visualizing and comparing circular genomes using the CGView family of tools. Briefings in bioinformatics, 20(4), 1576–1582. https://doi.org/10.1093/bib/bbx081 | |
| dc.relation.references | Stragier, P., Bonamy, C., & Karmazyn-Campelli, C. (1988). Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell, 52(5), 697–704. https://doi.org/10.1016/0092-8674(88)90407-2 | |
| dc.relation.references | Suárez-Moreno, Z. R., Vinchira-Villarraga, D. M., Vergara-Morales, D. I., Castellanos, L., Ramos, F. A., Guarnaccia, C., Degrassi, G., Venturi, V., & Moreno-Sarmiento, N. (2019). Plant-Growth Promotion and Biocontrol Properties of Three Streptomyces spp. Isolates to Control Bacterial Rice Pathogens. Frontiers in microbiology, 10, 290. https://doi.org/10.3389/fmicb.2019.00290 | |
| dc.relation.references | Sumi, C. D., Yang, B. W., Yeo, I. C., & Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian journal of microbiology, 61(2), 93–103. https://doi.org/10.1139/cjm-2014-0613 | |
| dc.relation.references | Suyotha, W., Yano, S., & Wakayama, M. (2016). α-1,3-Glucanase: present situation and prospect of research. World journal of microbiology & biotechnology, 32(2), 30. https://doi.org/10.1007/s11274-015-1977-0 | |
| dc.relation.references | Suzuki, F., Sawada, H., Azegami, K. & Tsuchiya, K. (2004) Molecular characterization of the operon involved in toxoflavin biosynthesis of Burkholderia glumae. Journal of General Plant Pathology 70, 97-107. https://doi.org/10.1007/s10327-003-0096-1 | |
| dc.relation.references | Swiontek Brzezinska, M., Kalwasińska, A., Świątczak, J., Żero, K., & Jankiewicz, U. (2020). Exploring the properties of chitinolytic Bacillus isolates for the pathogens biological control. Microbial pathogenesis, 148, 104462. https://doi.org/10.1016/j.micpath.2020.104462 | |
| dc.relation.references | Tahir, H. A., Gu, Q., Wu, H., Niu, Y., Huo, R., & Gao, X. (2017). Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Scientific reports, 7, 40481. https://doi.org/10.1038/srep40481 | |
| dc.relation.references | Théatre, A., Cano-Prieto, C., Bartolini, M., Laurin, Y., Deleu, M., Niehren, J., Fida, T., Gerbinet, S., Alanjary, M., Medema, M. H., Léonard, A., Lins, L., Arabolaza, A., Gramajo, H., Gross, H., & Jacques, P. (2021). The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Frontiers in bioengineering and biotechnology, 9, 623701. https://doi.org/10.3389/fbioe.2021.623701 | |
| dc.relation.references | Torres, M., Pérez, C., Sabaté, D., Petroselli, G., Erra-Balsells, R., & Audisio, M. (2017). Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biological control, 105, 93-99. https://doi.org/10.1016/j.biocontrol.2016.12.001 | |
| dc.relation.references | Towle, K. M., & Vederas, J. C. (2017). Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. MedChemComm, 8(2), 276–285. https://doi.org/10.1039/c6md00607h | |
| dc.relation.references | Tsushima, S., Mogi, S., & Saito, H. (1985) Effects of inoculum density, incubation temperature and incubation period on the development of rice bacterial grain rot (in Japanese). Kyushu Plant Protection Research, 31, 11–12. | |
| dc.relation.references | Tsushima, S., Naito, H., & Koitabashi, M. (1996). Population dynamics of Pseudomonas glumae, cuithe causal agent of bacterial grain rot of rice, on leaf sheaths of rice plants in relation to disease development in the field. Annals of the Phytopathological Society of Japan, 62,108–113. | |
| dc.relation.references | Turgay, K., Hamoen, L. W., Venema, G., & Dubnau, D. (1997). Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes & development, 11(1), 119–128. https://doi.org/10.1101/gad.11.1.119 | |
| dc.relation.references | Uematsu, T., Yoshimura, D., Nishiyama, K., Ibaraki, T. and Fujii, H. (1976). Occurrence of bacterial seedling rot in nursery flat, caused by grain rot bacterium Pseudomonas glumae. Annals of the Phytopathological Society of Japan, 42, 310– 312. | |
| dc.relation.references | Urakami, T,m Ito-Yoshida, C., Araki, H., Kijima, T., Sukuri, K. I., Komagata, K. (1994). Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. Nov. International Journal of Systematic and Evolutionary Microbiology, 4, 2, https://doi.org/10.1099/00207713-44-2-235 | |
| dc.relation.references | Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243- 54. https://doi.org/10.1007/s10658-007-9165-1 | |
| dc.relation.references | van Sinderen, D., Kiewiet, R., & Venema, G. (1995). Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Molecular microbiology, 15(2), 213–223. https://doi.org/10.1111/j.1365-2958.1995.tb02236.x | |
| dc.relation.references | Walsh C. T. (2004). Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science (New York, N.Y.), 303(5665), 1805–1810. https://doi.org/10.1126/science.1094318 | |
| dc.relation.references | Wang, H., Fewer, D. P., Holm, L., Rouhiainen, L., & Sivonen, K. (2014). Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9259–9264. https://doi.org/10.1073/pnas.1401734111 | |
| dc.relation.references | Wang, N., Liu, M., Guo, L., Yang, X., & Qiu, D. (2016). A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco. International journal of biological sciences, 12(6), 757–767. https://doi.org/10.7150/ijbs.14333 | |
| dc.relation.references | Wash, P., Batool, A., Mulk, S., Nazir, S., Yasmin, H., Mumtaz, S., Alyemeni, M. N., Kaushik, P., & Hassan, M. N. (2022). Prevalence of Antimicrobial Resistance and Respective Genes among Bacillus spp., a Versatile Bio-Fungicide. International journal of environmental research and public health, 19(22), 14997. https://doi.org/10.3390/ijerph192214997 | |
| dc.relation.references | Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., Conrad, N., Dietrich, E. M., Disz, T., Gabbard, J. L., Gerdes, S., Henry, C. S., Kenyon, R. W., Machi, D., Mao, C., Nordberg, E. K., Olsen, G. J., Murphy-Olson, D. E., Olson, R., Overbeek, R., … Stevens, R. L. (2017). Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic acids research, 45(D1), D535–D542. https://doi.org/10.1093/nar/gkw1017 | |
| dc.relation.references | Weinberg, J. B., Alexander, B. D., Majure, J. M., Williams, L. W., Kim, J. Y., Vandamme, P., & LiPuma, J. J. (2007). Burkholderia glumae infection in an infant with chronic granulomatous disease. Journal of clinical microbiology, 45(2), 662–665. https://doi.org/10.1128/JCM.02058-06 | |
| dc.relation.references | Wipat, A., & Harwood, C. R. (1999). The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiology Ecology, 28 (1), 1 – 9. https://doi.org/10.1111/j.1574-6941.1999.tb00555.x | |
| dc.relation.references | Wolf, M., Geczi, A., Simon, O., & Borriss, R. (1995). Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology (Reading, England), 141 ( Pt 2), 281–290. https://doi.org/10.1099/13500872-141-2-281 | |
| dc.relation.references | Worley, B., & Powers, R. (2016). PCA as a practical indicator of OPLS-DA model reliability. Current Metabolomics, 4(2), 97–103. https://doi.org/10.2174/2213235X04666160613122429 | |
| dc.relation.references | Wu, G., Drufva, E., & Wu, K. (2019). Fast genome editing in Bacillus subtilis. Engineering in life sciences, 19(6), 471–477. https://doi.org/10.1002/elsc.201800164 | |
| dc.relation.references | Wu, G., Liu, Y., Xu, Y., Zhang, G., Shen, Q., & Zhang, R. (2018a). Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions With Plant Signaling Pathways. Molecular plant-microbe interactions: MPMI, 31(5), 560–567. https://doi.org/10.1094/MPMI-11-17-0273-R | |
| dc.relation.references | Wu, K., Fang, Z., Guo, R., Pan, B., Shi, W., Yuan, S., Guan, H., Gong, M., Shen, B., & Shen, Q. (2015b). Pectin Enhances Bio-Control Efficacy by Inducing Colonization and Secretion of Secondary Metabolites by Bacillus amyloliquefaciens SQY 162 in the Rhizosphere of Tobacco. PloS one, 10(5), e0127418. https://doi.org/10.1371/journal.pone.0127418 | |
| dc.relation.references | Wu, L., Li, X., Ma, L., Borriss, R., Wu, Z., & Gao, X. (2018b). Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. Journal of experimental botany, 69(22), 5625–5635. https://doi.org/10.1093/jxb/ery326 | |
| dc.relation.references | Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R., & Gao, X. (2015a). Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific reports, 5, 12975. https://doi.org/10.1038/srep12975 | |
| dc.relation.references | Yuan, J., Zhang, F., Wu, Y., Zhang, J., Raza, W., Shen, Q., & Huang, Q. (2014). Recovery of several cell pellet-associated antibiotics produced by Bacillus amyloliquefaciens NJN-6. Letters in applied microbiology, 59(2), 169–176. https://doi.org/10.1111/lam.12260 | |
| dc.relation.references | Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., & Shen, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific reports, 5, 13438. https://doi.org/10.1038/srep13438 | |
| dc.relation.references | Zeriouh, H., de Vicente, A., Pérez-García, A., & Romero, D. (2014). Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environmental microbiology, 16(7), 2196–2211. https://doi.org/10.1111/1462-2920.12271 | |
| dc.relation.references | Zhang, G., Wang, W., Deng, A., Sun, Z., Zhang, Y., Liang, Y., Che, Y., & Wen, T. (2012). A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS genetics, 8(9), e1002987. https://doi.org/10.1371/journal.pgen.1002987 | |
| dc.relation.references | Zhang, Y., Qi, J., Wang, Y., Wen, J., Zhao, X., & Qi, G. (2022). Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Microbiological research, 254, 126920. https://doi.org/10.1016/j.micres.2021.126920 | |
| dc.relation.references | Zhou, H., Luo, C., Fang, X., Xiang, Y., Wang, X., Zhang, R., & Chen, Z. (2016). Loss of GltB Inhibits Biofilm Formation and Biocontrol Efficiency of Bacillus subtilis Bs916 by Altering the Production of γ-Polyglutamate and Three Lipopeptides. PloS one, 11(5), e0156247. https://doi.org/10.1371/journal.pone.0156247 | |
| dc.relation.references | Zvenigorodskiĭ, V. I., Pozdniakov, V. N., Bugaĭchuk, I.uD., & Zhdanov, V. G. (1983). Transformatsiia Bacillus licheniformis plazmidnoĭ DNK [Transformation of Bacillus licheniformis by plasmid DNA]. Genetika, 19(6), 1036–1038. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.agrovoc | Pseudomonas | spa | 
| dc.subject.agrovoc | Pseudomonas | eng | 
| dc.subject.agrovoc | Control biológico | spa | 
| dc.subject.agrovoc | biological control | eng | 
| dc.subject.agrovoc | Bacteria gram negativa | spa | 
| dc.subject.agrovoc | Gram-negative bacteria | eng | 
| dc.subject.agrovoc | Enfermedad de las plantas | spa | 
| dc.subject.agrovoc | plant diseases | eng | 
| dc.subject.ddc | 570 - Biología::579 - Historia natural microorganismos, hongos, algas | spa | 
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales | spa | 
| dc.subject.proposal | Biological control | eng | 
| dc.subject.proposal | Burkholderia glumae | eng | 
| dc.subject.proposal | Rice | eng | 
| dc.subject.proposal | Molecular genetic | eng | 
| dc.subject.proposal | Bacillus | eng | 
| dc.subject.proposal | Lipopeptide | eng | 
| dc.subject.proposal | Surfactin | eng | 
| dc.subject.proposal | Plant defense | eng | 
| dc.subject.proposal | Arroz | spa | 
| dc.subject.proposal | Mecanismos de biocontrol | spa | 
| dc.title | Identificación y análisis funcional de determinantes asociados a los mecanismos de acción de la cepa de BAFE IBUN 2755 en el biocontrol de Burkholderia glumae en plantas de arroz | spa | 
| dc.title.translated | Identification and functional analysis of determinants associated with the mechanisms of action of the AEFB strain IBUN 2755 in the biocontrol of Burkholderia glumae in rice plants | eng | 
| dc.type | Trabajo de grado - Doctorado | spa | 
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa | 
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.awardtitle | Identificación y análisis funcional de determinantes asociados a los mecanismos de acción de la cepa de BAFE IBUN 2755 en el biocontrol de Burkholderia glumae en plantas de arroz | spa | 
| oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación | spa | 
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
 - TESIS LUZ ADRIANA PEDRAZA HERRERA VERSIÓN FINAL REPOSITORIO.pdf
 - Tamaño:
 - 6.06 MB
 - Formato:
 - Adobe Portable Document Format
 - Descripción:
 - Tesis de Doctorado en Ciencias Agrarias
 
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
 - license.txt
 - Tamaño:
 - 5.74 KB
 - Formato:
 - Item-specific license agreed upon to submission
 - Descripción:
 

